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Abstract—It has been discussed in the literature that the mobility of a mobile sensor network (MSN) can be used to improve its

sensing coverage. How the mobility can efficiently be managed toward a better coverage, however, remains unanswered. In this

paper, motivated by classical dynamics that study the movement of objects, we propose the concept of network dynamics and define

the associated potential functions that capture the operational goals, as well as the environment of an MSN. We find that in managing

the mobility of an MSN, Newton’s laws of motion in classical dynamics are insufficient, for they introduce oscillations into the movement

of sensor nodes. Instead, in network dynamics, the laws of motion are formulated using the steepest descent method in optimization.

Based on the network dynamics model, we first devise a parallel and distributed algorithm (Parallel and Distributed Network Dynamics

(PDND)) that runs on each sensor node to guide its movement. PDND then turns sensor nodes into autonomous entities that are

capable of adjusting their locations according to the operational goals and environmental changes. After that, we formally prove the

convergence of PDND. Finally, we apply PDND in three applications to demonstrate its effectiveness.

Index Terms—Mobile sensor networks, coverage, potential fields, jamming attack.

Ç

1 INTRODUCTION

SENSOR networks usually consist of stationary sensor
nodes. Sometimes, deploying such a stationary sensor

network and maintaining its sensing coverage could be a
daunting task. To illustrate the point, imagine deploying a
stationary sensor network over a battlefield. Even though
advanced tools like airplanes are available to make the
deployment safer and easier, various factors such as winds
and obstacles are very likely to introduce coverage holes,
regardless of how many sensor nodes are dropped. Taking
one step further, even if a perfect coverage can be achieved
initially, events such as node failures and malicious attacks
will certainly degrade the network coverage as time
evolves. As a result, there is an urgent need for sensor
nodes to be equipped with mobility so that they can
autonomously discover and repair coverage holes. Another
scenario in which mobile sensor nodes are desired is the
application of monitoring a moving object that travels over
a large area. In the two applications mentioned above, as
well as many application scenarios that are looming the
horizon, engaging a mobile sensor network (MSN) that is
capable of changing its layout and position is more
desirable. As a matter of fact, such an MSN has already
been put into use [1], where a fleet of undersea mobile
sensor nodes coordinate and collect measurements of the
ocean without human intervention.

Since the mobility of sensor nodes is of great importance, it

is crucial to formulate laws that govern the mobility. Inspired

by classical dynamics that study the movement of objects, in

[2], the concept of artificial potential fields was first

introduced to guide the movement of a robot. This method
was employed in [3], in which a robot navigated itself to a
particular location through a field filled with obstacles. The
robot first builds an artificial potential field, assuming that it
receives an attractive force from the destination and a
repulsive force from each obstacle. After that, the robot uses
Newton’s laws of motion in classical dynamics to determine
its movement. Later in the literature, the artificial-potential-
field approach was used to manage the mobility of an MSN to
improve its sensing coverage in [4], [5], [6], [7], [8], [9], [10],
[11], and [12]. In these studies, sensor nodes not only receive
forces from the surrounding environment, but also receive
forces from one another. In most studies, however, Newton’s
laws of motion were adopted for the simple reason that the
stopping of a node’s movement can be easily guaranteed by
introducing friction forces. Despite the simplicity, Newton’s
laws suffer inefficiency, for they may cause oscillations. To
visualize this, simply imagine how a pendulum comes to a
stop. In the case of sensor mobility management, oscillations
should be avoided, as they unnecessarily slow down
deployment and waste energy. However, as long as Newton’s
laws of motion are used, oscillations are inherent and hard to
be eliminated.

To address this challenge, we propose the concept of
network dynamics in this paper, in which artificial potential
functions are defined to capture the operational goals and
the environmental constraints of an MSN, and the laws of
motion are formulated using the steepest descent method in
optimization. Using network dynamics, we can transform a
deployment problem into an optimization problem with the
help of potential energy: the movement of sensor nodes
should be governed to minimize the potential energy of an
MSN as quickly as possible. In addition, once the potential
energy reaches its minimum, all sensor nodes should cease
movement immediately. To the best of our knowledge, this
is the first attempt to treat such a deployment problem in
such a manner. Based on the model of network dynamics,
we propose a parallel and distributed algorithm (Parallel
and Distributed Network Dynamics (PDND)), in which
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sensor nodes periodically broadcast their location informa-
tion, calculate the virtual forces that are applied to them,
and relocate themselves accordingly. In addition, we
formally prove the convergence of PDND under realistic
assumptions.

To demonstrate the generality and effectiveness of PDND,
we study its applications in three important domains. The
first application deals with deploying sensor nodes to
monitor an area. We propose a practical deployment strategy
here: We first dump all sensor nodes within a small area, or
randomly drop them all over the whole area, and then let
them autonomously adjust their locations to improve the
overall sensing coverage by following PDND. Our simulation
results show that PDND fulfills this task efficiently under a
range of circumstances. Besides, we also propose a variation
of PDND (PDND2) that can shorten the deployment time and
total moving distance, without noticeably sacrificing the
overall coverage. Finally, we compare our algorithms with
the Lloyd algorithm, as proposed in [13], and show that our
algorithms exhibit better performance. The second applica-
tion migrates an MSN to chase a moving target. Here, the
target, once detected, constantly exerts an attractive force to
sensor nodes, and as a consequence of the attractive force,
sensor nodes can follow the target while it moves. Last, the
third application repairs network holes that are caused by
malicious attacks like jamming. A jammer can cause com-
munication holes in the network by blocking the wireless
channel. In the presence of jamming, we first propose an
effective retreat strategy so that all jammed nodes can escape
the jammed area. After escaping, these nodes will follow
PDND to uniformly disperse into the rest of the network.
More importantly, PDND prevents the network from being
partitioned by a jammer that sweeps through the network, as
nodes will automatically fill the holes after the jammer leaves.

This paper is organized as follows: We begin the
discussion of our proposed model the network dynamics
in Section 2. In Section 3, we present a parallel and
distributed algorithm that can be used to implement
network dynamics in practice, and its convergence is
formally proved in Section 4. In Sections 5, 6, and 7, we
examine three applications of network dynamics. The first
application, presented in Section 5, focuses on using
network dynamics to control the sensing coverage of an
MSN over a particular region. The second application in
Section 6 studies the feasibility of applying network
dynamics to enable an MSN to chase a moving target. In
Section 7, we apply network dynamics to achieve a robust
spatial retreat strategy that maintains desirable network
connectivity in the presence of jamming attacks. Finally, in
Sections 8 and 9, we present related works and concluding
remarks, respectively.

2 NETWORK DYNAMICS

An MSN in this paper is a collection of sensor nodes that
have mobility, such as unmanned vehicles equipped with
various sensors. These sensor nodes are assumed to run on
powerful batteries. For example, the unmanned undersea
vehicles in [14] have the ability to travel hundreds of miles.
An MSN may be viewed as a dynamical system: the
positions of sensor nodes change as time goes by. The
dynamics of classical mechanical systems are described via
underlying laws of motion and laws of force between

objects [15]. We propose to apply the concept of forces, the
corresponding notion of potential energy, and the laws of
motion to manage the movement of an MSN. Appropriately
defining potential functions and laws of motion yields a
general framework that allows people to optimally use
mobility to govern the operations of an MSN.

