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Abstract—Digital fingerprinting is a technique for identifying
users who use multimedia content for unintended purposes, such
as redistribution. These fingerprints are typically embedded into
the content using watermarking techniques that are designed to
be robust to a variety of attacks. A cost-effective attack against
such digital fingerprints is collusion, where several differently
marked copies of the same content are combined to disrupt the
underlying fingerprints. In this paper, we investigate the problem
of designing fingerprints that can withstand collusion and allow
for the identification of colluders. We begin by introducing the
collusion problem for additive embedding. We then study the
effect that averaging collusion has on orthogonal modulation.
We introduce a tree-structured detection algorithm for identi-
fying the fingerprints associated with colluders that requires
( log( )) correlations for a group of users. We next

develop a fingerprinting scheme based on code modulation that
does not require as many basis signals as orthogonal modulation.
We propose a new class of codes, called anti-collusion codes
(ACCs), which have the property that the composition of any
subset of or fewer codevectors is unique. Using this property,
we can therefore identify groups of or fewer colluders. We
present a construction of binary-valued ACC under the logical
AND operation that uses the theory of combinatorial designs
and is suitable for both the on-off keying and antipodal form of
binary code modulation. In order to accommodate users, our
code construction requires only ( ) orthogonal signals for a
given number of colluders. We introduce three different detection
strategies that can be used with our ACC for identifying a suspect
set of colluders. We demonstrate the performance of our ACC
for fingerprinting multimedia and identifying colluders through
experiments using Gaussian signals and real images.

Index Terms—Collusion, collusion resistance, data embedding,
multimedia fingerprinting.

I. INTRODUCTION

T HE ADVANCEMENT of multimedia technologies, cou-
pled with the development of an infrastructure of ubiqui-

tous broadband communication networks, promises to facilitate
the development of a digital marketplace where a broad range
of multimedia content, such as image, video, audio, and speech,
will be available. However, such an advantage also poses the
challenging task of insuring that content is appropriately used.
Before viable businesses can be established to market content
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on these networks, mechanisms must be in place to ensure that
content is used for its intended purpose and by legitimate users
who have purchased appropriate distribution rights.

Although access control is an essential element to ensure that
content is used by its intended recipients, it is not sufficient for
protecting the value of the content. The protection provided by
encryption disappears when the content is no longer in the pro-
tected domain. Regardless of whether the content is stored in
an unencrypted format or decrypted prior to rendering, it is fea-
sible for users to access clear-text representations of the content.
Users can then redistribute unencrypted representations, which
affects the digital rights of the original media distributors.

In order to control the redistribution of content, digital fin-
gerprinting is used to trace the consumers who use their con-
tent for unintended purposes [1]–[4]. These fingerprints can be
embedded in multimedia content through a variety of water-
marking techniques [2], [5]–[10]. Conventional watermarking
techniques are concerned with robustness against a variety of
attacks such as filtering but do not always address robustness to
attacks mounted by a coalition of users with the same content
that contains different marks. These attacks, which are known
as collusion attacks, can provide a cost-effective approach to
removing an identifying watermark. One of the simplest ap-
proaches to performing a collusion attack on multimedia is to
average multiple copies of the content together [11]. Other col-
lusion attacks might involve forming a new content by selecting
different pixels or blocks from the different colluders’ content.
By gathering a large enough coalition of colluders, it is pos-
sible to sufficiently attenuate each of the colluders’ identifying
fingerprints and produce a new version of the content with no
detectable fingerprints. It is therefore important to design fin-
gerprints that are not only able to resist collusion but are also
able to identify the colluders and thereby provide a means to
discourage attempts at collusion by the users.

A. Prior Art

One of the first works on designing fingerprints that are re-
sistant to collusion was presented by Boneh and Shaw [4]. This
work considered the problem of fingerprinting generic data that
satisfied an underlying principle referred to as themarking as-
sumption. A mark was modeled as a position in a digital object
that could be in a finite number of different states, whereas a
fingerprint was a collection of marks. A mark is considered de-
tectable when a coalition of users do not all have the same mark
in that position. The marking assumption states that the unde-
tectable marks cannot arbitrarily be changed without rendering
the object useless. However, it is considered possible for the col-
luding set to change a detectable mark to any other state or into
an unreadable state. Under their collusion framework, Boneh
and Shaw show that it is not possible to designtotally -secure
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codes, which are fingerprint codes that are capable of tracing at
least one colluder out of a coalition of at mostcolluders. In-
stead, they use randomization techniques to construct codes that
are able to capture at least one colluder out of a coalition of at
most colluders with arbitrarily high probability.

