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Abstract— We investigate the impact of landmark
placement on localization performance using a com-
bination of analytic and experimental analysis. For
our analysis, we have derived an upper bound for the
localization error of the linear least squares algorithm.
This bound reflects the placement of landmarks as
well as measurement errors at the landmarks. We next
develop a novel algorithm,mazL—minF, that using our
analysis, finds a pattern for landmark placement that
minimizes the maximum localization error. To show
our results are applicable to a variety of localization
algorithms, we then conducted a series of localization
experiments using both an 802.11 (WiFi) network as
well as an 802.15.4 (ZigBee) network in a real building
environment. We use both Received Signal Strength
(RSS) and Time-of-Arrival (ToA) as ranging modali-
ties. Our experimental results show that our landmark
placement algorithm is generic because the resulting
placements improve localization performance across
a diverse set of algorithms, networks, and ranging
modalities.

I. INTRODUCTION

localization error as a function of landmark place-
ment are not tractable and as a result heuristic search
strategies must be used to find an optimal placement,
as was done in [6].

Our analysis of landmark placement can find an
optimal placement of landmarks in well-defined reg-
ular regions, thus making it quite suitable for indoor
localization. The analysis begins with LLS and places
an upper bound of the maximum localization error
given a set of landmark placements. We can show
that this upper bound is minimized by a combination
of minimizing the distance estimation error together
with the employment of the optimal patterns for
landmark placement.

Using this result, we can compare the maximum
error between any two placements. We can then
constrain a search of placements to minimize the
maximum error. We have developed a simple algo-
rithm called mazL — minE algorithm that finds an
optimized landmark deployment for the LLS algo-
rithm.

Localization of nodes in wireless and sensor net- We show that our placement minimizing the upper

works is important because the location of sensomsounds of LLS also reduces the Hoélder parameter
is a critical input to many higher-level networking for a variety of algorithms. The Hoélder parameter [7]
tasks, such as tracking, monitoring and geometricdescribes the maximum change in physical space that
based routing. Although recent efforts have resultedan arise from a change in signal space. This is strong
in a plethora of methods to localize sensor nodegvidence that ournaxL — minE algorithm finds a
little work to date has systematically investigated howandmark placement that minimizes the errors due to
the placement of the nodes with known locationsnoise, bias, and measurement error.
or landmarks, impacts localization performance. In Another interesting result of our analysis is that for
this work we investigate the impact of landmarka small number of landmarks, simple shapes such as
placement on localization performance using a correquilateral triangles and squares result in placements
bination of analytic and experimental analysis. with better localization performance. Interestingly,
Our analytic approach focuses on the Least Squarés higher number of landmarks, we can show that
(LS) algorithm, and in particular, a variant we callextensions of shapes with equal sides, e.g. a hexagon,
Linear Least Squares (LLS). Our analysis centers aare non-optimal. Rather, the simple shapes enclose
the algorithm for two reasons. First, LS is a widelyone another, for example, two enclosing equilateral
used multilateration algorithm, as is evidenced byriangles. We detail these geometries and describe
its application as a step in many recent localizarule-of-thumb for landmark placement in Section Ill.
tion research works [1]-[5]. Second, mathematical To show the generality of our results, we conducted
analysis of LLS is tractable, resulting in equationdocalization experiments with both an 802.11 (WiFi)
with closed-form solutions. For a myriad of othernetwork as well as an 802.15.4 (ZigBee) network in
algorithms, closed form solutions that describe tha real building environment. For the 802.11 network,



