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Setting the Stage
 Currently, 90% of licensed spectrum is unutilized

– The FCC has opened up large chunks of spectrum in the 300MHz to 400MHz 
band for unlicensed use

– National Broadband Plan: To open up 500 MHz in next 10 years

 Companies are testing products that will use unlicensed wireless spectrum (white 
spaces) that sit between broadcast TV channels. 
– Cognitive radio platforms and protocols will allow secondary users to 

opportunistically take advantage of spectrum opportunities for communication  

 These new TVBD (TV Band Devices) must adhere to FCC Part 15 Rules:
– No real limitations on type of applications being deployed
– Minimal provisions by FCC to limit interference between TVBDs
– Rules regarding TVBDs interference to Primary devices

� E.g. 40mWatt limitation if operating in bands adjacent to TV channels
– Officially, certain classes of TVBDs must utilize fixed outdoor antennas

[2]
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Cognitive Radios are an emerging wireless technology 
supported by open-source-style of development

 Expose the lower-layers of the protocol stack to researchers, developers and the 
“public”
– scan the available spectrum
– select from a wide range of operating frequencies
– adjust modulation waveforms
– perform adaptive resource allocation

 Inexpensive and widely available cognitive radios:
– USRP/GnuRadio – open source software support
– Xilinx-based Rice platform
– WINLAB WINC2R cognitive radio platform
– JTRS Clusters  (well, not necessarily widely available…)

 An ideal platform for abuse since the lowest layers of the wireless protocol 
stack are accessible to programmers.
– Can be reprogrammed to violate or bypass locally fair spectrum policies
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The CR platform is ripe for abuse, and could potentially 
cause more harm than benefit

There are many opportunities for exploitation:
1. Poor programming: 

1. CR protocols will be complex, it will be easy to write buggy implementations of 
etiquettes that do not achieve their goal…

2. Runaway software processes…

2. Greedy exploitation:
1. Decrease back-off window in an 802.11 (or comparable) implementation
2. Ignore fairness in spectrum etiquette (many co-existence protocols assume honest 

participants, or honest data)

3. Simply Ignoring Etiquette
1. Primary user returns… so-what???

4. Economic/Game-theoretic Models
1. Standard economic models for spectrum sharing seek to support cooperation– but 

cooperation does not ensure trusted operation!
2. Security is an anti-social topic!

5. Plenty more…
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Stage is Set… Now the Rest of the Talk

 Overview of AUSTIN:
– A framework for securing/regulating cognitive radio networks

 Anomaly Detection in DSA Networks:
– Its not an easy matter to detect when devices are not following 

proper spectrum rules

 Interference Classification: 
– Are we jammers or just hidden terminals?

[5]
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AUSTIN: An Initiative to Assure Software Radios have 
Trusted Interactions

 Goal: to regulate the future radio environment, ensure trustworthy cognitive radio 
operation (Team: Rutgers, Virginia Tech, UMass)

 How — two complementary mechanisms 
– On-board enforcement – restrict any violation attempt from accessing the radio:

� Each CR runs its own suite of spectrum etiquette protocols
� Onboard policy checking verifies actions occur according to “spectrum laws”

– An external monitoring infrastructure:
� Distributed Spectrum Authority (DSA) — police agent observes the radio 

environment
� DSA will punish CRs if violations are detected via authenticated kill commands.

Research
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AUSTIN involves formalizing security languages for CR 
regulation and a security management plane  

 AUSTIN will use law-governed interaction (LGI), which is more 
powerful than conventional access control in both expressive 
power and scalability. 

– LGI employs locality, which supports decentralization of access 
control, and scalability for stateful regulation 

– LGI can achieve global effects over a community because all 
members of that community are subject to the same law

 A broad and expressive regulatory language will be designed
– XGPL is a starting point, but does not involve policy 

enforcement
– AUSTIN-XGPL will use a concrete representation of past 

behaviors to allow a detailed evaluation for regulation. 
– AUSTIN-XGPL challenges: 

� Make the language support variable degrees of 
interoperability between federations of CR devices. 