A similar work was presented in [3]. This work is concerned
with the distribution of large amounts of content, such as
through television broadcasts, where each user has a decoder
that contains a set of keys needed to decrypt the broadcast
content. Users might collude to create a pirate decoder that
consists of keys from some of the colluders’ decoders. When a
pirate decoder is captured, the goal is then to be able to trace
and identify at least one of the colluders involved in creating
the illicit device. Thus, the goal is not to trace the leakage of
the content but, rather, to trace the decryption keys needed to
access the content. In this case, the challenge lies in reducing
the size of the ciphertext from being linear in the amount of
users.

In both of these cases, the ability to trace or identify a
colluder relied on the fact that the identifying information
cannot be blindly altered by the coalition. In particular, the
construction of the fingerprinting schemes for generic data, as
presented in [4], relies on the validity of the marking assump-
tion. One key difference between generic data and multimedia
data is that multimedia data is perceptually insensitive to minor
perturbations in the data values. This perceptual robustness
makes it feasible to invisibly embed digital fingerprints in
the multimedia. Rather than attaching fingerprints in headers,
embedding will tie the fingerprint with the host multimedia
signal and make the fingerprint resilient to format conversion,
compression, and other moderate distortions. Watermarking
techniques that embed information in multimedia invisibly,
such as those in [5] and [6], can be used to embed digital
fingerprints. While generic data may allow long fingerprint
marks to be attached to them, the number of marks that can be
embedded in multimedia data and accurately extracted after
distortion by hostile parties is limited [12], [13]. Thus, the long
fingerprint codes proposed for generic data may not even be
embeddable in multimedia data. The process of fingerprinting
multimedia should, therefore, jointly consider the design of
appropriate fingerprints and the efficient and effective detection
of these fingerprints. Furthermore, unlike Boneh and Shaw’s
assumption for generic data, where adversaries can easily
manipulate the detectable marks to any value, different bits of
fingerprint codes that are additively embedded in multimedia
may not be easily identifiable and arbitrarily manipulated by
colluders. Linear collusion attacks, such as averaging several
fingerprinted signals, are often more feasible for multimedia
[11].

The resistance of digital watermarks to linear collusion at-
tacks has been studied [11], [14]–[17]. In [14], the original doc-
ument is perturbed by the marking process to produce finger-
printed documents with a bounded distortion from the orig-
inal document. They propose a collusion attack that consists of
adding a small amount of noise to the average offingerprinted
documents. In their analysis, they show that
adversaries are sufficient to defeat the underlying watermarks,
where is the dimensionality of the fingerprint. This result sup-

ports the claim of [15], where the watermarks are assumed to be
uncorrelated Gaussian random vectors that are added to the host
vector to produce fingerprinted documents.

Further work on the resistance of digital watermarks to
collusion attacks was done in [16]. They consider a more
general linear attack than [14], where the colluders employ
multiple-input-single-output linear shift-invariant (LSI) fil-
tering plus additive Gaussian noise to thwart the orthogonal
fingerprints. Under the assumption that the fingerprints are
independent and have identical statistical characteristics, they
show that the optimal LSI attack involves each user weighting
their marked document equally prior to the addition of additive
noise. Additionally, they investigated an alternative finger-
printing strategy by embedding-secure codes, such as those
described in [4] and [18], and studied the amount of samples
needed in order for the marking assumption to hold while
maintaining a prescribed probability of falsely identifying a
colluder. Their fingerprinting capacity study suggested that
independent fingerprints require shorter sequence length than
fingerprints constructed from-secure codes.

Finally, a different perspective on collusion for multimedia
was presented in [19]. A watermark conveying access and usage
policy is embedded in the multimedia content. Different users’
media players use different variations of the watermark to cor-
relate with marked content in detection. Each detection key is
the sum of the watermark and a strong, independent Gaussian
random vector that serves as a digital fingerprint. When an at-
tacker breaks one device, obtains the detection key inside, and
subtracts the key from the watermarked content, the watermark
will not be completely removed from the attacked copy, and
a fingerprint signal will remain in the attacked copy that indi-
cates the attacker’s identity. The paper quantitatively analyzed
the collusion resistance issues and discussed related problems
of segmentation and key compression.

