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Abstract-Wireless networks are vulnerable to spoofing
attacks, which allows for many other forms of attacks on
the networks. Although the identity of a node can be ver-
ified through cryptographic authentication, authentication
is not always possible because it requires key management
and additional infrastructural overhead. In this paper we
propose a method for both detecting spoofing attacks, as
well as locating the positions of adversaries performing the
attacks. We first propose an attack detector for wireless
spoofing that utilizes K-means cluster analysis. Next, we
describe how we integrated our attack detector into a real-
time indoor localization system, which is also capable of
localizing the positions of the attackers. We then show
that the positions of the attackers can be localized using
either area-based or point-based localization algorithms
with the same relative errors as in the normal case.
We have evaluated our methods through experimentation
using both an 802.11 (WiFi) network as well as an 802.15.4
(ZigBee) network. Our results show that it is possible to
detect wireless spoofing with both a high detection rate and
a low false positive rate, thereby providing strong evidence
of the effectiveness of the K-means spoofing detector as
well as the attack localizer.

I. INTRODUCTION

As more wireless and sensor networks are deployed,
they will increasingly become tempting targets for mali-
cious attacks. Due to the openness of wireless and sensor
networks, they are especially vulnerable to spoofing at-
tacks where an attacker forges its identity to masquerade
as another device, or even creates multiple illegitimate
identities. Spoofing attacks are a serious threat as they
represent a form of identity compromise and can facil-
itate a variety of traffic injection attacks, such as evil
twin access point attacks. It is thus desirable to detect
the presence of spoofing and eliminate them from the
network.
The traditional approach to address spoofing attacks

is to apply cryptographic authentication. However, au-
thentication requires additional infrastructural overhead
and computational power associated with distributing,
and maintaining cryptographic keys. Due to the limited
power and resources available to the wireless devices

and sensor nodes, it is not always possible to deploy
authentication. In addition, key management often incurs
significant human management costs on the network.
In this paper, we take a different approach by using
the physical properties associated with wireless trans-
missions to detect spoofing. Specifically, we propose a
scheme for both detecting spoofing attacks, as well as
localizing the positions of the adversaries performing
the attacks. Our approach utilizes the Received Signal
Strength (RSS) measured across a set of access points to
perform spoofing detection and localization. Our scheme
does not add any overhead to the wireless devices and
sensor nodes.
By analyzing the RSS from each MAC address using

K-means cluster algorithm, we have found that the dis-
tance between the centroids in signal space is a good test
statistic for effective attack detection. We then describe
how we integrated our K-means spoofing detector into
a real-time indoor localization system. Our K-means
approach is general in that it can be applied to almost
all RSS-based localization algorithms. For two sample
algorithms, we show that using the centroids of the
clusters in signal space as the input to the localization
system, the positions of the attackers can be localized
with the same relative estimation errors as under normal
conditions.
To evaluate the effectiveness of our spoofing detector

and attack localizer, we conducted experiments using
both an 802.11 network as well as an 802.15.4 network
in a real office building environment. In particular, we
have built an indoor localization system that can localize
any transmitting devices on the floor in real-time. We
evaluated the performance of the K-means spoofing
detector using detection rates and receiver operating
characteristic curve. We have found that our spoofing
detector is highly effective with over 95% detection rates
and under 5% false positive rates.

Further, we observed that, when using the centroids in
signal space, a broad family of localization algorithms
achieve the same performance as when they use the
averaged RSS in traditional localization attempts. Our
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experimental results show that the distance between the
localized results of the spoofing node and the original
node is directly proportional to the true distance between
the two nodes, thereby providing strong evidence of the
effectiveness of both our spoofing detection scheme as
well as our approach of localizing the positions of the
adversaries.
The rest of the paper is organized as follows. Sec-

tion II describes the previous research in addressing
spoofing attacks, spoofing detection, and the related work
in localization. In Section III, we study the feasibility
of spoofing attacks and their impacts, and discuss our
experimental methodologies. We formulate the spoofing
attack detection problem and propose K-means spoofing
detector in Section IV. We introduce the real-time lo-
calization system and present how to find the positions
of the attackers in Section V. Further, we provide a
discussion in Section VI. Finally, we conclude our work
in Section VII.