we used two ranging modalities, Received Signathould help a wide variety of algorithms.
Strength (RSS) to distance, and Time of Arrival [16] used simple linear and multiple regression
(TOA). In the 802.15.4 network, we used only RSSmethods to estimate the signal strength model. With
to-distance. simulation, it analyzed the relationship between stan-
We compared the accuracy of a suite of localizatiodard deviation of location error and signal strength
algorithms using landmarks placed according to ougrror for a few Access Point (AP) configurations.
analysis as well as landmarks placed in positions th&towever, They did not analyze for the optimized
provide good signal coverage but ignore localizatiogeometry of AP deployment and provide experimen-
concerns. While we found that all algorithms im-tal comparison as we have in our work. Another
proved their performance, over a non-optimal placewsork examined placement, but did not find optimal
ment for localization, we also observed that LSsolutions [17]. [6] developed a set of heuristic search
became competitive with the other algorithms, andlgorithms to find optimal AP deployment for a
that coarse-grained TOA ranging was less accuratelance of signal coverage and location errors. Com-
than RSS-based approaches. pared to our simple approach, the heuristic search
The remainder of the paper is as follows. Secalgorithms are more complex and time consuming.
tion Il discusses previous research in localization. W&he results were only shown for the probability
provide the theoretical analysis in Section Ill. Thermatching algorithms, thus may not be general for
Section IV describes the metrics that we use to chaother type of algorithms.
acterize the localization performance. The investiga- Finally, a large body of works have examined
tion of the number of landmarks and their positiongAP placement to maximize coverage and throughput
is provided in Section V. Section VI presents theproperties of Wireless LANs and sensor networks.
experimental results across localization algorithma/Ve do not cover these works here, except to say that
networks, and ranging strategies. Finally we brinduture work would be to examine the tradeoffs in
our conclusion in Section VII. landmark and AP deployment assuming they use the
same hardware, although this does not need to be
the case. Recall that landmarks provide a node with
There have been many active research efforts deignals from known locations, while APs provide
veloping localization systems for wireless and sensanedia access control as well as gateways into the
networks. We cannot cover the entire body of worksvired network.
in this section. Rather, we give a short overview of
the different localization strategies and then describe
the works most closely related to ours. In this section we first provide background on using
The localization techniques can be categorizetS algorithms for localization, and then describe the
along several dimensions. Range-based algorithnbd S variant. We next present our theoretical analysis
involve distance estimation to landmarks using thef an upper bound on the error, and then discuss our
measurement of various physical properties [8] likenazL — minE placement algorithm.
RSS [9], [10], Time Of Arrival (TOA) [1] and Time o _
Difference Of Arrival (TDOA) [11]. While range- A Background: Localization with LS
free algorithms [2], [12] use coarser metrics to place To perform localization with LS requires 2 steps:
bounds on candidate positions. Another method atinging and lateration.
classification describes the strategy used to map aRanging Step: Recent research has seen a host
node to a location. Lateration approaches [1]-[S]of variants on the ranging step. For example, in the
use distances to landmarks, while angulation usgsPS algorithm [2], hop counts are used to estimate
the angles from landmarks. Scene matching strategiesnges. Other approaches are also possible, [11] used
[9], [10], [13], [14] use a function that maps observedhe time-difference of arrival between an ultrasound
radio properties to locations on a pre-constructegulse and a radio packet. In this work, we focus on
radio map or database. Scene matching is ofteaRSS and TOA as ranging strategies.
used in indoor environments because local conditions Lateration Step: From the estimated distancds
distort the signal propagation from free space modeland known positionsaf;, v;) of the landmarks, the
Finally, a third dimension of classification extends tqosition ¢, y) of the localizing node can be found
aggregate [12], [15] or singular algorithms. by finding (2, §) satisfying:
Our work is novel in that instead of improving
the localization algorithms themselves, we focus on
improving the deployment of landmarks, and this

II. RELATED WORK

IIl. THEORETICAL ANALYSIS

(2.9) = argmin 3 "[v/(@ =) + (s — 9P ~d* ()
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where N is the total number of landmarks. We calltrades higher computational complexity for better
solving the above problemonlinear Least Squares, accuracy. The introduction of the constraint collapsed
or NLS. It can be viewed as an optimization problenthe nonlinear problem into a linear problem, which
where the objective is to minimize the sum of thegreatly simplifies the computation needed to arrive at
error square. a location estimate. In addition to its computational

Solving the NLS problem requires significant com-advantages, the LLS formulation allows for tractable
plexity and is difficult to analyze. We may approxi- error analysis, as we shall soon provide.

mate the NLS solution and linearize the problem b
introducing a constraint in the formulation. We start
with the N > 2 equations:

(r1—2)+ (@ —y)? = di
(x2—2)°+ (12— y)® = d3 2
(zny —2)+ (v —y)® = di
Now, subtracting the constraint
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The above can be easily solved linearly using th
form Ax = b with:
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Note that A is described by the coordinates of
landmarks only, whileb is represented by the dis-

tances to the landmarks together with the coordinates

of landmarks. We call the above formulation of

3@ Error Analysis

Our objective is to minimize the location estimation
error introduced by LLS. we have matriA and
vector b presented in Equations (5) and (6). In an
ideal situation solving foi = [z,y]” is done via

x=(ATA)"'ATp (7)

However, the estimated distances are impacted by
noise, bias, and measurement error. We express the
resulting distance estimation errerin terms of b
with estimated distances arlsl with true distances
asb = b + e, and hence the localization result is