2.1 Classical Dynamics and MSNs

We shall look at an MSN as a dynamical system ofN devices
subject to the laws of classical mechanics. Each device will be
able to communicate with other devices in its radio range
through some wireless communication protocol. Since the
devices are mobile, we will associate with each device i a
position vector pi and a momentum vector qi. We will,
without loss of generality, assume that all devices are located
in two dimensions and that for each device, both pi and qi are
2D vectors. For now, since we are looking at the system as a
mechanical system, we will arbitrarily assign each network
device a mass of 1; thus, momentum and velocity are
equivalent. Later in the discussion of network dynamics,
the concept of mass is no longer useful and, hence, removed.
N-body dynamical systems appear commonly in physics,

and the dynamical relationship between the position and
momentum of these N bodies evolve based upon Newton’s
second law, which describes the motion of a body in the
presence of a field of force.

The forces acting upon a conservative dynamical system
arise as the negative gradient of the potential energy
function U . This potential function may be comprised of
two components: external Uext and internal Uint. External
potentials arise from externally applied forces, whereas
internal potentials correspond to the attractive or repulsive
forces between the bodies of the system. Typically, the
internal potentials are restricted to two-body interactions
such as the gravitational pull between two objects.

We may collectively refer to the position vector of each of
the N bodies by a 2N-dimensional position vector p ¼
½p1; � � � ;pN � and similarly for the momentum vector q.
Hence, the potential energy may be viewed as

UðpÞ ¼
X
i

UextðpiÞ þ
X
i

X
j>i

Uintðpi;pjÞ: ð1Þ

Newton’s classical equations of motions give

d

dt
qi ¼ f i; f i ¼ �riUðpÞ; ð2Þ

where ri is the gradient at the ith body’s position pi.
Applying the relationship between position and velocity
d
dtpi ¼ qi yields a set of coupled differential equations
describing the dynamics of the N bodies.

2.2 Potential Functions for Network Dynamics

The mobility of objects is governed by the description of the
potential function UðpÞ, which, in turn, yields force and
causes motion. We therefore need to define potential
functions that suitably capture the need for causing mobile
devices to move. We will do this in two parts: we first
describe possible external potential functions UextðpÞ and
then describe internal (that is, pairwise) potential functions
Uintðpi;pjÞ.

External potential functions may be viewed as represent-
ing factors coming from the environment that should
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influence the motion of an MSN. For example, suppose that
an MSN has been deployed to perform monitoring
functions. It may be that there are regions of the network
that deserve more attention than other regions and, there-
fore, we might wish for mobile devices to be attracted to
these regions. As another example, it might be desirable for
a set of monitoring devices to migrate, perhaps to monitor a
moving asset or perhaps to sweep through a coverage area.

Internal potentials typically correspond to either attrac-
tive or repulsive pairwise interactions between entities. In
general, we desire potential functions that are capable of
dispersing mobile sensors, without causing them to
separate too greatly from each other. These potential
functions, often known as dispersive potentials, involve
repulsive and attractive components. An example of such a
potential function in the physical world is the Lennard-
Jones potential from thermophysics [16]:

Uðpi;pjÞ ¼ 4�
�

kpi � pjk

 !12

� �

kpi � pjk

 !6
2
4

3
5; ð3Þ

where � describes the radial intercept and � governs the well
depth, as depicted in Fig. 1. Readers should keep in mind
that in managing an MSN, people can choose or define
whatever potential functions that they feel fit their needs
best. As a result, when a potential function observed in the
physical world is chosen, there is no need to bring its
physical conditions and constraints in.

2.3 Ideal Simulation Framework and Convergence

In the following, we will examine the natural discretization
of Newton’s equations of motion and argue that such a
formulation leads to mobile devices performing extra
mobility. To address this concern, in network dynamics,
we propose to formulate the equations of motion by using
the steepest descent method in optimization.

Suppose we have a system of N objects and consider the
evolution of the N objects’ positions in time k. Here, we
represent time discretely by breaking time into intervals of
length �t. A typical discretization involves updating the
ith object’s position via

piðkþ 1Þ ¼ piðkÞ þ �pqiðkÞ; ð4Þ

qiðkþ 1Þ ¼ qiðkÞ þ �qf iðkÞ; ð5Þ

where �p and �q are step sizes, and the force f iðkÞ ¼
�riUðpðkÞÞ may be determined at each time step. The time

evolution of the MSN’s motion is then determined by letting
the above system evolve.

The classical equations of motion are second order in
time, which means that the coupled equations tie in
position, velocity, and acceleration. This is suitable for
mechanics but results in undesirable properties from the
point of view of network dynamics. Specifically, the
coupling between position, velocity, and acceleration
implies that it is quite likely that even when the system
has reached a configuration with minimal potential energy,
the N bodies will still have velocity and, hence, kinetic
energy. As a result, the system will escape its desirable
configuration and have to compensate later by applying
forces in the opposite direction. To visualize this, simply
consider the classical pendulum, in which the pendulum
achieves its minimal potential at the base of the trajectory,
and the momentum causes the pendulum to swing past and
increase potential energy. The increased potential causes
the pendulum to reverse direction and oscillate around the
point of minimal potential.

From the viewpoint of network dynamics, this behavior
is undesirable, as it means that the mobile device must
waste movement and, hence, power and time, compensat-
ing for momentum. We, therefore, would like to modify the
equations of motion to remove the effect of momentum.
This may be accomplished by making the equations first
order and have the force affect the distance traveled. For
example, we may simply create an iterative system:

pðkþ 1Þ ¼ pðkÞ � �ðkÞrUðpðkÞÞ: ð6Þ

Examining this iteration shows that we are simply making a
step of size �ðkÞ in the direction of the steepest descent to
minimize the potential function U . Now, once the devices
have moved into a configuration with minimal potential U ,
they stop moving and stay stationary until a disruption is
introduced, which necessitates their relocation. For a
suitable choice of �ðkÞ, convergence will follow from the
convergence of the steepest descent method in optimiza-
tion. In the following sections, where we discuss distributed
implementations of network dynamics, we shall use our
steepest descent formulation of motion as the starting point
and will discuss the selection of �ðkÞ.

3 DISTRIBUTED IMPLEMENTATIONS OF NETWORK

DYNAMICS

In this section, we discuss how we can implement network
dynamics in an MSN in a completely distributed way with
realistic constraints.

3.1 Overview of Distributed Network Dynamics

In Section 2, we discussed the discretization of network
dynamics. A straightforward way to implement network
dynamics is to have a central controller that has the
knowledge of each device’s position and the ability to send
its directives to each device. In practice, however, such an
approach is unrealistic. An MSN does not have a
centralized infrastructure by its ad hoc nature. Conse-
quently, we must devise a set of distributed algorithms so
that each node makes decisions based on its local environ-
ment to achieve the global objective.
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System model. In the effort of formulating and im-
plementing the distributed network dynamics algorithm,
we have made the following assumptions regarding the
underlying MSN:

. Two-dimensional deployment. The network is deployed
on a 2D plane, and as a result, the movement of the
nodes are also constrained on the 2D plane.

. Limited mobility. Nodes can move, but the mobility is
limited both by the maximum speed at which a node
can move and by the total distance that a node can
move because movement, in general, consumes a
large amount of energy.

. Location aware. Every node knows its own location.
This can be achieved by devices such as GPS [17] or
through various wireless localization algorithms [18].

Performance metrics. We propose the following metrics
to evaluate the proposed distributed algorithms:

. Movement efficiency. Sensor nodes will experience
different movement trajectories following the move-
ment algorithm. To measure the efficiency of these
trajectories, we add up the total distance traveled by
all the sensors: a shorter travel distance indicates a
lower energy consumption and, hence, a better
movement efficiency.