� Make the language powerful, yet simple enough to 
minimize the risk of a poorly-written/buggy law

 AUSTIN Credo: Security must be “designed into” all future CR 
devices (e.g. an FCC-imposed  requirement)

– All CR devices will have a mandatory trusted computing 
component that includes a well-architected Security Management 
Plane (SMP)

– RF units immediately partition incoming signals to extract SMP 
communications and relay these to a trusted module on the CR 

– AUSTIN-SMP will be driven by associated Security 
Management Agents (SMA)

– Security Message Units (SMUs) will support multiple regulation 
services via a unified packet format. 

– AUSTIN-SMP provides an exciting approach to more provably 
secure protocols, as well as improved network manageability  

Research

LGI-based Interaction

AUSTIN-SMP Architecture
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Secure software and hardware methods prevent corruption of 
CR software, while the AUSTIN-Controller regulates actions
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 Ensuring the security of radio software involves
– Ensuring that the radio software components 

come from authorized entities
– Assuring that the download and installation 

processes are secure
– Thwarting the unauthorized modification of the 

software once it has been installed.
 Hardware security mechanisms should provide a root-

of-trust and thus must be tamper-proof
– Bitstream encryption prevents the configuration from 

being revealed outside the chip
– Unlike ASICS, FPGAs reveal no design information 

when powered off, forcing the adversary to probe an 
active die. 

– AUSTIN will investigate the enforcement of basic 
operational policies using hardware-layer “interlocks” 
that cannot be overridden by software layers. Will 
require:

� Analyzing the interfaces and dependencies 
between hardware and software

� Selecting the policies to be enforced with 
hardware

� Formal state analysis of the hardware blocks 
responsible for policy enforcement

� A mechanism for securely updating policy 
enforcement circuits. 

 The AUSTIN-Controller is a policy engine 
that receives requests from CR processes, 
and makes formal decisions on whether to 
allow requested actions to occur

 AUSTIN-Controller involves:
– Ontology Interface
– Knowledge Database
– Policy Reasoner
– Policy Controller
– Policy Monitor
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Challenge Topic: The AUSTIN-TCB needs to process and 
regulate activities internally quickly 

 What is the AUSTIN-TCB (Trusted Computing Base)
– A virtual block includes all the hardware and software that enforces universal laws and etiquette 

policies 
– A controlled gate that users have to go through to access radio

 Components:
– CR processor: programmable by the 
User; performs request filtering based on 
user defined spectrum etiquette policies
– Monitor/Verifier: a Controller which can 
interpret and enforce any well-formed Law.
Verify user’s radio access request, monitor
the on-board radio activity.
– Wake up/Kill Switch: 

� “wakeup”: brings the baseband processor out of
a deep (low power) sleep. 
� “kill”: stops the corresponding ongoing radio activities.

– Update: allows the laws evolve over time, accepts 
a new law only if it is signed by the regulating authority,
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Challenge Topic: Hardware security is needed in order to provide a 
trusted base

 Must consider physical attacks on an 
embedded system such as a radio handset

– Applications and OS ultimately have a 
hardware-based root of trust

– Security assumptions made by software may not 
hold when the hardware can be probed

– PC Trusted Platform Module (TPM) chips focus 
on software rather than hardware attacks

 Single-chip and system-in-package integration 
increases the difficulty of a physical attack

– Also reduces size / cost / power, and fewer 
packages need to be tamper resistant

– FPGAs can integrate a 500 MHz RISC 
processor core

– Configuration files remain encrypted outside the 
FPGA die

– Dynamic self-reconfiguration thwarts static die 
probes

 Direct hardware implementation of functions
– Avoids memory sharing and trust in upper (OS 

and software) layers
– Allows interlocks that cannot be overridden by 

software
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Challenge Topic: Implementing AUSTIN regulator on the USRP 
involves deciding analyzing MACs used and punishing
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Anomaly Detection in DSA Networks
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Case Study: Anomaly Detection in DSA Networks

 Openness of the Lower-layer Protocol in Cognitive Radio
– A flexible solution to dynamic spectrum access (DSA)
– Target for adversaries and susceptible to reckless users

 Spectrum etiquette enforcement is critical to effectiveness 
and correctness of a DSA system
– Detection
– Localization 
– Elimination