%= (ATA)'ATD. (8)
The location estimation error is thus bounded by
Ix — x| < [|AF][le]], 9)

where the matrixA+ is the Moore-Penrose pseudo-
inverse ofA It can be shown that, under the 2-norm,
|AT| = 7— where~; > 9 are the singular values
of A. This means that for a certain size on ereor
the LS estimation error is stretched @y It can be
proved that the eigenvalues af’ A are the squares
of the singular values oA. Therefore, we can limit
our concern to the eigenvaluesAf A, whereAT A

is a matrix of the form:

a b
ATA:4( ; c)
@/lth N o

a = i— — > ;)2 (10)
2y
N 1N

b = Z[(a:z Nz _72% (11)
i=1 i=1
N

C
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Note that a, b and c are only related to the
coordinates of landmarkse{, y;). The eigenvalues
of ATA can be found as the roots of:

M —4(a+ )\ + 16(ac — b*) =
Thus, we have:

(12)

A=4(a+c)E+2y/(a—c)2+4b2,  (13)

the problemLinear Least Squares, or LLS. NLS where the discriminanta—c)2+4b?, is non-negative.
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C. Deployment Patterns

Our goal in this section is to minimize the total
error. Recall there are two terms on the right side of
Equation (9). Our approach is to choosgand y;
so as to make\, (the smaller eigenvalue) as close to
A1 as possible, because this will minimize the first
term, ||A*||. Given the first term is minimized, we
then minimize the second term. Having minimized
the second term given the first term is minimized is
clearly a local minima. We call such a local minima
an optimal deployment, because no movement of
a single landmark can improve the error bound.

3 landmarks
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However, our piecewise minimization approach still
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leave such a proof as future work. e, B sttt o,

Returning to minimizing the first ternjA ™|, to

minimize \/% a general strategy would be to make
2 .
(a—c) small or to make small or both. Interestingly, input f100r-Size, numOf Landmark
this is determined only by the coordinates of theutput optimized landmark coordinates
landmarks. [nitalize] get optimal pattern based )
H . Iniialize] get optumal pattern pased on geometry

_Then our nex_t task E to find the landmark po fit optimal pattern into maximum floorsize
sitions that satisfyA; = .. We found that the generate initial landmark coordinates
optimal landmark deployment setup follows somealculater; and 2
simple and symmetric patterns. This makes it not

ly possible to achieve but also easy to deploy " Error = mazNum
only _p ) y p %Op until thisError > minError
practically. Figure 1 shows the patterns for an optimal generate random localizing nodes
landmark deployment setup when utilizing 3, 4, 5, for each localizing nodéegin
6, 7, 8 landmarks in the indoor environment. These %pp_lyngail%cﬁm noise or bias
patterns consist of squares, equilateral triangles, Oknd for
the enclosing of them. We observe that for higher thisError = \/‘;”97%
number of landmarks, the extensions of shapes withyt tpisError < minE;ror, minError = thisError
equal sides, e.g. a hexagon, do not satisfy= Ao, [landmark adjustment] move towards the center of mass one
and thus are not optimal. Instead, the simple shap&%P

| th t optimal soluti end loop
enclose one another present optimal solutions. return optimized landmark coordinates

Fig. 1. Patterns for optimal landmark deployments

D. Finding an Optimized landmark Deployment

The above discussion dealt with deploying the Fig. 2. The maxL.-minE algorithm

landmarks without considering the physical consize, number of landmarks, and the optimal landmark
straints of the building and, as such, only provide &eployment pattern. Figure 2 shows the pseudo-
general guideline as to the "shape" of the deploymergode that implementsiazL — minE. The algorithm
Placing the landmarks within a particular buildingfirst minimizes||A™|| using geometry, then uses an
requires stretching/shrinking the deployment shapéerative search. The search begins with a maximal
so that it fits within the confines of the building. Thesized optimal pattern (e.g. a square) and simply keeps
stretching/shrinking should be done so as to minimizeeducing the size of the pattern until such movements
localization errors. stop reducing the distance estimation ereorWe
Recall in Equation (9), the location estimation erroPbserve the algorithm usually converges very quickly
is also contributed byjle|, and thatb = b + e. Within a number of iterations.
The term |le|| is a result of distance estimation
errors introduced by ranging. We have developed
an iterative algorithm, callednazl — minE (i.e.
maximum lambda and minimum error), which helps In this section we describe the three metrics we use
to find the real landmark coordinates given the floothroughout the rest of the paper.

