
Birthday attack 1

Birthday attack
A birthday attack is a type of cryptographic attack that exploits the mathematics behind the birthday problem in
probability theory. This attack can be used to abuse communication between two or more parties. The attack depends
on the higher likelihood of collisions found between random attack attempts and a fixed degree of permutations
(pigeonholes), as described in the birthday problem/paradox.

Understanding the problem
As an example, consider the scenario in which a teacher with a class of 30 students asks for everybody's birthday, to
determine whether any two students have the same birthday (corresponding to a hash collision as described below
[for simplicity, ignore February 29]). Intuitively, this chance may seem small. If the teacher picked a specific day
(say September 16), then the chance that at least one student was born on that specific day is ,
about 7.9%. However, the probability that at least one student has the same birthday as any other student is around
70% (using the formula for n = 30).

Mathematics
Given a function , the goal of the attack is to find two different inputs such that . Such
a pair is called a collision. The method used to find a collision is simply to evaluate the function for
different input values that may be chosen randomly or pseudorandomly until the same result is found more than
once. Because of the birthday problem, this method can be rather efficient. Specifically, if a function yields
any of different outputs with equal probability and is sufficiently large, then we expect to obtain a pair of
different arguments and with after evaluating the function for about different
arguments on average.
We consider the following experiment. From a set of H values we choose n values uniformly at random thereby
allowing repetitions. Let p(n; H) be the probability that during this experiment at least one value is chosen more than
once. This probability can be approximated as

Let n(p; H) be the smallest number of values we have to choose, such that the probability for finding a collision is at
least p. By inverting this expression above, we find the following approximation

and assigning a 0.5 probability of collision we arrive at

Let Q(H) be the expected number of values we have to choose before finding the first collision. This number can be
approximated by

As an example, if a 64-bit hash is used, there are approximately 1.8 × 1019 different outputs. If these are all equally
probable (the best case), then it would take 'only' approximately 5 billion attempts (5.1 × 109) to generate a collision
using brute force. This value is called birthday bound[1] and for n-bit codes it could be computed as 2n/2. Other
examples are as follows:

http://en.wikipedia.org/w/index.php?title=Cryptography
http://en.wikipedia.org/w/index.php?title=Cryptanalysis
http://en.wikipedia.org/w/index.php?title=Mathematics
http://en.wikipedia.org/w/index.php?title=Birthday_problem
http://en.wikipedia.org/w/index.php?title=Probability_theory
http://en.wikipedia.org/w/index.php?title=Collision_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Pigeonhole_principle
http://en.wikipedia.org/w/index.php?title=Collision_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Collision_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Function_%28mathematics%29

Birthday attack 2

Bits Possible
outputs

(2 s.f.) (H)

Desired probability of random collision
(2 s.f.) (p)

10−18 10−15 10−12 10−9 10−6 0.1% 1% 25% 50% 75%

16 66,000 <2 <2 <2 <2 <2 11 36 190 300 430

32 4.3 × 109 <2 <2 <2 3 93 2900 9300 50,000 77,000 110,000

64 1.8 × 1019 6 190 6100 190,000 6,100,000 1.9 × 108 6.1 × 108 3.3 × 109 5.1 × 109 7.2 × 109

128 3.4 × 1038 2.6 × 1010 8.2 × 1011 2.6 × 1013 8.2 × 1014 2.6 × 1016 8.3 × 1017 2.6 × 1018 1.4 × 1019 2.2 × 1019 3.1 × 1019

256 1.2 × 1077 4.8 × 1029 1.5 × 1031 4.8 × 1032 1.5 × 1034 4.8 × 1035 1.5 × 1037 4.8 × 1037 2.6 × 1038 4.0 × 1038 5.7 × 1038

384 3.9 × 10115 8.9 × 1048 2.8 × 1050 8.9 × 1051 2.8 × 1053 8.9 × 1054 2.8 × 1056 8.9 × 1056 4.8 × 1057 7.4 × 1057 1.0 × 1058

512 1.3 × 10154 1.6 × 1068 5.2 × 1069 1.6 × 1071 5.2 × 1072 1.6 × 1074 5.2 × 1075 1.6 × 1076 8.8 × 1076 1.4 × 1077 1.9 × 1077

Table shows number of hashes n(p) needed to achieve the given probability of success, assuming all hashes
are equally likely. For comparison, 10−18 to 10−15 is the uncorrectable bit error rate of a typical hard disk [2].
In theory, MD5 hashes or UUIDs, being 128 bits, should stay within that range until about 820 billion
documents, even if its possible outputs are many more.