B. Paper Organization

The work of [16] suggested that independent, or orthogonal,
fingerprints are advantageous to fingerprints built using collu-
sion-secure codes. However, several disadvantages for orthog-
onal fingerprints remain, such as the high computational com-
plexity required in detection and the large storage requirements
needed to maintain a library of fingerprints. In this paper, we
address these disadvantages by proposing a tree-structured de-
tection scheme for orthogonal fingerprints and introducing a
new class of codes for constructing fingerprints that require
fewer storage resources. Our results are suitable for both av-
eraging-based collusion attacks and for collusion attacks that
interleave values or pixels from differently marked versions of
the same content. For the convenience of discussion, we will use
images as an example, whereas the extension to audio or video
is quite straightforward.

We begin, in Section II, by describing multimedia finger-
printing and introduce the problem of user collusion for a class
of additive watermark schemes. We then review orthogonal
modulation in Section III and examine the effect that collusion
has on orthogonal fingerprinting. In order to overcome the
linear complexity associated with traditional detection schemes
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for orthogonal modulation, we develop a tree-based detection
scheme that is able to efficiently identify colluders with an
amount of correlations that is logarithmic in the number of
basis vectors. However, storage demands remain high, and it
is desirable that we use fewer basis signals to accommodate a
given amount of users. Therefore, in Section IV, we propose
the use of a class of codes, which we call anti-collusion codes
(ACCs), which are used in code-modulated embedding. The
resulting fingerprints are appropriate for different multimedia
scenarios. The purpose of ACCs is not only to resist collusion
but also to trace who the colluders are. The proposed ACCs
have the property that the composition of any subset of
or fewer codevectors is unique, which allows us to identify
groups of or fewer colluders. We present a construction
of binary-valued ACC under the logicalAND operation that
uses the theory of combinatorial designs. For a given number
of colluders, our code construction is able to accommodate

users while requiring only basis vectors. We study
the detector and present three different strategies that may
be employed for identifying a suspect set of colluders. We
evaluate the performance of these detection strategies using
simulations involving an abstract model consisting of Gaussian
signals. We also examine the behavior of our fingerprints using
actual images. Finally, we present conclusions in Section V and
provide a proof in the Appendix.

II. FINGERPRINTING AND COLLUSION

In this section, we will review additive embedding, where a
watermark signal is added to a host signal. Suppose that the host
signal is a vector denoted asand that we have a family of wa-
termarks that are fingerprints associated with the different
users who purchase the rights to access. Before the water-
marks are added to the host signal, every component of each
is scaled by an appropriate factor, i.e., , where
we refer to theth component of a vector by . One pos-
sibility for is to use thejust-noticeable-difference(JND)
from human visual system models [6]. Corresponding to each
user is a marked version of the content . The con-
tent may experience additional distortion before it is tested for
the presence of the watermark. This additional noise could
be due to the effects of compression or from attacks mounted
by adversaries in an attempt to hinder the detection of the wa-
termark. We represent this additional distortion by. There are
therefore two possible sources of interference hindering the de-
tection of the watermark: the underlying host signaland the
distortion . For simplicity of notation, we gather both of these
possible distortions into a single term denoted by. As we will
discuss later, in some detection scenarios, it is possible forto
only consist of . A test content that originates from user
can thus be modeled by

(1)

The watermarks are often chosen to be orthogonal
noise-like signals [5] or are represented using a basis of
orthogonal noiselike signals via

(2)

where or [20]. We will present de-
tailed discussions on different ways to construct watermarks for
fingerprinting purposes in Sections III and IV.

One important application of fingerprinting is identifying a
user who is redistributing marked content by detecting the
watermark associated with the user to whomwas sold. By
identifying a user, the content owner may be able to more closely
monitor future actions of that user or gather evidence supporting
that user’s illicit usage of the content. There are two different de-
tection strategies that might arise in fingerprinting applications.
They are differentiated by the presence or lack of the original
content in the detection process. We will refer tononblindde-
tection as the process of detecting the embedded watermarks
with the assistance of the original contentand refer toblind
detection as the process of detecting the embedded watermarks
without the knowledge of the original content. Nonblind fin-
gerprint detection requires that the entity performing detection
first identify the original version corresponding to the test image
from a database of unmarked original images. This database can
often be very large and requires considerable storage resources.
In the nonblind fingerprint detection, the distortion can be mod-
eled as . Blind detection, on the other hand, offers more
flexibility in detection, such as distributed detection scenarios.
It does not require vast storage resources and does not have the
computational burden associated with image registration from a
large database. This is particularly attractive for enabling finger-
print detection by distributed verification engines. However, un-
like the nonblind detection scenario, in the blind detection sce-
nario, the host signal is unknown to the detector and often serves
as a noise source that hinders the ability to detect the water-
mark.1 In this case, the distortion can be modeled as .