II. RELATED WORK

Recently, there has been much active research ad-
dressing spoofing attacks as well as those facilitated
by adversaries masquerading as another wireless device.
We cannot cover the entire body of works in this
section. Rather, we give a short overview of traditional
approaches and several new methods. We then describe
the works most closely related to our work.
The traditional security approach to cope with iden-

tity fraud is to use cryptographic authentication. An
authentication framework for hierarchical, ad hoc sen-
sor networks is proposed in [1] and a hop-by-hop
authentication protocol is presented in [2]. Additional
infrastructural overhead and computational power are
needed to distribute, maintain, and refresh the key man-
agement functions needed for authentication. [3] has
introduced a secure and efficient key management frame-
work (SEKM). SEKM builds a Public Key Infrastructure
(PKI) by applying a secret sharing scheme and an
underlying multicast server group. [4] implemented a key
management mechanism with periodic key refresh and
host revocation to prevent the compromise of authentica-
tion keys. In addition, binding approaches are employed
by Cryptographically Generated Addresses (CGA) to
defend against the network identity spoofing [5], [6].
Due to the limited resources in wireless and sensor

nodes, and the infrastructural overhead needed to main-
tain the authentication mechanisms, it is not always
desirable to use authentication. Recently new approaches
have been proposed to detect the spoofing attacks in

wireless networks. [7], [8] have introduced a secu-
rity layer that is separate from conventional network
authentication methods. They developed forge-resistant
relationships based on packet traffic by using packet
sequence numbers, traffic interarrival, one-way chain of
temporary identifiers, and signal strength consistency
checks to detect spoofing attacks. [9] proposed a lower-
layer approach that utilizes properties of the wireless
channel at the physical layer to support high-level secu-
rity objectives such as authentication and confidentiality.
The most closely related work to our paper is [10], which
proposed the use of matching rules of signalprints for
spoofing detection.
Although these methods have varying detection and

false alarm rates, none of these approaches provide the
ability to localize the positions of the spoofing attackers
after detection. Further, our work is novel in that we
have integrated our spoofing detector into a real-time
localization system which can both detect the spoofing
attacks, as well as localize the adversaries in wireless
and sensor networks. In addition, we deployed our
localization system in a real office building environment
which houses our Computer Science Department.
Received signal strength is also employed to detect

sybil nodes in wireless sensor networks [11]. However,
they did not study how to localize the sybil nodes.
[12] utilized signal strength distributions to detect and
localize sybil nodes in Vehicular Ad Hoc Networks
(VANETs). Their statistical algorithms are closely as-
sociated with VANETs.

Finally, a large body of work has developed localiza-
tion algorithms for wireless and sensor networks. The
works that are related to this paper are algorithms using
RSS to perform localization, including both fingerprint
matching and probabilistic techniques [13]-[15]. In this
work we used these schemes to localize the positions of
the attackers.

III. FEASIBILITY OF ATTACKS

In this section we provide a brief overview of spoofing
attacks and their impact. We then discuss the experimen-
tal methodology that we use to evaluate our approach of
spoofing detection.

A. Spoofing Attacks
Due to the open-nature of the wireless medium, it

is easy for adversaries to monitor communications to
find the layer-2 Media Access Control (MAC) addresses
of the other entities. Recall that the MAC address is
typically used as a unique identifier for all the nodes
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on the network. Further, for most commodity wireless
devices, attackers can easily forge their MAC address in
order to masquerade as another transmitter. As a result,
these attackers appear to the network as if they are a
different device. Such spoofing attacks can have a serious
impact on the network performance as well as facilitate
many forms of security weaknesses, such as attacks on
access control mechanisms in access points [16], and
denial-of-service through a deauthentication attack [17].
A broad survey of possible spoofing attacks can be found
in [7], [10].
To address potential spoofing attacks, the conventional

approach uses authentication. However, the application
of authentication requires reliable key distribution, man-
agement, and maintenance mechanisms. It is not al-
ways desirable to apply authentication because of its in-
frastructural, computational, and management overhead.
Further, cryptographic methods are susceptible to node
compromise- a serious concern as most wireless nodes
are easily accessible, allowing their memory to be easily
scanned.

It is desirable to use properties that cannot be under-
mined even when nodes are compromised. We propose to
use received signal strength (RSS), a property associated
with the transmission and reception of communication
(and hence not reliant on cryptography), as the basis
for detecting spoofing. Employing RSS as a means
to detect spoofing will not require any additional cost
to the wireless devices themselves- they will merely
use their existing communication methods, while the
wireless network will use a collection of base stations
to monitor received signal strength for the potential of
spoofing.