. Convergence time. When the network dynamics
algorithm converges, every node within the network
will have a force, which is below the specified
threshold. At the same time, the system potential
energy U will reach its minimum. In general, a
shorter convergence time is preferred.

3.2 Distributed Network Dynamics Algorithm

The easiest way of implementing the distributed network
dynamics algorithm is the sequential approach. While a
node is moving, the nodes in its radio range must remain
stationary. Though it is easy to implement it and prove its
convergence, this approach suffers inefficiencies due to its
sequential nature. More specifically, it limits the number of
nodes that may move at any time, which, in turn, prolongs
the convergence time and the overall moving distance. In
order to address these inefficiencies, we propose a parallel
and distributed algorithm named the PDND algorithm.

In PDND, any node that intends to move can start
movement immediately and, therefore, all nodes may move
simultaneously. Each node advertises its location informa-
tion every �t time and maintains a table (neighbor table) that
records its neighbors’ most recent location information.
Every �t time, based on the information saved in its neighbor
table, a node i calculates the total force f i applied to it by all its
neighbors. If the magnitude of f i is greater than a preset
threshold �, that is, kf ik > �, node i will move along the
direction of f i for a specific distance that is a function of kf ik
and �t (details are provided in Section 4). Node i stops
moving when f i is below the threshold �. All nodes repeat this
process iteratively, and finally, they will all stop moving.

The PDND algorithm is summarized in Algorithm 1. For
PDND, �t is an important parameter, for a course �t may
make sensors oscillate. However, we argue that since the
communication among sensors happens in the scale of

microseconds, �t can be easily set to a small value such that
its effect on the performance of PDND is negligible.

4 THE CONVERGENCE OF THE PDND ALGORITHM

In this section, we formally prove the convergence of
PDND. We first prove its convergence on a convex sensing
field and then extend the proof to cases with nonconvex
sensing fields. We assume that there is a total of N sensors,
indexed by 1; . . . ; N , and that their effective sensing ranges,
as well as their communication ranges, are identical discs.
In what follows, we use rs to represent the common sensing
radius and rc to represent the common communication
radius. We use pi ¼ ½xi yi�T to represent the coordinates of
sensor i and use p to denote the coordinates of all the sensor
nodes, with p ¼ ½pT1 � � � pTN�

T . Further, P denotes all the
feasible choices of p. f ij ¼ ½fij;x fij;y�T denotes the virtual
force placed on sensor i by sensor j ðj 6¼ iÞ and, therefore,
the total force on sensor i can be formulated as
f i ¼

PN
j¼1;j6¼i f ij. Finally, we use rf to denote the maximum

distance at which two sensors have a force between them.
As nearby sensors have virtual forces with each other, the

whole network possesses a virtual potential energyUðpÞ, and
�rUðpÞ ¼ f ¼ ½fTi � � � fN

T �T according to physical laws. The
problem of repositioning sensors with the help ofUðpÞ can be
transformed into the following optimization problem:

min UðpÞ
subject to p 2 P:

It should be noticed that this optimization problem is not
convex. Given any optimal solution p�, one can obtain
another optimal solution p0 by exchanging the positions of
any two sensors in p�.

The PDND algorithm proposed in Section 3 is similar to
the standard gradient projection algorithm, which is
formulated as

pðkþ 1Þ ¼
h
pðkÞ � �ðkÞrU

�
pðkÞ

�iþ
; ð7Þ

where �ðkÞ is a positive step size at the kth iteration of the
algorithm, and ½p�þ is the orthogonal projection (with
respect to the euclidean norm) defined by

½p�þ ¼ arg minp02P kp0 � pk2: ð8Þ

Although the standard gradient projection algorithm is a
suitable numerical method that can be used to find solutions
for optimization problems, it is inappropriate for our problem
due to two reasons. First, it needs global information to find
out the appropriate step size by carrying out a line search
algorithm in each iteration. Second, by adopting a single �ðkÞ
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for all sensors, it does not take into account the speed limit of

the sensors. As a result, during the time interval of the

kth iteration, a sensor i may be asked to travel a distance far

beyond its capability. To address the second shortcoming,

one can either increase the locomotion capability of the

sensors or extend the duration of each iteration. Both options,

however, have drawbacks: the former is not always realistic,

whereas the latter may significantly slow down the conver-

gence of the algorithm. In this paper, we propose a better choice,

the PDND algorithm, which modifies the standard gradient

projection algorithm by letting each sensor independently choose

its own step size based on the local information. The PDND

algorithm is described by the following:

pðtþ�tÞ ¼
h
pðtÞ � diagð��ðtÞÞrU

�
pðtÞ

�iþ
; ð9Þ

where �ðtÞ ¼ ½�1ðtÞ �1ðtÞ . . . �iðtÞ �iðtÞ . . . �NðtÞ �NðtÞ�T � 0.
Before discussing the convergence of the PDND algo-

rithm, we first present the assumptions that we have made

for the considered systems. Note that these assumptions

will not make the considered system less realistic.

Assumption 1. rf < rc.

This assumption eases the implementation of the

proposed algorithm because sensor i only needs the

position information of its communication neighbors to

calculate f i.

Assumption 2 (Lipschitz continuity of f ij). There exists a

constant C such that

kf 0ij � fijk2 � C ½p0i
T

p0j
T �T � ½pTi pj

T �T
��� ���

2
: ð10Þ

Under this assumption, the force between two sensors is

a bounded continuous function of the distance between

them. We now present some theoretical results describing

the convergence of PDND.

Proposition 1. UðpÞ is bounded below for every feasible p.

Proof. Given that �rUðpÞ ¼ f and according to Assump-

tion 2, this is obvious. tu
Proposition 2 (Lipschitz continuity of rUðpÞ). UðpÞ is

continuously differentiable, and there exists a constant K

such that

rUðp0Þ � rUðpÞk k2� Kkp0 � pk2; ð11Þ

where p0, p 2 P.

Proof. Let NðiÞ be the set consisting of every sensor j ðj 6¼ iÞ
that satisfies either kp0i � p0jk2 � rf or kpi � pjk2 � rf . Let

L be the maximum set size among all the sensors, that is,

L ¼maxi jNðiÞj. The fact that f ij is Lipschitz continuous

indicates that there exists a constant C such that

kf 0ij � f ijk2 � C
��½p0Ti p0Tj �

T � ½pi
T pj

T �T
��

2
� Cð4di þ4djÞ;

where4di ¼ kp0i � pik2. Therefore, the constant K can be

found in the following way:

rUðp0Þ � rUðpÞk k2
2

¼
XN
i¼1

f 0i;x � fi;x
� �2

þ f 0i;y � fi;y
� �2

� �

¼
XN
i¼1

X
j2NðiÞ

f 0ij;x � fij;x
� �0

@
1
A

2

þ
X
j2NðiÞ

f 0ij;y � fij;y
� �0

@
1
A

22
4

3
5

� L
XN
i¼1

X
j2NðiÞ

f 0ij;x � fij;x
� �2

þ
X
j2NðiÞ

f 0ij;y � fij;y
� �2

2
4

3
5

� LC2
XN
i¼1

X
j2NðiÞ

ð4di þ4djÞ2

� 2LC2
XN
i¼1

X
j2NðiÞ

ð4d2
i þ4d2

j Þ

� 4L2C2
XN
i¼1

4d2
i

¼ 4L2C2kp0 � pk2
2:

As a result, K ¼ 2LC. tu

Lemma 1. 8p0, p 2 P

Uðp0Þ � UðpÞ þ ðp0 � pÞTrUðpÞ þK
2
kp0 � pk2

2: ð12Þ

Proof. The proof is given in [19]. tu

Lemma 2 (Properties of PDND on a convex set).