IV. EVALUATION METRICS
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Average error: All of our observations are the our previously defined metrics.
results of many localization trials. This metric takes )
the average of the distances between the localizéy Smulation Methodology
result and the true location over all trials. In area- Our simulation methodology requires we generate
based algorithms, as opposed to point-based onessimulated RSS reading for any point on the floor
the result is a returned area. To compare these tvad a building from any landmark. We first begin with
kinds of algorithms, we use the median X and Y otthe path loss equation that models the received power
the returned area to the true location to generate & a function of the distance to the landmark:
point and then average these distance errors. d
Accuracy CDF: We also return the entire cumula-  P(d)[dBm] = P(do)[dBm] — 10nlog(—-) = (14)
tive density function (CDF) of all our localization 0
attempts. We simply report all attempts in sortedVe choose the parametefs = 1m, P(dy) = 58.48
order, and then normalize the Y axis by the totafndn = 1.523 from [9]. We then apply a random
number of attempts to obtain a domain[6f1]. For noise factor to perturb the RSS readings. This corre-
area-based algorithms, we also report CDFs of thgponds to the random model described in [18], which
minimum and maximum error. For a given attemptfepresents an upper bound on the signal variability.
these are points in the returned area that are closestn many cases, we found that the localization error
to and furthest from the true location. is large enough such that the estimated position is
Holder Metrics: In addition to error performance, Well outside the floor. This was particularly true
we are also interested in how dramatically the localfor LLS. Because such results are unrealistic in our
ization results can be perturbed by changes in signatenario, we apply a simple truncation rule in these
strength. Holder metrics for RSS based localizatiogases: if the X or Y coordinate is outside the floor,
were introduced in a previous work [7]. Intuitively, we truncate to the maximum or minimum value along
these metrics relate the magnitude of a perturbatidhat dimension.
to its effect on the localization result. The idea here . N
is that certain landmark placements can reduce tife Evaluation of Estimation Error
impacts of perturbations due to noise or bias, and Table | presents the average location estimation er-
we should be able to observe these as lower Holdeor after the application of truncation and the Holder

parameters. metrics for both LS algorithms under 5 landmarks
The Holder parameteﬂglg for a given place- for our two simulated floors. The optimized landmark

ment and algorithm is defined ag{glg = deplqyment se_tup is obtain_ed from thewx L — minFE
s L7, (s)—LE, (V)| where IP. is the result of algonthm._ It is encouraging _that both NL_S and
M [s—vIl ’ alg LLS provide smallest estimation errors using our

a localization algorithmulg given placemenp, with placement algorithm. By comparing the values of

y af a signal strength vector andas a perturbed the Holder parameters, the LS algorithm is the least
veSc_or. the traditional H&ld ter d i susceptible to random noise with the optimized land-
ince the traditional Holder parameter describes, qk deployment, which has 4 landmarks positioned

the maximum effect a perturbation might have, it |sa%d the vertex of a square plus the fifth landmark

\r;\z/ﬂu)::l tofalso provu_je aphaverage-case mes{;:aremeé\ ced at the center of the mass.
¢ Inerelore examine he average-case HOldeT Payypan ynder the diagonal landmark deployment,

T7P
rameter, i, as well. In both cases, we measuregle localization results suffer the largest estimation

alg?
rrors and the algorithm is the most susceptible.

the metrics by statistical sampling in the case o
simulation, or direct computation over all Iocallzatlon.l.he following results presented in this section are
bounded by the floor boundary.

attempts for experimentally measured data.
V. LANDMARK POSITION AND QUANTITY C. Impact of Landmark Deployment

In this section we investigate the impact of land- In this section we describe the impact of 3 different
mark position and quantity on localization per-deployments on localization performance. We use a
formance. Because the data collection process usepresentative situation of 5 landmarks deployed in 3
ing many real deployments is prohibitively time-ways to demonstrate the impact of our algorithm in
consuming, we use a trace-driven simulation methodk typical case.
ology for this section. We first describe our method- The first deployment we calquare, and in the 5

ology, then present our results investigating both theandmark case it is an optimal deployment when the
impact of landmark deployment and quantity usinghape is a square plus one landmark at the center
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Fig. 3. In 200x200ft area: (a) Location estimation error vsFig. 4. Performance of LS algorithms across different number
random noise in RSS (b) Location estimation error vs. rangingf landmarks in 200x200ft area
error