The detection of additive watermarks can be formulated as
a hypothesis testing problem, where the embedded data is con-
sidered as the signal that is to be detected in the presence of
noise. For the popular spread spectrum embedding [5], [6], the
detection performance can be studied via the following simpli-
fied antipodal model:

if
if

(3)
where is a deterministic spreading sequence (often called
thewatermark), is the bit to be embedded and is used to antipo-
dally modulate , is the total noise, and is the number
of samples/coefficients used to carry the hidden information.
If is modeled as i.i.d. Gaussian , the optimal de-
tector is a (normalized) correlator [22] with a detection statistic

given by

(4)

where , , and
is the Euclidean norm of. Under the i.i.d. Gaussian as-

1Note that there are other types of watermarking schemes that do not suffer
from interference from unknown host signals [12], [21]. Their appropriateness
for fingerprinting and anti-collusion capabilities are to be investigated and will
be addressed in our future work.
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sumption for , is Gaussian distributed with unit variance
and a mean value

(5)

If is equally likely to be “ 1” and “ 1,” the optimal
(Bayesian) detection rule is to compare with a threshold
of zero to decide against , in which case, the proba-
bility of error is , where is the probability

of a Gaussian random variable .
The error probability can be reduced by raising the water-
mark-to-noise-ratio (WNR) , or increasing the
length of the spreading sequence per bit. The maximum
watermark power is generally determined by perceptual models
so that the changes introduced by the watermark are below the
JND [6]. Assuming that both and are zero mean,

is estimated from the power of and , for example,
via .

The i.i.d. Gaussian noise assumption is critical for the opti-
mality of a correlator-type detector, but it may not reflect the sta-
tistical characteristics of the actual noise and interference. For
example, the noise and interference in different frequency bands
can differ. In such a scenario, we should first normalize the ob-
servations by the corresponding noise standard deviation
to make the noise distribution i.i.d. before taking the correlation
[23]. That is

(6)

and

(7)

This can be understood as a weighted correlator with more
weight given to less noisy components. Similarly, colored
Gaussian noise needs to be whitened before correlation [2].
In reality, the interference from the host signal, as well as the
noise introduced by many attacks and distortions, are often
non-Gaussian and nonstationary. Under these scenarios, an
optimal detector can be derived by using a non-Gaussian and/or
nonstationary noise model in the classic detection framework
[22], [24]. For example, generalized matched filters have been
proposed as watermark decoders for the generalized Gaussian
channel model [25], [26]. Channel estimation has also been
used in conjunction with the generalized matched filter against
fading and geometrical distortions with unknown parameters
[25].

For concept proving purposes, in this paper, we consider the
simple noise model of independent Gaussian noise and use the
correlator with normalized noise variance as described in (6).
This simplification allows us to focus on the unique issues of
fingerprint encoding and colluder detection for the anti-collu-
sion fingerprinting problem. From a layered viewpoint on data
hiding systems [20], the modules of fingerprint encoding and
colluder detection are built on top of the modules of one-bit
watermark embedding and detection. The design and optimiza-
tion of the former and latter modules have some degree of in-
dependence in system development. We can replace the simpli-
fied model used here with more sophisticated single-watermark

detectors considering more realistic noise such as those in [25]
and [26] to improve the performance in the watermark detection
layer and, in turn, enhance the overall performance.

Another model, which is used often for conveying owner-
ship information [5], [6], leads to a similar hypothesis testing
problem described by

if watermark is absent

if watermark is present

(8)

This is often referred asOn-Off Keying(OOK). The detection
statistic is the same as shown in (4) for additive white Gaussian
noise (AWGN) or (6) for independent Gaussian noise with non-
identical variance. The threshold for distinguishing the two hy-
potheses is a classic detection problem for which we can use a
Bayesian rule or a Neyman-Pearson rule [22]. The probability
of detection errors can be obtained accordingly.