B. Experimental Methodology
In order to evaluate the effectiveness of our spoofing

detection mechanisms, which we describe in the next
section, we have conducted experiments using both an
802.11 (WiFi) network, using an Orinoco silver card, as
well as an 802.15.4 (ZigBee) network, using a Telosb
mote, on the 3rd floor of the Computer Science Depart-
ment at Rutgers University. The floor size is 200x80ft
(16000 ft2). Figure 1 (a) shows the 802.11 (WiFi)
network with 4 landmarks deployed to maximize signal
strength coverage, as shown in red squares. The 802.15.4
(ZigBee) network is presented in Figure 1 (b) with 4
landmarks distributed in a squared setup in order to
achieve optimal landmark placement [18] as shown in
red triangles. The small blue dots in the floor map are
the locations used for spoofing and localization tests.

For the 802.15.4 network, we used 300 packet-level
RSS samples for each of the 100 locations. We utilized
the actual RSS values attached to each packet. We have
286 locations in the 802.11 deployment. Unlike the
802.15.4 data, the RSS values are partially synthetic. We
had access to only the mean RSS at each location, but
to perform our experiments we needed an RSS value per
packet. To generate such data for 200 simulated packets
at each location, we used random draws from a normal
distribution. We used the measured RSS mean for the
mean of the distribution. For the standard deviation, we
computed the difference in the RSS from a fitted signal
to distance function, and then calculated the standard
deviation of the distribution from these differences over
all locations. To keep our results conservative, we took
the maximum deviation over all landmarks, which we
found to be 5 dB.
Much work has gone into characterizing the distribu-

tions of RSS readings indoors. It has been shown that
characterizing the per-location RSS distributions as nor-
mal, although not often the most accurate characteriza-
tion, still results in the best balance between algorithmic
usability and the resulting localization error [15], [19].
In addition, we built a real-time localization system

to estimate the positions of both the original nodes and
the spoofing nodes. We randomly selected points out
of the above locations as the training data for use by
the localization algorithms. For the 802.11 network, the
size of the training data is 115 locations, while for the
802.15.4 network, the size of the training data is 70
locations. The detailed description of our localization
system is presented in Section V.
To test our approach's ability to detect spoofing, we

randomly chose a point pair on the floor and treated
one point as the position of the original node, and the
other as the position of the spoofing node. We ran the
spoofing test through all the possible combinations of
point pairs on the floor using all the testing locations in
both networks. There are total 14535 pairs for the 802.11
network and 4371 pairs for the 802.15.4 network. The
experimental results will be presented in the following
sections for the spoofing detector and the attack localizer.

IV. ATTACK DETECTOR

In this section we propose our spoofing attack detector.
We first formulate the spoofing attack detection problem
as one using classical statistical testing. Next, we de-
scribe the test statistic for spoofing detection. We then
introduce the metrics to evaluate the effectiveness of our
approach. Finally, we present our experimental results.
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Fig. 1. Landmark setups and testing locations in two networks.

A. Formulation of Spoofing Attack Detection

RSS is widely available in deployed wireless commu-

nication networks and its values are closely correlated
with location in physical space. In addition, RSS is a

common physical property used by a widely diverse set
of localization algorithms [13]-[15], [20]. In spite of its
several meter-level localization accuracy, using RSS is
an attractive approach because it can re-use the existing
wireless infrastructure. We thus derive a spoofing attack
detector utilizing properties of the RSS.
The goal of the spoofing detector is to identify the

presence of a spoofing attack. We formulate the spoofing
attack detection as a statistical significance test, where
the null hypothesis is:

'Ho : normal (no attack).

In significance testing, a test statistic T is used to
evaluate whether observed data belongs to the null-
hypothesis or not. If the observed test statistic Tobs
differs significantly from the hypothesized values, the
null hypothesis is rejected and we claim the presence of
a spoofing attack.