1.

U
�
pðtþ�tÞ

�
� U

�
pðtÞ

�
�
�
pðtþ�tÞ � pðtÞ

�T
diag

�
1=��ðtÞ �K=2

��
pðtþ�tÞ � pðtÞ

�
:

2. pðtþ�tÞ ¼ pðtÞ if and only if
�
p0 � pðtÞ

�TrU�
pðtÞ

�
� 0 for all feasible p0.

3. The mapping
	
pðtÞ � diag

�
��ðtÞ

�
rU

�
pðtÞ

�
þ
is

continuous.

Proof. Only the proof of the first property is given here, and

the rest is almost identical to that of the standard

gradient project algorithm provided in [19].
From the definition of the projection method, we

know that for each i (see Fig. 2a),
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�
piðtþ�tÞ � piðtÞ

�T
�iðtÞfiðtÞ

�
�
piðtþ�tÞ � piðtÞ

�T �
piðtþ�tÞ � piðtÞ

�
�
piðtþ�tÞ � piðtÞ

�T
fiðtÞ

� 1

�iðtÞ
�
piðtþ�tÞ � piðtÞ

�T �
piðtþ�tÞ � piðtÞ

�
:

Therefore,

�
X

i

�
piðtþ�tÞ � piðtÞ

�T
fiðtÞ �

�
X

i

1

�iðtÞ
�
piðtþ�tÞ � piðtÞ

�T �
piðtþ�tÞ � piðtÞ

�
�
pðtþ�tÞ � pðtÞ

�TrU�pðtÞ� �
�
�
pðtþ�tÞ � pðtÞ

�T
diag

�
1=��ðtÞ

��
pðtþ�tÞ � pðtÞ

�
:

Applying Lemma 1, we get

U
�
pðtþ�tÞ

�
� U

�
pðtÞ

�
þ
�
pðtþ�tÞ � pðtÞ

�TrU�pðtÞ�þ
K

2
kpðtþ�tÞ � pðtÞk2

2

� U
�
pðtÞ

�
�
�
pðtþ�tÞ � pðtÞ

�T
diagð1=��ðtÞ �K=2Þ

�
pðtþ�tÞ � pðtÞ

�
:

ut

Theorem 3 (Convergence of PDND on a convex set). If
0 < maxi �iðtÞ < 2=K, and p� is a limit point of the
sequence fpðtÞg generated by the PDND algorithm, ðp�
p�ÞTrUðp�Þ � 0 for all feasible p.

Proof. Let
�
pðtÞ

�
be the sequence generated by the PDND

algorithm, where t can be 0;�t; 2�t; � � � . We first
consider the situation where �iðtÞ > 0 for all i. The
condition 0 < maxi �iðtÞ < 2=K guarantees that the ma-
trix diag

�
1=�ðtÞ �K=2

�
is positive definite. Applying

this observation to Lemma 2.1, we get the conclusion that
the sequence fUðpðtÞÞg is strictly decreasing, unless
pðtþ�tÞ ¼ pðtÞ. Further, as UðpÞ is bounded below, this
sequence converges.

When at least one �iðtÞ ¼ 0, we may puncture both
diag

�
1=�ðtÞ �K=2

�
by removing all zeros on the

diagonal and
�
pðtþ�tÞ � pðtÞ

�
by removing all corre-

sponding zeros. Applying the same reasoning as before
completes the proof. tu

We have proven that under minor assumptions, the PDND
algorithm converges on a convex sensing field. Next, we
study its convergence in a nonconvex area. In such scenarios,
the orthogonal projection method can no longer be used to
calculate sensor locations. In order to address this difficulty,
we propose a simple but efficient movement regulation
strategy. When a sensor i approaches the boundary of the
sensing field, it regulates its movement in the following way:
if the target position

�
piðtÞ þ �iðtÞf iðtÞ

�
is outside the sensing

field, sensor i moves within the sensing field and to the
location that is the closest one in its vicinity to the target
location. Specifically, sensor i’s movement must be inside or

on the circle centered at
�
piðtÞ þ �iðtÞf iðtÞ=2

�
, with the radius

�iðtÞf iðtÞ=2. Fig. 2b illustrates this strategy. Sensor i first
moves toward its target location

�
piðtÞ þ �iðtÞf iðtÞ

�
until it

hits the boundary of the sensing field at py, and then, it
randomly picks a direction and moves along the boundary
until it reaches a point that is closest to the target location in
that particular direction, for example, p1 or p2 in Fig. 2b.
Additionally, if it has a priori knowledge of the shape of the
boundary, it can calculate the point that is closest to the target
position, for example, p1 in Fig. 2b, and move to that point
following the optimal path.

Lemma 3 (Properties of PDND on a nonconvex set).

U
�
pðtþ�tÞ

�
� U

�
pðtÞ

�
�
�
pðtþ�tÞ � pðtÞ

�T
diag

�
1=��ðtÞ �K=2

��
pðtþ�tÞ � pðtÞ

�
:

ð13Þ

Proof. Any position that is inside or on the circle centered at�
piðtÞ þ �iðtÞf iðtÞ=2

�
, with the radius �iðtÞf iðtÞ=2, for

example, p3 or p4 in Fig. 2b, satisfies the following
inequality:�

piðtþ�tÞ � piðtÞ
�T
�iðtÞfiðtÞ ��

piðtþ�tÞ � piðtÞ
�T �

piðtþ�tÞ � piðtÞ
�
:

According to the aforementioned movement regulation
strategy, piðtþ�tÞ is such a position. The rest of the
proof is the same as that of Lemma 2.1 and is hence
omitted. tu

Theorem 4 (Convergence of PDND on a nonconvex set). If
0 < maxi �iðtÞ < 2=K, the PDND algorithm converges.

Proof. Let
�
pðtÞ

�
be the sequence generated by the PDND

algorithm. When all �iðtÞ’s are greater than zero, from
the condition 0 < maxi �iðtÞ < 2=K, we find that
diag

�
1=�ðtÞ �K=2

�
is positive definite. Applying this

observation to Lemma 3, we can conclude that the
sequence fUðpðtÞÞg is strictly decreasing, and since
UðpÞ is bounded below, this sequence converges.
When there exists at least one �iðtÞ that is equal to
zero, the convergence can be proven using the same
strategy in the proof of Theorem 3. tu

5 CASE STUDY 1: SPATIAL COVERAGE

In the first case study, we explore the applicability of
network dynamics to the problem of maximizing the spatial
coverage of an MSN.

5.1 Problem Statement

To set up the problem, let us consider the scenario in which
an MSN is deployed to monitor a particular region (referred
to as sensing field). It is sometimes difficult to initially
deploy the sensors in such a way that the maximum
coverage is achieved. On the other hand, the ease of
dropping sensors over a smaller region or randomly over
the whole sensing field suggests that we adopt a two-phase
strategy that involves first randomly dumping the sensor
nodes and then letting the sensors adjust their positions to
better cover the area. Furthermore, even if it is possible to
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initially place sensors to achieve the maximum coverage, it
is still desirable to reconfigure their positions on the fly
because sensors may fail during the operation.

The proposed PDND algorithm aims to make an MSN an
autonomous entity that always tries to maximize its sensing
coverage.