result in wide differences in the distance estimation

deployment |_optimal | horizontal | vertical | diagonal depending on the distance to the landmark. Note
opology 200x : :
Linear LS that the relationship between the RSS error and
error gg-gé i%gg igg-gz %gé-;g ranging error is multiplicative with distance, i.e.,
T 8.03 9.51 9.74 9.84 d = d10 7o~ . For example, in our simulation a 3dB
Nonlinear LS . . S error corresponds to a multiplicative factor of 1.5, at
o 7244 | 13281 | 18027 | 23052 10ft distanced = 15t with an error of 5ft, while
i 6.98 7.31 7.58 7.97 at 100ft distanced = 150t with an error of 50ft,
Ippolongg 230ftx150ft a factor of ten larger. We are motivated to study the
Inear H H . .
crror 5789 8697 T 11657 | 14665 magnitude of distance estimation error caused by the
H 66.39 | 170.98 | 198.44 | 352.96 deviation of the RSS readings.
I 7.22 8.20 9.84 8.86 Figure 3(b) shows the location estimation error vs.
error 39.00 56.24 74.06 61,19 the standard deviatios; of distance estimation error.
H 80.69 | 23288 | 267.32 | 26568 We observe that a noise.s; of 2dB corresponds to
H 6.66 7.12 7.21 7.32

a distance error, of 32ft. Further, the estimation
results when the,.., is 4dB and 5dB translate to the
oq Of 65ft and 82ft respectively. Thus, even small
DEVIATION OF NOISE ON RSS IS3DB random perturbation in RSS readings cause large

of the mass. Next, théorizontal deployment is the r:(r:]grng estimation errors due to this multiplicative
one where all the landmarks placed in a line aloné '
coverage than the square fpr rectangular buildings.In this section we observe the impact of adding
Flnally_, we_also examine the |_mpact of a poor OIeploy?nore landmarks. We compare the performance of
ment, in this casdiagonal, which equally spaces the the LS algorithrﬁs with 4. 6 and 20 landmarks
landmarks along a diagonal line. . '
. der square and diagonal deployments. We use
Figure S(a) shows the average accuracy of 1000l(Hqur optir?ﬂzed placeme?lt in thepc;/se of 4 and 6
random trials across the floor for the 3 deployment? ndmarks. and a uniform randomized deplovment
as a function of increasing the standard deviatio?izr 20 Iancjmarks ploy
Tras of the noise term applied to each point. The Figure 4 showé a promising result that when de-
six curves correspond to the NLS and LLS for eacrﬁ)loying 4 landmarks and 6 landmarks under their
deployment. y o :
. - optimized deployments, the localization results usin
First, NLS always significantly outperforms LLS. Lg are comSat?/bIe with the results using a mucr?
When theo,ss is less than 4dB, which is typical T
. . igher number landmarks, 20, in this case. If a small
b_ased on our experlr_ne_ntal experience, both angg_ugmber of landmarks provide sufficient coverage
rithms under the optimized landmark deploymen his is an encouraging observation because goo,d
outperform the two other deployments. When th - . .
orss IS larger than 4dB, under the optimized Iandmarlfgfa(la'Z:J'r?]gepreéﬁgg?::rk?n be achieved without a
deployment, the NLS still performs better, while 9 '

TABLE |
LOCALIZATION ERROR (FT) AND HOLDER METRICS WHEN STANDARD

the performance of the LLS is compatible with the VI. EXPERIMENTAL STUDY
performance of the NLS for horizontal and diagonal . . .
landmark deployments, In this section we present our experimental study

Constant sized deviations in the RSS readinglgy using 802';1 .PCMCIA cards and T?IOS Sky
motes. The objective is to compare the impact of