B. Test Statistic for Spoofing Detection

Although affected by random noise, environmental
bias, and multipath effects, the RSS value vector, s =

{s1, 2, ...Sn} (n is the number of landmarks/access
points(APs)), is closely related with the transmitter's
physical location and is determined by the distance
to the landmarks [15]. The RSS readings at different
locations in physical space are distinctive. Each vector
s corresponds to a point in a n-dimensional signal
space [21]. When there is no spoofing, for each N\AC
address, the sequence of RSS sample vectors will be
close to each other, and will fluctuate around a mean

vector. However, under a spoofing attack, there is more

than one node at different physical locations claiming the

same MAC address. As a result, the RSS sample readings
from the attacked MAC address will be mixed with RSS
readings from at least one different location. Based on

the properties of the signal strength, the RSS readings
from the same physical location will belong to the same

cluster points in the n-dimensional signal space, while
the RSS readings from different locations in the physical
space should form different clusters in signal space.

This observation suggests that we may conduct K-
means cluster analysis [22] on the RSS readings from
each MAC address in order to identify spoofing. If there
are M RSS sample readings for a MAC address, the K-
means clustering algorithm partitions M sample points
into K disjoint subsets Si containing Mj sample points
so as to minimize the sum-of-squares criterion:

K

Jmin = E E IISm -/Jj I2
j=l snGsJ

(1)

where sm is a RSS vector representing the mth sample
point and ,Itj is the geometric centroid of the sample
points for Sj in signal space. Under normal conditions,
the distance between the centroids should be close to
each other since there is basically only one cluster. Under
a spoofing attack, however, the distance between the
centroids is larger as the centroids are derived from the
different RSS clusters associated with different locations
in physical space. We thus choose the distance between
two centroids as the test statistic T for spoofing detec-
tion,

DC= IIl JijII (2)

with i, j E {1, 2..K}. Next, we will use empirical
methodologies from the collected data set to determine
thresholds for defining the critical region for the sig-
nificance testing. To illustrate, we use the following
definitions, an original node Porg is referred to as the
wireless device with the legitimate MAC address, while a
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spoofing node Pspoof is referred to as the wireless device
that is forging its identity and masquerading as another
device. There can be multiple spoofing nodes of the same

MAC address.
Note that our K-means spoofing detector can handle

packets from different transmission power levels. If an

attacker sends packets at a different transmission power

level from the original node with the same MAC address,
there will be two distinct RSS clusters in signal space.

Thus, the spoofing attack will be detected based on the
distance of the two centroids obtained from the RSS
clusters.

C. Determining Thresholds

The appropriate threshold T will allow the spoofing de-
tector to be robust to false detections. We can determine
the thresholds through empirical training. During the off
line phase, we can collect the RSS readings for a set of
known locations over the floor and obtain the distance
between two centroids in signal space for each point pair.
We use the distribution of the training information to
determine the threshold T. At run time, based on the RSS
sample readings for a MAC address, we can calculate the
observed value DCbS. Our condition for declaring that a

MAC address is under a spoofing attack is:

D obs > T. (3)

Figure 2 (a) and (b) show the CDF of the DC in signal
space for both the 802.11 network and the 802.15.4
network. We found that the curve of DC shifted greatly
to the right under spoofing attacks, thereby suggesting
that using DC as a test statistic is an effective way for
detecting spoofing attacks.

D. Performance Metrics

In order to evaluate the performance of our spoofing
attack detector using K-means cluster analysis, we use

the following metrics:
Detection Rate and False Positive Rate: A spoofing

attack will cause the significance test to reject Xo. We
are thus interested in the statistical characterization of the
attack detection attempts over all the possible spoofing
attacks on the floor. The detection rate is defined as the
percentage of spoofing attack attempts that are deter-
mined to be under attack. Note that, when the spoofing
attack is present, the detection rate corresponds to the
probability of detection Pd, while under normal (non-
attack) conditions it corresponds to the probability of
declaring a false positive Pf,a The detection rate and
false positive rate vary under different thresholds.
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Receiver Operating Characteristic (ROC) curve: To
evaluate an attack detection scheme we want to study
the false positive rate Pfa and probability of detection
Pd together. The ROC curve is a plot of attack detection
accuracy against the false positive rate. It can be obtained
by varying the detection thresholds. The ROC curve

provides a direct means to measure the trade off between
false-positives and correct detections.