Coverage degree. The most important metric for this
problem domain is the coverage degree, which measures
the ratio of the entire sensing field that is covered. PDND
intends to maximize the coverage degree of a given network
by coordinating the movement of the sensors, and as a final
result, sensors should be sufficiently separated from each
other to maximize coverage but, at the same time,
sufficiently close to each other to stay connected. Before
presenting how we can measure the coverage degree, we
first introduce the two terms that are associated with each
sensor: coverage range and Voronoi cell. In this study, we
assume a simple disc coverage model, in which a sensor can
cover a circular area (referred to as coverage range), with
the radius rs centered at the sensor itself. After all sensors
are deployed on the field, each sensor has a Voronoi cell, a
generalized polygon whose interior consists of all points in
the plane, which are closer to that sensor than to any other.
In order to calculate the overall coverage degree, we adopt a
divide-and-conquer strategy. We first divide the whole
sensing field into Voronoi cells based on the positions of the
sensors, and then, we let each sensor calculate what fraction
of its own Voronoi cell is covered (by comparing the area of
the Voronoi cell and the coverage range), which is a simple
geometric problem, and the details can be found in [20].

Force model. Although any force model that satisfies
Assumption 2 can be used, we choose the following one
because of its simplicity:

f ij ¼
"
ðr� � dijÞItðdijÞ

þ ðr
� � rtÞðrf � dijÞ

rf � rt
�
IfðdijÞ � ItðdijÞ

�#
uij:

ð14Þ

The notations in the foregoing equation are explained as
follows:

. r� is the distance between two sensors when the
force between them is zero. As the distance becomes
shorter (or longer), they start to repel (or attract)
each other.

. rf ð> r�Þ is the distance beyond which the attractive
force between two sensors vanishes.

. rt ðr� < rt < rfÞ is the distance at which two sensors
attract each other most. The attractive force drops off
as the distance decreases or increases.

. dij ¼ kpi � pjk2.

. uij ¼ ðpi � pjÞ=dij.

. ItðdÞ ¼
1 if d � rt
0 otherwise


, IfðdÞ ¼

1 if d � rf
0 otherwise:


The constant C in Assumption 2 of this force model can be
easily verified to be

ffiffiffi
2
p

.

5.2 Simulation Results

In this exercise, we conduct detailed simulation studies to
examine the effectiveness and efficiency of PDND in
improving the sensor network’s spatial coverage. In
addition, we develop a variation of PDND that utilizes a
more relaxed convergence criterion. Finally, we compare
the performance of the two PDND algorithms with an
Voronoi-diagram-based movement algorithm.

In our simulation studies, we consider two random
initial deployments involving 30 sensors, one over a 60	
60 m2 area and the other over a 120	 120 m2 area, which
are illustrated in Figs. 3a and 3b. We use these two cases to
represent two typical random deployment strategies: case 1
represents the deployments where the sensors are ran-
domly thrown over the whole area, and case 2 represents
the deployments where the sensors are randomly dumped
within a very small area (in this case, the sensors are placed
within a 10	 10 m2 area, whereas the intended deployment
area is 120	 120 m2). Additionally, case 1 represents a
dense network, whereas case 2 represents a sparse one. The
initial topologies shown in Fig. 3 have coverage degrees of
0.8709 and 0.0306, respectively.

PDND has several important parameters, and their
default values are summarized in Table 1. Most of the
parameters are self explainable, except for the stopping
criterion. The stopping criterion works in the following
way. At the beginning of each time interval, every sensor
calculates the position at which its force will be zero based
on the local information. However, it only starts moving if
the distance between the target position and its current
position is larger than the stopping criterion. Setting a
threshold on the force magnitude, as discussed in Section 3,
would be a more natural choice for PDND, but we chose to
use a distance-based threshold because the Voronoi-dia-
gram-based algorithm that we are going to compare with
uses such a threshold. In some experiments, we adopt
different values for these parameters. We will explicitly
specify them when presenting those results.
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Fig. 3. Initial deployments. (a) Case 1. (b) Case 2.

TABLE 1
Default PDND Parameter Values



5.2.1 Effectiveness of PDND

After applying PDND to the two deployments, we present
the resulting sensor trajectories and final topologies in
Fig. 4. For both deployments, PDND can significantly
increase the coverage degree by guiding the movement of
the sensors: the coverage degree in case 1 is boosted from
0.8709 to 1, and in case 2, from 0.0306 to 0.6449. We would
like to point out that in case 2, the coverage degree can be at
most 0.6545 because 30 nodes are not enough to fully cover
the sensing field. The final topology for case 2 shown in
Fig. 4d still includes a small overlap among sensing areas,
and this is because the stopping criterion is not strict
enough. The relatively straight trajectories in Figs. 4a and 4c
reveal that PDND can not only achieve better coverage
degree, but also lead to efficient sensor movements.

5.2.2 Approximate PDND

The rationale behind PDND is that sensors should keep
moving until the potential energy of the network is
minimized, and when the algorithm converges, the sensors
are usually well separated from each other, and the
coverage degree is maximized. However, if the network
has an enough number of sensors, it is often unnecessary to
evenly distribute them to fully cover the sensing field. As a
result, we propose the approximate PDND algorithm
(PDND2) that employs a more relaxed convergence
criterion. During a time interval, a sensor moves if and
only if the following conditions are true: 1) its Voronoi cell
is not fully covered and 2) its intended movement distance
is longer than the stopping criterion. This way, sensor nodes
will move much less compared with the original PDND
algorithm.

After applying PDND2 to the two initial deployments
shown in Fig. 3, we present the resulting sensor trajectories
and final topologies in Fig. 5. The results confirm that
PDND2 can significantly reduce the overhead for dense
deployments. For example, in case 1, the approximate
PDND reduces the total travel distance by 59.65 percent
while still maintaining a coverage degree of 1. Furthermore,

it reduces the convergence time by 50 percent. On the other
hand, its performance is comparable to that of the original
PDND algorithm in case 2, where the sensor density is low.

5.2.3 Voronoi-Diagram-Based Mobility Management

Although PDNDs use the concept of potential energy and
virtual forces to govern the movement of the sensors,
another set of popular mobility control algorithms are built
upon the concept of Voronoi tessellation, such as the
technique discussed in [12], [13]. In order to study the
difference between these two sets of algorithms, in this
exercise, we implement a Voronoi-diagram-based algorithm
(referred to as the Lloyd algorithm) and compare its
performance with that of PDNDs’. Like PDNDs, Lloyd also
partitions the time axis into discrete intervals. During an
interval, each sensor moves toward the centroid of its
current Voronoi cell. Details of the Lloyd algorithm can be
found in [13].

When we apply Lloyd to both initial deployments in Fig. 3,
we notice that when the network does not have enough
sensors to fully coverage its sensing field as in case 2, sensors
at the edge of the network may keep oscillating. In such a
sparse network, a sensor at the edge may have a large Voronoi
cell and, thus, the centroid of its Voronoi cell is very likely out
of the communication ranges of all other sensors. This loss of
connection with the rest of the network will, in turn, lead to
errors in calculating Voronoi cells. In order to cope with such
oscillations, we manually stop the Lloyd algorithm when it
hits the preset upper bound of the convergence time. As an
example, in case 2, such oscillations occur, and we terminate
Lloyd manually after 500 seconds. We never observe this
phenomenon in dense networks, as in case 1. Finally, the final
topologies and sensor trajectories are shown in Fig. 6.

5.2.4 Performance Comparison

In order to take a closer look at the execution of these three
algorithms, we present the time series for the coverage
degree and potential energy of the entire network in Figs. 7
and 8. After carefully examining the spatial coverage time
series, we have the following observations. First, for dense
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Fig. 4. Sensor trajectories and final deployments under PDND. (a) and

(c) Trajectories. (b) and (d) Final deployment.