 Network anomaly – unauthorized spectrum usage that can 
cause interference
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Detection of Unauthorized Radios
 Distinguishing bad (unauthorized) transmissions from 

good (authorized) ones

– Challenge: Conventional signal processing techniques 
are insufficient

 Heterogeneous communication modes

 Spoofing attack by emulating primary users

– Goal: Effective detection mechanism relying on non-
programmable features
 Propagation law – inherent property of channel
 Signal strength based detection using energy detector
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DSA Network Structure
 Centralized Management

– Making and distributing spectrum access policy
– Collecting spatially distributed power measurements
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 Zone-based Network Structure

 Spectrum Dedicated to Authorized Users
– Different spectrum bands in adjacent zones and in the same zone

 Spectrum Policy
“User Um is allowed to use frequency band Wi from time T1 to T2, as long as 
the power levels do not go above P dBm in zone Ak”.

DSA Network Structure (cont’d)
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Energy Detection Model
 An energy detector

– W: bandwidth of bandpass filter (BPF)
– L: energy samples in each measurement

 Output at the n-th spectrum sensor:

– Approximated to lognomal distribution under two 
asymptotic cases, i.e., for large SNR and small SNR

– Energy measurements (in dB) across all sensors are jointly 
Gaussian distributed

[17]

complex received signalcomplex Gaussian noise
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Anomalous Detection Using Significance Testing

 Statistics of energy measurement are only given under the 
normal condition

H0: r(t) + w(t), normal usage
H1: r(t) + x(t) + w(t), anomalous usage

– r(t): authorized signal
– x(t): unknown unauthorized signal
– w(t): AWGN

 Significance Testing
– Test statistic T: a measure of observed data
– Acceptance Region Ω: we accept the null hypothesis if T Ω
– Significance level  : probability of false alarm
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When Authorized Transmitter is Mobile
 A channel is dedicated to a single authorized user

– Distinguishing between single and multiple transmissions in the same 
channel

– A decision statistic that captures the characteristics of the received 
power in the normal case

 Lognormal model:
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Linearity-Check-for-Mobile Transmitter (LCM)

 Linear estimation of the received energy Y = (Y1, Y2, …, YN)T

 Estimation error is independent of the transmission power

 Given the location of the authorized transmitter, the error is 
Gaussian distributed,

 Acceptance region: 

 False alarm rate: 



WINLAB[21]

One-class Support Vector Machine (SVM)
 If the location of the authorized transmitter is unknown, 

the distribution of the estimation error is unknown
– The transmitter location is estimated by localization methods 

 We give empirical acceptance region using machine 
learning technique, One-class SVM [Scholkopf’01]
– Minimizing the radius R of a hypersphere 

that encloses a subset of the training data

– Given the training data are all from
the normal case H0, the fraction of 
the excluded data asymptotically 
equals the false alarm probability

– In LCM, the input statistic is
the error vector, 
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Signalprint-Check-for-Stationary-Transmitter (SCS)

 : known authorized signal energy
 : current measured energy

 Residue:

 The residue vector,                         , is a multivariate 
Gaussian

 False alarm rate:

 SVM based empirical solution uses the residue,   , as the 
input statistics.
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Detection Performance -- LCM
 Complementary receiver operating curves, PF = [0.002, 0.2]

[23]

• N = 50 sensors randomly 
distributed in a square area
• One authorized transmitter and 
one unauthorized transmitter are 
randomly located
• γ = 3.5; σ = 4 dB

• solid:   SNRmed = 0 dB
• dash:   SNRmed = 10 dB
• dotted: SNRmed = 20 dB

• Analytical solution is accurate only for large SNR (SNRmed > 20 dB).
• Given the authorized Tx location, SVM and analytical solution have 
similar performance.
• Given authorized TX location, PD > 0.9 for PF = 0.1.
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 Complementary receiver operating curves, PF = [0.002, 0.2]

Detection Performance -- SCS

[24]

• N = 10 sensors randomly 
distributed in a square area
• γ = 3.5

• solid:   SNRmed = -20 dB
• dash:   SNRmed = 0 dB
• dotted: SNRmed = 20 dB

• Analytical solution is accurate for very high and very low SNR (i.e., 
|SNRmed | > 20 dB). 
• SVM solution is more stable with respect to SNR
• Far superior to LCM thanks to the more stable metric – signalprints.
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Summary
 For a single unauthorized transmitter and large SNR, both methods 

achieve PD > 0.9 with PF = 0.1.