E. Experimental Evaluation

In this section we present the evaluation results of
the effectiveness of the spoofing attack detector. Table I
presents the detection rate and false positive rate for both
the 802.11 network and the 802.15.4 network under dif-
ferent threshold settings. The corresponding ROC curves

are displayed in Figure 3. The results are encouraging
showing that for false positive rates less than 10%, the
detection rates are above 95%. Even when the false
positive rate goes to zero, the detection rate is still more

than 95% for both 802.11 and 802.15.4 networks.
We further study how likely a spoofing node can be

detected by our spoofing attack detector when it is at
varying distances from the original node in physical
space. Figure 4 presents the detection rate as a function
of the distance between the spoofing node and the
original node. We found that the further away Pspoof
is from Porg, the higher the detection rate becomes. For
the 802.11 network, the detection rate goes to over 900/
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Network, Threshold Detection Rate | False Positive Rate
802.11, T = 5.5dB 0.9937 0.0819
802.11, T = 5.7dB 0.9920 0.0351
802.11, T = 6dB 0.9884 0
802.15.4, T = 8.2dB 0.9806 0.0957
802.15.4, T 10dB 0.9664 0.0426
802.15.4, T= lldB 0.9577 0

TABLE I
DETECTION RATE AND FALSE POSITIVE RATE OF THE SPOOFING ATTACK

DETECTOR.
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Fig. 3. Receiver Operating Characteristic (ROC) curves

when Pspoof is about 13 feet away from Porg under T

equals to 5.5dB. While for the 802.15.4 network, the
detection rate is above 90% when the distance between
Pspoof and Porg is about 20 feet by setting threshold
T to 9dB. This is in line with the average localization
estimation errors using RSS [15] which are about 10-
15 feet. When the nodes are less than 10-15 feet apart,
they have a high likelihood of generating similar RSS
readings, and thus the spoofing detection rate falls below
90%, but still greater than 60%. However, when Pspoof
moves closer to Porg, the attacker also increases the
probability to expose itself. The detection rate goes to
100% when the spoofing node is about 45-50 feet away

from the original node.
V. LOCALIZING ADVERSARIES

If the spoofing attack is determined to be present
by the spoofing attack detector, we want to localize
the adversaries and further to eliminate the attackers
from the network. In this section we present a real-time
localization system that can be used to locate the posi-
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Fig. 4. Detection rate as a function of the distance between the
spoofing node and the original node.

tions of the attackers. We then describe the localization
algorithms used to estimate the adversaries' position.
The experimental results are presented to evaluate the
effectiveness of our approach.

A. Localization System

We have developed a general-purpose localization sys-

tem to perform real-time indoor positioning. This system
is designed with fully distributed functionality and easy

to plug-in localization algorithms. It is built around 4
logical components: Transmitter, Landmark, Server, and
Solver. The system architecture is shown in Figure 5.
Transmitter: Any device that transmits packets can

be localized. Often the application code does not need
to be altered on a sensor node in order to localize it.
Landmark: The Landmark component listens to the

packet traffic and extracts the RSS reading for each
transmitter. It then forwards the RSS information to the
Server component. The Landmark component is stateless
and is usually deployed on each landmark or access point
with known locations.

Server: A centralized server collects RSS information
from all the Landmark components. The spoofing detec-
tion is performed at the Server component. The Server
summarizes the RSS information such as averaging or

clustering, then forwards the information to the Solver
component for localization estimation.

Solver: A Solver takes the input from the Server,
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Transmitter

Sending packets

[MAC, RSS, RSS21 RSS ]

[MAC, X. YJ

Solver v * Solverm

Fig. 5. Localization system architecture

performs the localization task by utilizing the localiza-
tion algorithms plugged in, and returns the localization
results back to the Server. There are multiple Solver
instances available and each Solver can localize multiple
transmitters simultaneously.
During the localization process, the following steps

will take place:
1. A Transmitter sends a packet. Some number of

Landmarks observe the packet and record the RSS.
2. Each Landmark forwards the observed RSS from

the transmitter to the Server.
3. The Server collects the complete RSS vector for the

transmitter and sends the information to a Solver
instance for location estimation.

4. The Solver instance performs localization and re-

turns the coordinates of the transmitter back to the
Server.

If there is a need to localize hundreds of transmitters
at the same time, the server can perform load balancing
among the different solver instances. This centralized
localization solution also makes enforcing contracts and
privacy policies more tractable.

B. Attack Localizer

When our spoofing detector has identified an attack for
a MAC address, the centroids returned by the K-means
clustering analysis in signal space can be used by the
server and sent to the solver for location estimation. The
returned positions should be the location estimate for the
original node and the spoofing nodes in physical space.