Fig. 5. Sensor trajectories and final deployments under PDND2. (a) and

(c) Trajectories. (b) and (d) Final deployment.



networks (refer to Fig. 7a), the convergence time of the
Lloyd algorithm is comparable with PDND’s. For sparse
networks, on the other hand, the Lloyd algorithm converges
very slowly (or it has to be forced to stop), as discussed
above. Second, both PDND and Lloyd can maximize the
coverage degree quickly and then spend a long time fine
tuning the position of each sensor. On the contrary, the
PDND2 algorithm can efficiently reduce the fine-tuning
overhead, without sacrificing the overall coverage degree.
Third, PDND2 takes a longer time to reach the maximum
coverage degree than the other two, as the sensors move at

a slower pace due to the adopted movement criterion.

Fourth, moving toward centroids or moving along the

directions of virtual forces does not necessarily lead to a

strict coverage degree increasing in the middle of algo-

rithms’ running and, therefore, the time series may exhibit

zigzag-like behaviors.
The system potential energy time series (refer to Fig. 8)

shows similar trends. However, we would like to empha-

size two issues. First, we observe that the potential energy

of the network strictly decreases, as we proved before.

Second, in case 1, PDND2 stops when the potential energy

is still high because each sensor has already fully covered its

Voronoi cell.
In the next set of experiments, we study how these three

algorithms perform when we vary some of the parameters,

that is, the time interval duration and the stop criterion value.

The detailed results are presented in Tables 2 and 3. In

general, a smaller time interval may speed up the conver-

gence, as each node will have more up-to-date knowledge

about other nodes, whereas a smaller stop criterion may lead

to a slower convergence time and longer travel distance. In

order to compensate for the randomness of the results, each

entry in the table is the average of 100 different initial

deployments. Further, all the 100 initial deployments that

belong to case 1 are generated by uniformly randomly

throwing sensors over the entire 60	 60 m2 field, whereas

all the 100 initial deployments that belong to case 2 are

generated by uniformly randomly throwing sensors over the

central 10	 10 m2 area of the 120	 120 m2 sensing field.
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Fig. 6. Sensor trajectories and final deployments under the Lloyd

algorithm. (a) and (c) Trajectories. (b) and (d) Final deployment.

Fig. 7. Coverage degree time series. (a) Case 1. (b) Case 2.

Fig. 8. Potential energy time series. (a) Case 1. (b) Case 2.

TABLE 3
Numerical Results for Case 2

TABLE 2
Numerical Results for Case 1



For network topologies that belong to case 1, with the
time interval of 1 sec, PDND and Lloyd deliver very similar
performances, regardless of the stop criteria. With the same
configuration, PDND2 incurs much lower overheads while
achieving the same coverage degree: compared to the other
two algorithms, it can reduce the convergence time by
40 percent and the total travel distance by 60 percent. As the
time interval becomes smaller, the performances of PDND
and Lloyd start to differ: PDND results in a shorter travel
distance, whereas Lloyd can converge faster. More specifi-
cally, the performance gain of PDND in terms of the total
travel distance is more significant with a slightly larger stop
criteria, whereas the performance gain of Lloyd in terms of
convergence time is more significant with a slightly smaller
stop criteria. On the other hand, under a smaller time
interval, PDND2 can reduce the total travel distance even
further, but its convergence time becomes longer relative to
that of Lloyd.

We observe very different trends for sparse network
topologies that belong to case 2. As discussed earlier, Lloyd
may cause oscillations in such cases and, thus, either converge
very slowly or never converge. As a result, both PDNDs
significantly outperform Lloyd. In the simulations, we stop
Lloyd at1,000sec whenthe timeinterval is1or0.5secondsand
at 500 seconds when the time interval is 0.1 seconds. As a
result, the true performance of the Lloyd algorithm can be
much worse than what is shown in Table 3. Also, as we
discussed before, the advantage of PDND2 is less pronounced
for sparse networks.

6 CASE STUDY 2: SPATIAL MIGRATION

In our second case study, we examine the possibility of
using network dynamics to realize MSNs that can migrate
themselves to track moving objects.

6.1 Problem Setup

Many sensor applications aim at monitoring mobile objects,
such as the one presented in [21]. There are three general
ways of implementing such applications. First, we can
attach sensor nodes to the mobile targets and then let the
sensors ship the data back to the base station in an
opportunistic manner. Second, we can place a sufficiently
large number of sensors to cover all the possible (or
important) areas that the target may visit frequently. Third,
we can deploy mobile sensor nodes that can autonomously
follow the moving objects. There are pros and cons
associated with each of these approaches, and no single
approach can suit all different application scenarios. For
instance, though the first approach is cost effective,
attaching sensor nodes to a mobile target might not always
be possible. As another example, if the target’s movement is
predictable and is within a limited range, the second
approach is viable. However, it will be too costly an option
if the target covers a large area. On the other hand, as more
sensor nodes are equipped with mobility and as the
mobility-management techniques advance, the third ap-
proach will become more prevalent.

Migration metric. In this case study, we adopt the third
approach, and the most important metric is the sensor
network’s capability of chasing the target. If the network of

sensor nodes can follow the target at its movement, the
mobility management algorithms are considered successful.

Force model and application model. Since the focus of
this study is on governing sensor mobility to chase mobile
targets, we do not intend to elaborate on how sensor nodes
can detect the movement or location of the target. Instead,
we assume that sensors whose sensing ranges cover the
target can obtain the target’s location information. Further,
we assume that each sensor can operate in two modes:
normal mode and chasing model. A sensor node switches to
the chasing mode when it detects that the target is moving.
In some cases, it may be more desirable to prevent sensor
nodes from chasing the target when the target moves about
within the network. To address this concern, we can let
boundary nodes switch to the chasing mode first because
they can detect whether the target is leaving the network.

Sensor nodes in the normal mode employ the same force
model, as discussed in the previous case study. In addition
to the forces that exist in the normal mode, a sensor in the
chasing mode is also influenced by an attractive force f 0

pointing to the position of the target. In this study, we
choose to set f 0 to a constant value for all sensors in the
chasing mode, regardless of their distances to the target.
The larger this constant value, the tighter the sensors follow
the target.

Now, let us look at how the entire network migrates
following the moving target. As soon as the target moves,
and the nodes that can detect its movement decide to chase,
these sensor nodes switch to the chasing mode. As for the
rest of the sensor nodes, we can adopt two strategies:

. Rapid chase. In this case, nodes in the chasing mode
immediately flood the entire network with a Switch2-
Chase REQ message, and a sensor node in the normal
mode reacts to the REQ message by switching to the
chasing mode.

. Slow chase. In this case, only the nodes that can detect
the movement of the target will stay in the chasing
mode. Other nodes, though in the normal mode, will
also move due to the movement of their neighbors.

As mentioned before, nodes in the chasing mode are
affected by an attractive force pointing to the target, whose
magnitude is assigned a constant value. The calculation of
the force requires each sensor node to have the knowledge
of the target’s location. For this purpose, we assume that the
target’s position can only be sensed within a certain range
(referred to as detection range). Sensor nodes within the
detection range of the target can obtain the target’s position,
and if under the rapid chase strategy, they will broadcast
the information to the rest of the network periodically.
Sensors may lose the target if all of them are outside the
detection range. This is the scenario that we try to avoid.