It is easy to see that if the outputs of the function are distributed unevenly, then a collision could be found even
faster. The notion of 'balance' of a hash function quantifies the resistance of the function to birthday attacks
(exploiting uneven key distribution) and allows the vulnerability of popular hashes such as MD and SHA to be
estimated (Bellare and Kohno, 2004 [3]).

The subexpression in the equation for is not computed accurately for small when directly

translated into common programming languages as log(1/(1-p)) due to loss of significance. When log1p is
available (as it is in ANSI C) for example, the equivalent expression -log1p(-p) should be used instead. If this is
not done, the first column of the above table is computed as zero, and several items in the second column do not
have even one correct significant digit.

Source code example
Here is a C++ program that can accurately generate most of the above table.

#include <math.h>

#include <stdlib.h>

#include <iostream>

/*

$ g++ -o birthday birthday.cc

$./birthday -15 128

8.24963e+11

$./birthday -6 32

92.6819

*/

int main(int argc, char ** argv) {

 if (argc != 3) {

 std::cerr << "Usage: " << argv[0] << " probability-exponent bits" << std::endl;

http://en.wikipedia.org/w/index.php?title=Significant_figures
http://arxiv.org/abs/cs/0701166
http://en.wikipedia.org/w/index.php?title=MD5
http://en.wikipedia.org/w/index.php?title=Universally_unique_identifier
http://citeseer.ist.psu.edu/bellare02hash.html
http://en.wikipedia.org/w/index.php?title=Loss_of_significance
http://en.wikipedia.org/w/index.php?title=ANSI_C

Birthday attack 3

 return 1;

 }

 long probabilityExponent = strtol(argv[1], NULL, 10);

 double probability = pow(10, probabilityExponent);

 long bits = strtol(argv[2], NULL, 10);

 double outputs = pow(2, bits);

 std::cout << sqrt(2.0 * outputs * -log1p(-probability)) << std::endl;

 return 0;

}

Simple approximation
A good rule of thumb which can be used for mental calculation is the relation

which can also be written as

.

This works well for probabilities less than or equal to 0.5.
This approximation scheme is especially easy to use for when working with exponents. For instance, suppose you
are building 32-bit hashes () and want the chance of a collision to be at most one in a million (

), how many documents could we have at the most?

which is close to the correct answer of 93.

Digital signature susceptibility
Digital signatures can be susceptible to a birthday attack. A message is typically signed by first computing

, where is a cryptographic hash function, and then using some secret key to sign . Suppose
Mallory wants to trick Bob into signing a fraudulent contract. Mallory prepares a fair contract and a fraudulent
one . She then finds a number of positions where can be changed without changing the meaning, such as
inserting commas, empty lines, one versus two spaces after a sentence, replacing synonyms, etc. By combining these
changes, she can create a huge number of variations on which are all fair contracts.
In a similar manner, Mallory also creates a huge number of variations on the fraudulent contract . She then
applies the hash function to all these variations until she finds a version of the fair contract and a version of the
fraudulent contract which have the same hash value, . She presents the fair version to Bob for
signing. After Bob has signed, Mallory takes the signature and attaches it to the fraudulent contract. This signature
then "proves" that Bob signed the fraudulent contract.
The probabilities differ slightly from the original birthday problem, as Mallory gains nothing by finding two fair or
two fraudulent contracts with the same hash. Mallory's strategy is to generate pairs of one fair and one fraudulent
contract. The birthday problem equations apply where is the number of pairs. The number of hashes Mallory
actually generates is .

http://en.wikipedia.org/w/index.php?title=Rule_of_thumb
http://en.wikipedia.org/w/index.php?title=Mental_calculation
http://en.wikipedia.org/w/index.php?title=Digital_signature
http://en.wikipedia.org/w/index.php?title=Cryptographic_hash_function
http://en.wikipedia.org/w/index.php?title=Alice_and_Bob
http://en.wikipedia.org/w/index.php?title=Fraudulent

Birthday attack 4

To avoid this attack, the output length of the hash function used for a signature scheme can be chosen large enough
so that the birthday attack becomes computationally infeasible, i.e. about twice as many bits as are needed to prevent
an ordinary brute-force attack.
Pollard's rho algorithm for logarithms is an example for an algorithm using a birthday attack for the computation of
discrete logarithms.