our landmark deployment analysis on a variety of aldeployment by using a Dell laptop running Linux
gorithms and different ranging modalities. Althoughequipped with an Orinoco silver card (802.11 card).
the mathematics of our analysis is based on LLSThe data was collected at 286 locations on the 3rd
we show that deployments based @zl — minE  floor.
algorithm improve localization accuracy in widely Then we used a trace-driven approach to generate
diverse scenarios. the RSS data set under the optimized landmark
We first give a brief description of a set of repre-deployment. We first performed a least squares fit of
sentative RSS-based localization algorithms. We thehe measured data and obtained the parameters of the
describe our experimental method. Next, we quantifpath loss model in Equation (14). Then we directly
the performance across the algorithms provided ditdsed measured variance to generate the RSS readings.
ferent landmark deployments. We also compare thEinally, we applied environmental bias using the Ray-
localization accuracy and Holder metrics for these alSector model described in [18] to obtain the new RSS
gorithms. Finally, we provide a comparison betweemlata set for the optimized deployment case.
the RSS-based and TOA-based LS algorithms usingTo validate that our trace-driven strategy generated
our deployment strategy. realistic radio signal readings, we placed 4 simulated
A. Algorithms landmarks at the same positions as the real collinear
' deployment and then generated synthetic RSS values.
In this study, our main focus is the localization al-\we compared the localization performance of using
gorithms that employ signal strength measurementghis synthetic data set against the real data. We found
To demonstrate the general applicability of our landthe estimation CDFs nearly identical for all of our
mark deployment algorithm, we test our placemendigorithms under study. Thus we have confidence that
strategy on three widely different localization algo-our combination of path-loss model fitting, variance
rithms, RADAR, ABP, and BN. Although there are application, and bias generation result in RSS read-
many other RSS-based localization algorithms, thimgs that generate realistic localization results.
set spans various strategies, and given all algorithmsQur second experimental setup was an 802.15.4
have qualitatively similar performance [10] we feelnetwork which utilized 4 Telos Sky mote landmarks
this set is sufficiently representative. and deployed two sets of landmark placement posi-
RADAR is a point-based, scene-matching algotions. Figure 5 (b) shows the mote landmarks under
rithm. The user first builds a training set of RSSan optimized square deployment as squares and a
values from landmarks matched to known locationshorizontal landmark deployment (again, to maximize
To localize, the object creates a vector of RSS valuesignal strength coverage) as triangles. Unlike the
from the landmarks and the algorithm returns thgp2.11 case, no RSS data was generated; for both
training point closest to the vector using Euclideajeployments the measured data is used in the algo-
distance as the discriminating function [9]. ABP usesithms.
Bayes rule combined with scene-matching to return We have experimented with different training set
an area the object is likely to reside in and probasizes for constructing the radio map for RADAR
bilistically bounds the likelihood with a confidenceand ABP. For 802.11 data sets, we show the results
level [10]. Taking the Bayesian network approachwith 115 training points. While for 802.15.4 data
the BN algorithm uses a Bayesian graphical modelets, we use 70 training points. The small stars in
based on lateration to find the estimated location [19Figure 5 are the randomly selected training points.
_ The localization at each testing point is performed
B. Experimental Setup and Methodology by using the leave-one-out method.
A series of experiments are conducted in our o
Computer Science Department which resides th: Localization Accuracy
whole 3rd floor of the CoRE building. The floor Figure 6 (a) and (b) present the 802.11 accuracy
size is 200x80ft (1600Q¢t?). The experiments are CDF under collinear and square landmark deploy-
performed using 4 landmarks setup in the floor. ments, respectively. A bounded result means we
Figure 5(a) shows the original collinear landmarkapplied truncation. ABP is calculated with confidence
deployment setup in triangles and our optimizedevel 75%. ABP-med is the error of the median
landmark deployment as squares for the 802.1distance of the area, together with ABP-min and
network. The networking staff of the departmentABP-max are the closest and furthest points of the
deployed the APs in the collinear deployment specifireturned area.
cally to maximize signal strength coverage. The first Figure 6(a) shows that under the horizontal-like de-
set of RSS data was collected under this collinegrloyment, LLS always fairs very poorly, while NLS,
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Fig. 5. Deployment of landmarks and training locations on the experimgotas

shows the average error improves for all the algo-
rithms. For 802.11 data sets, the LLS algorithm im-
proves over 35% and NLS gains 25% in performance.

= s — TS Both ABP and RADAR have improved over 20%
0  ronrts ; T onmearts in localization accuracy, while BN has gained 10%.

o g allf s Looking at the 802.15.4 network, the performance
wr o w0 ) l-we | improvement results are compatible to the results

ror e Eror ) from the 802.11 network.

(a)Collinear case (b)Square case The Holder metrics presented in Table Il for each

Fig. 6. Localization accuracy CDFs across algorithms for 802.1algorithm under the optimized landmark deployment
network is smaller than the horizontal deployment. Recall

that the HoOlder parameter is a measurement of the
sensitivity of the algorithm to perturbations of inputs

such as RSS, which can model random noise, envi-
ronmental bias, and measurement errors. The lower

§05 — linear LS bounde 505 — linear LS bounde: .. . . .
st | £ | ] == e e Holder values are strong evidence that an optimized
o S ol - landmark deployment not only can improve the local-
o ™ Moo ol J / ™ Ao ization performance, but also can make an algorithm

— RADAR > — RADAR

w = w  |ess susceptible to the above classes of perturbations.