6.2 Simulation Results

6.2.1 Rapid Chase Strategy

We set up simulation experiments to demonstrate the
effectiveness of PDND in enabling MSNs to track mobile
targets. Meanwhile, to examine the scalability of the PDND
algorithm, we test two networks: a smaller one with
30 sensors and a larger one with 60 sensors. At the
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beginning of the experiments, the target is located at (50,
50), and sensors are randomly deployed around it, as
shown in Fig. 9a for the 30-node network and in Fig. 9d for
the 60-node network.

Once the experiment starts, the target moves following
the trajectory, as shown in Figs. 9b and 9e, respectively (the
red lines) for 400 seconds. To make the chasing task
challenging, we let the target move at a speed of 1 m/s,
which is the highest speed that a sensor can move at. The
detection range of the target is 10 m, and the nodes in the
detection range broadcast the target’s location once every
1 second. The sensors have the same parameters as in the
previous case study, that is, communication radius rc ¼
30m and sensing radius rs ¼ 10m. The time interval is
1 second. The stop criteria is set to 0.1 m. To reduce the
energy consumption while maintaining the chasing ability,
a sensor stays still whenever it is in the normal mode. In
addition to the target’s trajectory, Figs. 9b and 9e also
present the trajectory for all the sensor nodes, which
demonstrate that though the target moves at a fast speed,
sensors can closely chase the target, regardless of the
network size. The final topologies after the target stops are
presented in Figs. 9c and 9f. One interesting phenomenon
that needs to be mentioned is that in the final topology, all
sensors tightly surround the target. Such a topology is
advantageous because it can tolerate sensor failures. This is
the result of having an attractive force pointing to the
moving target for each sensor.

6.2.2 Slow Chase Strategy

Unlike the rapid chase strategy, in which the target applies
an attractive force to every sensor node, the slow chase
strategy only applies the attractive force to the sensor nodes
that are within the target’s detection range. Since nodes
outside the target’s detection range are only affected by the
forces from their neighbors, the network’s capability of
chasing the target is thus determined by how closely those
nodes follow the target, which, in turn, is determined by the
relationship between the speed of the sensor nodes and that
of the target, and how fast sensors get information about the
target’s location. In order to study the impact of this
relationship on the chasing performance, we have looked at
three scenarios. In all the three scenarios, we have 30 sensor
nodes, and the sensors can move at the speed of 1 m/s. In

case 1, the time interval is 0.1 second, and the target moves
at the speed of 0.5 m/s. In this case, the sensor network
loses the target very soon, with the trajectory and the final
topology shown in Figs. 10b and 10c. In case 2, the time
interval is the same as that in case 1, but the target moves at
a much slower speed: 0.2 m/s. The slower target in this case
enables the rest of the network to follow it to the final
destination, as shown in Figs. 10d, 10e, and 10f. In case 3,
we keep the target speed the same as that in case 1, but we
decrease the time interval to 0.02 seconds so that the sensors
can get their neighbors’ location information more often,
and hence, the sensor network again successfully chases the
target, as shown in Figs. 10g, 10h, and 10i.

Comparing the rapid chase strategy and slow chase
strategy, the former is always able to follow the target, with
an additional broadcast overhead. In the slow chase
strategy, in order to successfully chase the moving target,
either the sensors should be able to move much faster than
the target does or the sensors should frequently exchange
their position information.

7 CASE STUDY 3: SPATIAL RETREATS

In this section, we apply network dynamics to repair an
ad hoc network that is subjected to attacks of radio
interference.

7.1 Jamming Attacks and Spatial Retreats

The shared nature of the wireless medium makes wireless
networks susceptible to a broad array of security threats. In
particular, one class of powerful attacks that has received
attention recently is jamming [22], [23], [24], [25], [26].
Adversaries may easily jam legitimate wireless communica-
tions either by continuously emitting radio frequency (RF)
signals to occupy the wireless channel or by interrupting the
transmission and reception of legitimate packets [26]. Either
way, the net result is that legitimate traffic will be interfered
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Fig. 9. Rapid chase results. (a) and (d) Initial deployment. (b) and

(e) Trajectories. (c) and (g) Final deployment.

Fig. 10. Slow chase results. (a), (d), and (g) Initial deployment. (b), (e),

and (h) Trajectories. (c), (f), and (i) Final deployment.



with. Jamming attacks can have a particularly deleterious
effect on MSNs, as the presence of a jammer may block whole
regions of the network, as depicted in Fig. 11a.

To defend against jamming attacks, two strategies were
recently proposed in [25], namely, channel surfing and
spatial retreats. The underlying idea behind each strategy is
to evade the interferer, either in the spectral sense or in the
physical sense. In this paper, we are interested in spatial
retreats, in which jammed nodes try to evacuate from
jammed regions. As such, spatial retreats are suitable for
MSNs. In the remainder of this section, we discuss our
proposed spatial retreat strategies for MSNs and show how
network dynamics may be incorporated into spatial retreats
to achieve robustness in network communications.

The rationale behind spatial retreats is that when mobile
nodes are interfered with, they should simply move to a
safe location. Assuming that each mobile node can detect
jamming attacks in a timely fashion [26], the key to the
success of this strategy is to decide where the mobile nodes
should escape to and how these nodes should coordinate
their escapes. Merely escaping from a jammed region is not
a sufficient defense mechanism, however, as a mobile
adversary can move through the coverage area and cause
large swaths of the MSN to relocate. By doing so, an
adversary can cause the network to become unevenly
distributed, or even partitioned, thereby severing network
communications.

Therefore, spatial retreat strategies should be robust to
mobile jammers. In order to achieve this robustness, our
spatial retreat strategy has two phases:

. Escape phase. In this phase, the nodes that are located
within the jammed area move to “safe” regions and
stay connected with the rest of the network.

. Reconstruction phase. After the jammed nodes escape
from the jammed area, a distributed network
dynamics algorithm is applied to readjust the
network deployment to be more uniformly covered.
In particular, after the jammer has moved on, the
jammed area will leave a hole in the network
coverage, and the network dynamics will serve to
quickly fill in the hole and restore the network
coverage.

We begin by discussing the escape strategy that we have
developed. Suppose the network is connected before the
jamming attack; that is, every node within the jammed area

is connected with nodes outside via one hop or through
multiple hops. In the example shown in Fig. 11b, before the
jamming attack, node A was directly connected with A’,
node B was directly connected with B’, node D was directly
connected with D’, and C was connected with D’ via D.
After the jamming attack is detected, the nodes within the
jammed area choose a random direction to evacuate. While
moving, each node continuously runs the jamming detec-
tion algorithm until it leaves the jammed area. As soon as it
leaves the jammed area, it tests whether there are some
nodes within its radio range. If not, it moves along the
boundary of the jammed area until it reconnects to the rest
of the network. In Fig. 11b, if node A moves along the
boundary, it will eventually arrive at a location that is
between the location of A’ and the original location of A,
where it can reconnect to A’.

In order to make sure that a node moves along the
boundary of the jammed area, the node must continually
run the jamming detection algorithm. Following the hull-
tracing strategy in [25], it can use the simple strategy:
whenever it feels that the jammer’s power is increasing, it
makes a 90-degree left turn, and whenever it feels that the
jammer’s power is decreasing, it makes a 90-degree right
turn. After it has moved a total r distance, where r is its
radio range, the node will probe to see whether there is
another node in its radio range (probing can also occur at a
finer granularity). If not, it will continue moving along the
boundary. Fig. 11c illustrates how node A chooses a
random direction to escape from the jammed area and
how it reconnects to the rest of the network by using the
simple policy.