Notes
[1] See upper and lower bounds.
[2] http:/ / arxiv. org/ abs/ cs/ 0701166
[3] http:/ / citeseer. ist. psu. edu/ bellare02hash. html

References
• Mihir Bellare, Tadayoshi Kohno: Hash Function Balance and Its Impact on Birthday Attacks. EUROCRYPT

2004: pp401–418
• Applied Cryptography, 2nd ed. by Bruce Schneier

External links
• "What is a digital signature and what is authentication?" (http:/ / www. rsasecurity. com/ rsalabs/ node.

asp?id=2182) from RSA Security's crypto FAQ.
• "Birthday Attack" (http:/ / x5. net/ faqs/ crypto/ q95. html) X5 Networks Crypto FAQs

http://en.wikipedia.org/w/index.php?title=Brute-force_attack
http://en.wikipedia.org/w/index.php?title=Pollard%27s_rho_algorithm_for_logarithms
http://en.wikipedia.org/w/index.php?title=Discrete_logarithm
http://en.wikipedia.org/w/index.php?title=Upper_and_lower_bounds
http://arxiv.org/abs/cs/0701166
http://citeseer.ist.psu.edu/bellare02hash.html
http://en.wikipedia.org/w/index.php?title=Mihir_Bellare
http://en.wikipedia.org/w/index.php?title=EUROCRYPT
http://en.wikipedia.org/w/index.php?title=Applied_Cryptography
http://en.wikipedia.org/w/index.php?title=Bruce_Schneier
http://www.rsasecurity.com/rsalabs/node.asp?id=2182
http://www.rsasecurity.com/rsalabs/node.asp?id=2182
http://en.wikipedia.org/w/index.php?title=RSA_%28security_firm%29
http://en.wikipedia.org/w/index.php?title=FAQ
http://x5.net/faqs/crypto/q95.html

Article Sources and Contributors 5

Article Sources and Contributors
Birthday attack Source: http://en.wikipedia.org/w/index.php?oldid=600796456 Contributors: AderakConsteen, Aftermath1983, Ale2006, AndersFeder, Andycjp, Arvindn, AxelBoldt, Bgwhite,
Chris55, Ciphergoth, Ciphergoth2, CoMePrAdZ, Daf, Dan337, Dispenser, DocWatson42, Doradus, Doug, Ehheh, Emilk, Emurphy42, FT2, Falcon Kirtaran, Gerbrant, Guoguo12, Ignacioerrico,
Igor Yalovecky, Intgr, IsmAvatar, JQF, Jamelan, JeffEpler, Jimw338, Jj137, JohnOwens, Jon Wilson, Jpo, Kbk, Kopaka649, Lee Carre, Leobold1, LucasVB, MC10, Mark UK, Martinkunev,
Mary Jones Lisboa, Masoud.pir, Matt Crypto, Maxal, Meservy, Michael Hardy, Mindmatrix, Mmernex, MrBudgens, MrOllie, Mrmuk, Mshonle, Nikita Borisov, Ninjagecko, Ntsimp, Number774,
Omegatron, Onjacktallcuca, OsamaBinLogin, Pabouk, Pakaran, Phalacee, Pjacobi, Poker298, Ponder, Quadrescence, Quest for Truth, Raghaw, Rchandra, Reischuk, RichoDemus, Ronald Ping
Man Chan, Root4(one), Ruakh, Shawniverson, Smithph, SpaceFlight89, Stevage, Stevertigo, Stuart P. Bentley, Sverdrup, Thedarxide, Waerloeg, WiseWoman, 123 ,ماني anonymous edits

License
Creative Commons Attribution-Share Alike 3.0
//creativecommons.org/licenses/by-sa/3.0/

	Birthday attack
	Understanding the problem
	Mathematics
	Source code example
	Simple approximation

	Digital signature susceptibility
	Notes
	References
	External links

	License