0 20 40 100 120 140 0 20

60 80 60 80
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(a)Horizontal case (b)Square case

rE' Using Time of Arrival

Fig. 7.  Localization accuracy CDFs across algorithms fo
802.15.4 network In this section we experimentally investigate how

RADAR, ABP and BN are qualitatively similar. All well our d_eploymen.t algorithm works for an_alter—
the algorithms have long tails. Figure 7(a) shows fate ranging m_odallty. In this second modality, we
similar result when using the motes, although in hergompute the C.’"St?‘”ce to a landmark by measuring
the perfect collinear deployment, the horizontal caséf‘any round trip times between a nod_e and a land-
reduces the performance of the lateration approach rk, and then calculate the time-of-flight (ToF) of
(BN, NLS , and LLS) compared to 802.11. a packet. Given the ToF and the speed of light, we

Figures 6(b) and 7(b) show the kev impact ofc&n estimate the range. This is a Time—of—Arrival
our%vork. AEI )of the C(D%:s have shifteg up r;nd to(TOA) based approach because the actual time-of-

the left compared to those in Figures 6(a) and 7(a light i_s_estimated. Space I_imitations prevent us from
Thus, a significant fraction of the results are mor escr!b'T‘g this approac_h in more details, .bUt "." full
accurate using the optimized deployments generat scription of the technique and an analysis of it can

by maxL — minE algorithm. In addition, for ABP, e found in [2(.)]'. .
the gap between the min and max CDFs is much We used a similar trace-driven based methodology

narrower, implying the returned areas are on avera our TOA investigation as for the 802.11 RSS one.

smaller than those in the horizontal deployments. e estimated the TOA based on the round trip times
for packets and derived the distance between the

localizing node to each landmark. We then built an
error distribution of the true distance vs. the estimated
Table Il summarizes the average error for eacHistance, and used that to drive a simulation where
algorithm to further investigate the improvementsve could place the landmarks in the same positions
gained by using an optimal deployment. The tablas the RSS study. The same hardware is used as for

D. Evaluation of Performance and Sensitivity
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the RSS study.

average location estimation error

Algorithms Linear LS Nonlinear LS BN ABP | RADAR

802.11 w trun | w/o trun | wtrun | w/o trun

collinear 38.56 94.53 20.23 21.85 2225 13.11 12.49
square 24.73 31.29 15.37 16.92 20.16 | 10.09 9.31

802.15.4 w trun | w/o trun | wtrun | w/o trun

horizontal 47.89 608.43 33.15 34.44 28.43 | 17.86 14.28
square 28.27 92.05 23.65 32.17 24.25 | 14.27 11.33

Haolder (worst-case) H

Algorithms Linear LS Nonlinear LS BN ABP [ RADAR

802.11 w trun | w/o trun | wtrun | w/o trun

collinear 22.36 48.47 21.55 21.55 31.73 | 20.03 36.24
square 12.19 15.33 9.62 9.75 15.89 | 10.64 9.86

802.15.4 | wtrun | w/otrun | wtrun | w/o trun

horizontal 28.88 286.13 91.00 91.00 28.27 | 64.06 32.58
square 13.86 17.14 10.82 16.32 18.41 | 11.27 13.42

Holder (average-case)H
Algorithms Linear LS Nonlinear LS BN ABP [ RADAR
802.11 w trun | w/o trun | w trun | w/o trun
collinear 2.72 5.37 2.06 2.18 2.06 | 1.85 1.98
square 2.87 3.57 2.45 2.70 1.63 | 1.79 2.06
802.15.4 | wtrun | w/otrun | wtrun [ w/o trun
horizontal 2.66 33.87 2.45 2.50 144 | 2.05 221
square 2.95 5.23 2.35 2.69 2.41 1.95 2.27
TABLE 1l

LOCATION ESTIMATION ERROR(FT) AND HOLDER PARAMETERS ACROSS ALGORITHMS

es (ft)

The linear regression model applied to the dlstanceZ : e

estimation error of TOA data with 63 experimental

distances is shown in Figure 8(a). We observe thal
shorter the distance to a landmark results in estlmate(E m
distance longer than the true distance, while longer: ., S . S
the distance to a landmark results in estimation dis->— T W T m k@
tance shorter than the true distance. The correspond-

ing distance estimation error of RSS data is presented
in Figure 8(b). Comparing the TOA results to RSS
distance estimation errors, while the magnitude of ,
the distance estimation error grows with lengthening e

Distance estimation error (1t

(Q)TOA (b)RSS
Fig. 8. Linear regression on TOA data

distance, unlike in TOA the resulted estimation in
RSS is longer or shorter with near equal probability. 3

With the mean and variance estimated from lin-
ear regression, we have modeled distance estimatio
error of TOA as a Gaussian distribution defined in

Equation (15):
error
with [i

~

and o2

0.7]

0.6]

n04

— linear LS 02 — linearLS
— nonlinear LS — nonlinear LS
linear LS bounded 01 linear LS bounded
- - nonlinear LS bounded - - nonlinear LS bounded

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Error (eet) Error (feet)

N( 02) (15) (a)Collinear case (b)Square case

b —|/f,b d Fig. 9. Localization accuracy CDFs using TOA
= bp + 010;

Znﬂ@, — Q)2 LS algorithms using TOA. The figure shows that as
= %7 with RSS, the performance of LS increases under an

optimized deployment as compared to a horizontal

whered; is the true distance and} is the estimated deployment designed for coverage. Quantitatively,
distance.n is the total number of distances underhe performance improvement is over 30%. Compar-
experimentationb, andb, are the coefficients of the ing the absolute performance of this technique with

linear regression.

