Architectural Considerations for Location-Aware Networking

Marco Gruteser
WINLAB @ Rutgers University
Relevance of Location Information: A Vehicular Network Example

- VANETs a likely driver for deployment of location-based networking technologies
 - Compelling application scenarios: Vehicular collision avoidance (~40,000 deaths/yr in US)
 - FCC approved spectrum for Dedicated Short Range Communications
 - Challenging requirements: high velocity, low-latency environment, privacy, security, reliability

- Sensor information relevant in geographical context
 - Location is a natural addressing mechanisms
 - Location can scope interactions

- Network optimizations
 - MAC, Routing, Security
Location-Aware Protocol Stack

Application: Search, Sensor Aggregation, Proximity Detection, Geofencing

Location Service (e.g. Quorum-based, GLS, Homezone)

Transport (e.g. Geocast, Mobicast)

Network (e.g. GPSR, DREAM, LAR)

MAC (directional antenna protocols)

Application-specific representations

Location Fusion

Localization (e.g. Wifi Radar, GPS)

Overlay Services

- Location-aware technologies affect all traditional network layers
- Challenges
 - A coherent architecture
 - Supporting local interactions across domains (geocast from cell-phones to vehicles)
 - Privacy
Representing Location

- User-oriented applications: Symbolic representations
 - Postal addresses, road intersections, room and building numbers

- Sensing-oriented applications: High-precisions geoid models

- Network and MAC Layers
 - Considerations
 - Complexity of distance computations
 - Storage overhead
 - Easy in cartesian projections such as Universal Transverse Mercator, except when crossing zone boundaries
 - More difficult in ellipsoid models such as latitude, longitude

- Unified worldwide coordinate system or patchwork of local grid coordinate systems?

- Required level of accuracy?
 - For specification of points
 - For specification of regions (#edges in polygon?)

Source: GFZ Potsdam
Distilling Application Requirements for a location service

- Requirements are distilled/refined by studying and building many applications
 - No coherent architecture because requirements are unclear
 - Too few applications built because of insufficient system support

- Sample “Socket extensions” for location services
 - Determine own position
 - Locate any remote Host (e.g., for geographic routing)
 - Track Remote Host (e.g., for remote navigation applications)
 - Location-update events with specified frequency
 - Query hosts in geographic area (e.g., emergency evacuation)
 - Monitor hosts in geographic area (e.g., geofencing)
 - Application trigger indicating that remote host has entered/left geographic region (polygon) – needed for geofencing

- Additional network primitives
 - Geocast, Delay-Tolerant Geocast, Mobicast
 - Stream-oriented geobinding

- Support Functions
 - Coordinate system conversions
 - Interfaces for mapping and resolving symbolic names to geographical coordinates
Privacy Concerns: Identification Through Location

Identification based on public records, subpoenas not necessary

Aerial imagery (Google Earth/Terraserver)

Geocoded Address Database (TIGER/LINE):

John Doe
1234 Main St
Anywhere, US
(515110X 4300483Y, 13Z)

[515110X 4300483Y 13Z]
Privacy Architecture Components

- Applications
- Location Service
- Network
- MAC

Access Control
On-Device Localization
Silent Periods Disp. Addresses

Location Cloaking

Accuracy reduction

Coarse resolution throughout Internet
Medium resolution shared throughout local network
Maximum resolution shared with 1-hop neighbors

NSF WMPG Workshop, Aug 2-3, 2005
Privacy Architecture Components

- Applications
- Location Service
- Network
- MAC
 - On-Device Localization
 - Access Control
 - Location Cloaking
 - Silent Periods Disp. Addresses

- Coarse resolution throughout Internet
 - Medium resolution shared throughout local network
 - Maximum resolution shared with 1-hop neighbors

Accuracy reduction

NSF WMPG Workshop, Aug 2-3, 2005
Issues

- Accountability
 - Pervasive computing scenarios raise privacy concerns
 - provide increased sensor coverage
 - Solutions often in direct conflict with the effort to increase accountability in the Internet
 - To address spam, worms, etc.

- Overlay location service that connects islands of ad hoc services (?)
 - No clear unifying candidate among routing/transport protocols: sensing systems will choose from a larger set of possible protocols based on application requirements
 - Location service should provide a unifying grid-based coordinate system and offer facilities for translation among other systems

- User privacy and accountability are key requirements for location architecture
 - Consider access control and accuracy reduction techniques