Using a location on the testing floor as an example,
Figure 6 shows the relationship among the original node
Porg, the location estimation of the original node Lorg,
the spoofing node Pspoof, and the localized spoofing
node position L,POOf.
In order to show the generality of our localization

system for locating the spoofing nodes, we have chosen
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Fig. 6. Relationships among the original node, the spoofing node,
and their location estimation through localization system.

two representative localization algorithms using signal
strength from point-based algorithms and area-based
algorithms.
RADAR: Point-based methods return an estimated

point as a localization result. A primary example of
a point-based method is the RADAR scheme [13]. In
RADAR, during the off line phase, a mobile transmitter
with known position broadcasts beacons periodically,
and the RSS readings are measured at a set of landmarks.
Collecting together the averaged RSS readings from each
of the landmarks for a set of known locations provides
a radio map. At runtime, localization is performed by
measuring a transmitter's RSS at each landmark, and
the vector of RSS values is compared to the radio
map. The record in the radio map whose signal strength
vector is closest in the Euclidean sense to the observed
RSS vector is declared to correspond to the location
of the transmitter. In this work, instead of using the
averaged RSS in the traditional approach, we use the
RSS centroids obtained from the K-means clustering
algorithm as the observed RSS vector for localizing a

MAC address.
Area Based Probability (ABP): Area-based algo-

rithms return a most likely area in which the true location
resides. One major advantage of area-based methods
compared to point-based methods is that they return a

region, which has an increased chance of capturing the
transmitter's true location. ABP returns an area, a set
of tiles on the floor, bounded by a probability that the
transmitter is within the returned area [15]. ABP assumes

the distribution of RSS for each landmark follows a

Gaussian distribution. The Gaussian random variable
from each landmark is independent. ABP then computes
the probability of the transmitter being at each tile L on

the floor using Bayes' rule:

P(LilS) = -P(slL,) x P(L,)
(s) (4)
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Given that the transmitter must reside at exactly one
tile satisfying z 1 P(L| s) = 1, ABP normalizes the
probability and returns the most likely tiles up to its
confidence ae.
Both RADAR and ABP are employed in our experi-

ments to localize the positions of the attackers.

C. Experimental Evaluation

In order to evaluate the effectiveness of our localization
system in finding the locations of the attackers, we are
interested in the following performance metrics:
Localization Error CDF: We obtain the cumulative

distribution function (CDF) of the location estimation
error from all the localization attempts, including both
the original nodes and the spoofing nodes. We then
compare the error CDF of all the original nodes to that
of all the possible spoofing nodes on the floor. For area-
based algorithms, we also report CDFs of the minimum
and maximum error. For a given localization attempt,
these are points in the returned area that are closest to
and furthest from the true location.
Relationship between the true and estimated dis-

tances: The relationship between the true distance of the
spoofing node to the original node Porg -Pspoof and
the distance of the location estimate of the spoofing node
to that of the original node ILorg- Lspoof evaluates
how accurate our attack localizer can report the positions
of both the original node and the attackers.
We first present the statistical characterization of the

location estimation errors. Figure 7 presents the local-
ization error CDF of the original nodes and the spoofing
nodes for both RADAR and ABP in the 802.11 network
as well as the 802.15.4 network. For the area-based
algorithm, the median tile error ABP-med is presented,
as well as the minimum and maximum tile errors,
ABP-min and ABP-max. We found that the location
estimation errors from using the RSS centroids in signal
space are about the same as using averaged RSS as
the input for localization algorithms [15]. Comparing to
the 802.11 network, the localization performance in the
802.15.4 network is qualitatively better for both RADAR
and ABP algorithms. This is because the landmark place-
ment in the 802.15.4 network is closer to that predicted
by the optimal and error minimizing placement algorithm
as described in [18].
More importantly, we observed that the localization

performance of the original nodes is qualitatively the
same as that of the spoofing nodes. This is very encour-
aging as the similar performance is strong evidence that
using the centroids obtained from the K-means cluster
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Fig. 7. Localization error CDF across localization algorithms and
networks.