 The detection probabilities are even higher when there are multiple 
unauthorized radios.

 SCS is far superior to LCM, thanks to the more reliable metric based 
on signalprint.

 Analytical solutions are accurate only when the asymptotic 
assumptions are met. 

 LCM is significantly degraded by highly random channel fading (i.e., 
large σ) while SCS is independent of fading.

 SCS is sensitive to noise. Long measurement duration helps smooth 
the noise and improve its detection accuracy.

[25]



Interference Classification:
Jamming or Hidden Terminal? 
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Interference Classification

 Consider a CSMA (e.g. 802.11) based MANET/Mesh 

– When a packet is received with errors, is it due to 
unintentional interference, malicious jamming, or just poor 
link quality with a low SNR?

– When an expected ACK is missing, is the data packet lost at 
the receiver or the ACK is corrupted at the sender?

[27]

TX RX
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Terminology

 Sender: the node who is going to send a data packet and 
then to wait for an ACK.

 Receiver: the node who is going to receive a data packet 
and then to send an ACK.

 Busy: the channel is busy if a node detects any energy 
above the hardware set energy detection threshold. (CCA 
Mode 1).

 Receive state: a node enters the receive state after the 
PLCP header reception is successful.

[28]
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Interference Classification Using ACK
 Solution: Classify interference scenarios based on the statistics of 

ACK reception at the sender

 Rationale:

– More robust: the classification can be performed at the sender without 
cooperation from the receiver (except for sending an ACK for every 
received packet). 

– More accurate: Sender knows when an ACK should come, receiver does 
not know when a transmission should come

– Shorter packet: an ACK packet is usually short (i.e., 14 Byte long in 
802.11) and thus is less vulnerable to interference.

– Fixed size: An ACK packet has a fixed length in most MAC protocols 
(except for piggybacked ACK) and thus its statistics are more stable 
compared to variable length packets.

[29]
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Interference Models from Sender’s Perspective
 Three basic jamming cases:

– Random Sender-Only Jamming: random on-off jammer, only interfere 
with the ACK reception at the sender.

– Reactive Sender-Only Jamming: protocol-aware ACK jammer.

– Receiver-Only Jamming: any jammer that corrupts data packets at the 
receiver.

 Combinations of the three basic attacks

 Interference-free
– Error occurs only when the link quality is poor, i.e., under the deep fading 

or large transmission distance

 Unintentional interference
– Caused by non-malicious hidden terminals

[30]
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Classification Metrics at Sender
 Three metrics correspond to distinct transmission anomalies.

– AER (ACK Error Rate ) = Ne /(Nc + Ne )
– ABR (ACK Block Rate ) = Nmh / Nt

– AMR (ACK Missing Rate ) = Nml / Nt

– Nt : the total number of transmitted packets

– Nc : the number of correctly received ACKs

– Ne : the number of error ACKs

– Nmh : the number of missing ACKs when the channel is busy

– Nml : the number of missing ACKs when the channel is not busy

 RSS (Received signal strength): measured in the receive state

[31]
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Differentiating Jamming Attacks at Sender
 Three basic scenarios

– Reactive jammer corrupts ACK’s from RXTX (ReactTX)
– Random jammer corrupts ACK’s from RXTX (RandTX)
– Any jammer corrupts Data from TXRX (JamRX)

[32]
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 Normal Interference in Mobile Networks
– Experiments in [XuK02] show RTS-CTS mechanism does not completely 

solve the hidden terminal problem, as a transmitter outside of the physical 
carrier sensing range can still cause interference.

– It is equivalent to a low-power jamming attack.

Challenge

[33]
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AER-RSS Consistency Check 
 Entire signal space consists of three regions

– Interference-free: no hidden terminal
– Normal interference: caused by legitimate hidden terminals
– Intentional interference:

malicious jamming

 Thresholds are empirically
derived using a support 
vector machine technique, 
C-SVC.

[34]