Figs. 12a and 12b present a set of simulation results for
the escape strategy. In this set of experiments, we generate a
random network topology, with 40 nodes deployed over a
50	 50 m2 network field. Each node’s radio range is 10 m.
The jammed area is a circle centered at location (25, 25),
with a radius of 10 m. The topology before the victim’s
escape is shown in Fig. 12a. Fig. 12b shows the topology
after these nodes escape to the boundary of the jammed
area and reconnect to the rest of the network. These results
show that our simple escape strategy is effective at escaping
the jammed area while ensuring that evacuated nodes
reconnect with the network.

We next turn to the reconstruction phase. Although our
simple escape strategy guarantees that every jammed node
can escape from the jammed area and successfully connect
to the rest of the network, a serious problem remains. As we
noted earlier, if the jammer is mobile, its movement may
cause the network to become severely unbalanced, or even
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Fig. 11. (a) Jamming attacks in a network. (b) and (c) How a node
escapes from a jammed area, where (b) illustrates the network topology
when the jamming attack occurs with the jammed area highlighted by
the gray area, and (c) uses the dashed line to mark the trace through
which node A escapes from the jammed area and reconnects to the rest
of the network.

Fig. 12. Illustration of the escape strategy. (a) Initial topology. (b) Final

topology.



partitioned. As an example, in Fig. 13, we depict an initial
network configuration (Fig. 13a) and then introduce a
jammer that moves in the y-direction through the middle of
the network. The result is a network that is severely
partitioned (Fig. 13b).

In order to address this problem, we propose to apply
the network dynamics to continuously repair the network
topology, regardless of the jammer movement. In this
scenario, there are three types of forces in the network field:
the forces between the nodes, the force from the boundary
of the region, and the force from the boundary of the
jammed area. We used the same model for the internode
forces and region boundary forces, as we used in Section 5.
The force that we used for the boundary of the jammed area
is similar to the force for the boundary of the network field.
Nonetheless, we cannot preprogram the jammed area
boundary, as in the case of network field boundary. Instead,
jammed area mapping techniques such as the one proposed
in [22] should be incorporated here. In [22], upon detecting
the presence of a jammer, nodes will report their situations
to their neighbors, and based on these reports, nodes on the
boundary of the jammed area can collectively map out the
jammed area.

We now examine the behavior of our robust spatial
retreat strategy by looking at an experiment involving a
mobile jammer cutting across the network coverage area.
Fig. 14 illustrates the evolution of the MSN’s topology as the
jammer moves through the network, and the robust spatial
retreat algorithm not only evacuates the jammed area but
also repairs regions left empty by the mobile jammer. In this
experiment, we used PDND. Overall, the benefit of
applying distributed network dynamics is twofold: 1) as
soon as the victim nodes escape from the jammed area,
instead of gathering around the boundary, the nodes
redistribute to cover the rest of the network field more
evenly and 2) as soon as the jammer leaves the current
location, the resulting “hole” can be quickly repaired.

8 RELATED LITERATURE

Mobility has become a recent trend in the area of mobile
communications to look for scenarios where mobility can
improve network performance. In [27], Grossglauser and
Tse show that random mobility, in conjunction with
multiuser diversity routing, can enhance the capacity of a
communication network. Goldenberg et al. [28] examined
cases where mobility improves the network performance.
Their distributed algorithm adjusts the locations of mobile
devices according to the local information to achieve global
communication objectives.

The mobility of an MSN can be used to improve the
network’s sensing coverage, following either a nonideal
initial deployment of sensors or the presence of sensor
failures [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [29], [30],
[31]. The majority of these papers adopt the potential field
(or virtual force) approach, which, as far as we know, was
first proposed to navigate a robot in [2]. As its name
suggests, the potential field approach builds a potential
field based on the environment and the objective and
guides the movement accordingly.

Regarding how we can perform the deployment, the
aforementioned potential-field-based works can be classi-
fied into centralized ([4]) and distributed ([5], [6], [7], [8],
[9], [10], [11], and [12]) approaches. In a centralized
approach, the movement of all sensors is guided by a
central entity that possesses the global information. In a
distributed approach, each sensor directs its own move-
ment based on the local information. The distributed
approaches can be further divided into parallel ([5], [6],
[7], [8], [11], and [12]) and sequential ([9] and [10])
approaches. In a parallel approach, all sensors can move
simultaneously, whereas in a sequential approach, only one
sensor is allowed to move at each moment.

Although some distributed approaches ([4], [11], and
[12]) adopt heuristic methods with respect to how the
deployment process stops, others ([5], [6], [7], [8], [9], [10])
obey Newton’s laws of motion. If Newton’s laws of motion
are adopted (implicitly or explicitly), sensors are assumed
to possess both potential and kinetic energy, and a friction
force (damping factor) is introduced for each moving
sensor. Because the friction force drains energy out, the
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Fig. 13. A mobile jammer may partition the network. (a) The topology

before the jamming attack. (b) The topology after the jammer moves

from the bottom to the top.

Fig. 14. The subfigures depict the ability of the robust spatial retreat

algorithm to fight a jammer passing through the sensing field by using

the PDND algorithm.



total energy possessed by a sensor is a Lyapunov function,
which guarantees that the deployment process stops sooner
or later.

As discussed in Section 2, adopting Newton’s laws of
motion has an obvious disadvantage: a sensor oscillates
before it stops. An example can be found in [3]. Before the
robot in [3] settles down, it moves around the objective
position for a while. Oscillations should be avoided because
they waste energy and prolong the deployment process.

The issue of jamming detection was briefly studied by
Wood et al. in [22] in the context of sensor networks. Several
different models for jammers, along with multimodal
detection mechanisms, were presented in [26]. Counter-
measures for coping with jammed regions in wireless
networks has been studied in [24] and [25]. In [25], two
countermeasures are presented for coping with jamming. The
first method channel surfing involves a form of on-demand
link-layer frequency hopping, where valid participants
change the channel that they are communicating on when a
denial of service attack occurs. The second method spatial
retreats focused on the case of a stationary jammer and did not
deal with the pernicious effects of a mobile jammer.

9 CONCLUDING REMARKS

In this paper, we have presented the framework for managing
the mobility of an MSN, namely, network dynamics. More
specifically, we have defined suitable potential functions that
capture the operational goals and the environment of an
MSN, and they are used to guide the movement of sensor
nodes. Instead of following Newton’s laws of motion, we
argue that the equations of motion should follow the steepest
descent formulation to minimize potential energy. Here, we
devise a parallel and distributed algorithm (that is, PDND),
under which devices make movement decisions based on the
local knowledge. We have formally proven the convergence
of PDND and explored its effectiveness and efficiency in three
applications. In the first application, we have demonstrated
that PDND can successfully maximize the sensing coverage
of an MSN. Besides, we have also proposed an enhanced
version of PDND, which shortens the convergence time by
terminating the movement of a node as soon as it fully covers
its Voronoi cell. We have also shown that PDND can work in
scenarios that are impossible for a popular Voronoi-cell-
based mobility management algorithm. In the second
application, we have discussed how we can apply PDND to
an MSN that tracks a moving target. We have demonstrated
that if the speed of sensor nodes is comparable to that of the
moving target, the network can successfully chase the target.
Finally, we have examined the performance of network
dynamics in managing the topology of an MSN in the
presence of a jamming attack. By employing PDND in
conjunction with a jamming escape algorithm, we have
developed a robust strategy that is capable of repairing
network partitioning as a jamming device cuts through the
network. By conducting these three case studies, we show
that the model of network dynamics and the PDND algorithm
can efficiently utilize node mobility toward robust and
efficient sensor network operations.
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