analysis is effective in both identifying the spoofing
attacks as well as localizing the attackers.
The challenge in localizing the positions of the at-

tackers arises because the system does not know the
positions of either the original MAC address or the
node with the masquerading MAC. Thus, we would like
to examine how accurate the localization system can
estimate the distance between Porg and P5p,,f. Figure 8
displays the relationship between Lorg- Lspoof and
IPorg -Pspoof across different localization algorithms
and networks. The blue dots represent the cases of the
detected spoofing attacks. While the red crosses indicate
the spoofing attack has not been detected by the K-
means spoofing detector. Comparing with Figure 4, i.e.
the detection rate as a function of the distance between
Porg and Pspoof, the results of the undetected spoofing
attack cases represented by the red crosses are in line
with the results in Figure 4, the spoofing attacks are
100% detected when IPorg -Pspoof equals to or is
greater than about 50 feet.

Further, the relationship between Lorg- Lspoof and
Porg -Pspoof is along the 45 degree straight line.

This means that Lorg- Lspoof is directly proportional
to Porg -Pspoof and indicates that our localization
system is highly effective for localizing the attackers. At
a fixed distance value of IPorg -Pspoof I, the values
of IILorg -Lspoof fluctuate around the true distance
value. The fluctuation reflects the localization errors of
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Fig. 8. Relationship between the true distance and the estimated distance for the original node and the spoofing node across localization
algorithms and networks.

both Porg and Pspoof. The larger the PorgPspoof is,

the smaller the fluctuation of Lorg -Lspoof becomes,
at about 10 feet maximum. This means that if the attacker
is farther away from the original node, it is extremely
likely that the K-means spoofing detector can detect it.
In addition, our attack localizer can find the attacker's
position and estimate the distance from the original node
to the attacker at about 10 to 20 feet maximum error.

VI. DISCUSSION

So far we have conducted K-means cluster analysis
in signal space. Our real-time localization system also
inspired us to explore packet-level localization at the
server, which means localization is performed for each
packet received at the landmarks. The server utilizes each
RSS reading vector for localization. Over a certain time
period (for example, 60 seconds), for a MAC address
there will be a cluster of location estimates in physical
space. Intuitively, we think that, during a spoofing attack
there will be distinctive location clusters around the
original node and the spoofing nodes in physical space.

Our intuition was that the clustering results from the
per-packet localization would allow the detection and
localization of attackers in one step.
However, we found that the performance of clustering

packet-level localization results for spoofing detection
is not as effective as deriving the centroids in signal
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Fig. 9. Packet-level localization: relationship between the true
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spoofing node when using RADAR in the 802.11 network.

space. The relationship between Porg -Pspoof and
ILorg -Lspoof is shown in Figure 9. Although it also
has a trend along the 45 degree line, it shows more

uncertainties along the line. Therefore, we believe that
given a set of RSS reading samples for a MAC address,
working with the signal strength directly preserves the
basic properties of the radio signal, and this in turn is
more closely correlated with the physical location, and
thus working with the RSS values directly better reveals
the presence of the spoofing attacks.

VII. CONCLUSION

In this work, we proposed a method for detecting
spoofing attacks as well as localizing the adversaries
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in wireless and sensor networks. In contrast to tradi-
tional identity-oriented authentication methods, our RSS
based approach does not add additional overhead to the
wireless devices and sensor nodes. We formulated the
spoofing detection problem as a classical statistical sig-
nificance testing problem. We then utilized the K-means
cluster analysis to derive the test statistic. Further, we
have built a real-time localization system and integrated
our K-means spoofing detector into the system to locate
the positions of the attackers and as a result to eliminate
the adversaries from the network.
We studied the effectiveness and generality of our

spoofing detector and attacker localizer in both an 802.11
(WiFi) network and an 802.15.4 (ZigBee) network in
a real office building environment. The performance of
the K-means spoofing detector is evaluated in terms
of detection rates and receiver operating characteristic
curves. Our spoofing detector has achieved high detec-
tion rates, over 95% and low false positive rates, below
5%. When locating the positions of the attackers, we
have utilized both the point-based and area-based algo-
rithms in our real-time localization system. We found
that the performance of the system when localizing the
adversaries using the results of K-means cluster analysis
are about the same as localizing under normal conditions.
Usually the distance between the spoofing node and the
original node can be estimated with median error of 10
feet. Our method is generic across different localization
algorithms and networks. Therefore, our experimental
results provide strong evidence of the effectiveness of our
approach in detecting the spoofing attacks and localizing
the positions of the adversaries.
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