RSS, our TOA approach is qualitatively worse. This

We further conducted a trace-driven approach t likely due to the very coarse grained microseconds-
localize 286 positions on the floor using 4 landevel clocks currently available in standard 802.11.
marks setup with collinear and square deploymemdditional clocks with much higher frequencies
respectively according to Figure 5(a) for the 802.1%ould help to reduce much of the measurement

network.

uncertainty.

Figure 9 plots the localization accuracy CDF of the
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VIlI. CONCLUSION

By analyzing the Linear Least Squares algorithm, .
we derived an upper bound on the maximum location
error given the placement of landmarks. Based on
this theoretical analysis, we found optimal patterns
for landmark placement and further developed a7

novel algorithm,mazL — minFE, for finding optimal

landmark placement that minimizes the maximum

localization error.

To show the generality of our results, we conductedg
experiments using both an 802.11 (WiFi) network

and an 802.15.4 (ZigBee) network. Based on th
experimental data, we investigated the impact o

e
e

landmark position and quantity on localization per-
formance using both the measurements of RSS in
an actual building as well as trace-driven simulation&:!
that used the RSS measurements. In addition, we ap-
ply the trace-driven approach to an alternate ranging

modality, in this case, TOA.

We found that the performance of a wide variet;lll]
of algorithms showed significant improvements when
using landmarks placed according to our algorithm,
as opposed to alternate deployments. We evaluatéd!
these improvements under several different metrics.
The experimental results provide strong evidence that
our analysis and algorithm for landmark placemeni3]
is very generic as the resulting placement has im-
proved localization performance across a diverse set

of algorithms, networks, and ranging modalities.

[14]

Our results also point out that there is a tension be-

tween the ideal landmark deployment for localizatio

ployment was very collinear, and this had pronounce
negative impact on localization performance. Futur

Conference on Computer Communications (INFOCOM),
March 2004.

R. Battiti, M. Brunato, and A. Delai, “Optimal wireless
access point placement for location-dependent services,”
Department of Information and Communication Technol-
ogy, University of Trento, Italy, Technical Report DIT-03-
052, October 2003.

Y. Chen, K. Kleisouris, X. Li, W. Trappe, and R. P.
Martin, “The robustness of localization algorithms to signal
strength attacks: a comparative study,” To appear in
Proceedings of the International Conference on Distributed
Computing in Sensor Systems (DCOSS), June 2006.

N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L.
Moses, and N. S. Correal, “Locating the nodekZEE
Sgnal Processing Magazine, July 2005.

P. Bahl and V. N. Padmanabhan, “Radar: An in-building
rf-based user location and tracking system,”Rroceed-
ings of the IEEE International Conference on Computer
Communications (INFOCOM), March 2000.

E. Elnahrawy, X. Li, and R. P. Martin, “The limits of
localization using signal strength: A comparative study,” in
Proceedings of the First IEEE International Conference on
Sensor and Ad hoc Communcations and Networks (SECON
2004), Oct. 2004.

N. Priyantha, A. Chakraborty, and H. Balakrishnan, “The
cricket location-support system,” iProceedings of the
ACM International Conference on Maobile Computing and
Networking (MobiCom), Aug 2000.

Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz,
“Localization from mere connectivity,” irProceedings of
the Fourth ACM International Symposium on Mobile Ad-
Hoc Networking and Computing (MobiHoc), Jun 2003.

M. Youssef, A. Agrawal, and A. U. Shankar, “WLAN
location determination via clustering and probability distri-
butions,” in Proceedings of IEEE PerCom' 03, Fort Worth,
TX, Mar. 2003.

T. Roos, P. Myllymaki, and H.Tirri, “A Statistical Modeling
Approach to Location EstimationJEEE Transactions on
Mobile Computing, vol. 1, no. 1, Jan-March 2002.

ol - 15] L. Dohertyl, K. S. J. Pister, and L. EIGhaoui, “Convex po-
vs. deployments that optimize for signal coverage.

We found that in our building, the better coverage de-

6]

work would conversely investigate the impact of
a deployment optimized for localization on signall17]
coverage, as well as try to find a method of trading
one kind of deployment for another depending on the

users’ needs.
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