In the following sections, we will examine collusion for fin-
gerprints constructed using orthogonal modulation as well as
using binary code modulation. When two parties with the same
image (but fingerprinted differently) come together, they can
compare the difference between the two fingerprinted images.
The collusion attack generates a new image from the two fin-
gerprinted images so that the traces of either fingerprint in the
new image is removed or attenuated. For fingerprinting through
additive embedding, this can be done by averaging the two fin-
gerprinted images , where , so that
the energy of each of the fingerprints is reduced by a factor of

. The requirement that is necessary in order to
maintain the average intensity of the original image. As a result
of this weighted average, the detection statistic with respect to
the th fingerprint is scaled by a factor of . In a -colluder av-
eraging collusion, the watermarked content signalsare com-
bined according to . Alternatively, the new image
can be formed by taking part of the pixels or transform coeffi-
cients from each of the two images , where
is the identity matrix, and diag
with . In terms of the effects on the energy reduc-
tion of the original fingerprints and the effect it has on the de-
tection performance, this alternating type of collusion is sim-
ilar to the averaging type of collusion. For this reason, we will
only consider the averaging type collusion. Further, we will take

for all in the remainder of this paper and introduce
additional distortion noise following the averaging. We illus-
trate the model for this type of collusion in Fig. 1. Our model for
collusion is similar model to the collusion models used in [14]
and [16]. We note, however, that there may exist cases in which
the underlying fingerprints will not necessarily have the same
energy, or be independent of each other, and that other choices
for might be more appropriate. These cases are beyond the
scope of the current paper.

III. ORTHOGONAL MODULATION AND ANTICOLLUSION

In this section, we will focus on the methods of orthogonal
modulation [27] for embedding unique fingerprints in multiple
copies of images. In orthogonal modulation, there areorthog-
onal signals that are used to convey bits by in-
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Fig. 1. Model for collusion by averaging.

serting one of the signals into the host signal. Thesebits
can be used to identify the users by identifying a -bit ID
sequence with each user, and therefore, we have . The
detector determines the information bits by performing the
correlation of the test signal with each of thesignals and de-
cides the signal that has the largest correlation above a min-
imum threshold. Typically, correlations are used to determine
the embedded signal, and the computational complexity associ-
ated with performing correlations is considered to be one of
the drawbacks of orthogonal modulation. In Section III-A, we
present an improved detection strategy that cuts the computa-
tional complexity from to .

An additional drawback for using orthogonal modulation
in data embedding is the large number of orthogonal signals
needed to convey bits. In many situations, it might not be
possible to find orthogonal signals in the content. In audio
applications, it might be desirable to periodically repeat a wa-
termark embedding in the content in order to fingerprint clips
from the audio. In this case, the number of orthogonal basis
signals available is limited by the sample rate. For example,
if we repeat a watermark every second in an audio signal
with a 44.1-kHz sample rate, then we can provide unique,
orthogonal fingerprints to at most 44 100 users. Although other
media, such as images and video, might have more points per
embedding period, many of these degrees of freedom will be
lost since embedding should only take place in perceptually
significant components [5]. In particular, some content, such as
smoothly textured images and binary images, are known to have
a significantly lower embedding rate than what is suggested
by the amount of points in the image. Further, the necessary
bookkeeping and storage of the basis vectors, or a set
of keys for generating them, is another drawback of orthogonal
modulation. In Section IV, we build watermarks using code
modulation that are able to accommodate more users than
orthogonal modulation for the same amount of orthogonal
vectors.

We can study the effect of collusion on orthogonal modu-
lation by calculating the distance between the constellation
points and averages of the constellation points. Additionally,
since the goal of collusion is to create a new content whose
watermarks have been sufficiently attenuated that they are
undetectable, we would like to calculate the distance between
the averages of the constellation points and the origin. In an
additive white Gaussian noise model, the Euclidean distance
between the constellation points, as well as the distance
between the constellation points and the origin, are directly
related to the probability of detection through the argument of

a function [27]. Smaller distances lead to higher probability
of detection error.

Suppose each watermark hasenergy. If we average wa-
termarks, then the distance from the colluded mark to any of the
watermarks used in forming it is . The distance
from the colluded mark to any of the other watermarks not used
in the collusion is . Further, the distance of the
colluded mark from the origin is . Thus, as increases,
the identifying watermarks in the colluded mark will become
harder to detect.

A. Tree-Structured Detection Strategy for Orthogonally
Modulated Fingerprints

The classical method for estimating which signal was em-
bedded in the host signal is done viacorrelators and deter-
mines the -bit message that identifies which user’s watermark
was present. This has been considered a major drawback of the
method of orthogonal modulation [5], [28]. In this section, we
present an algorithm that reduces the computation needed to de-
tect which watermarks are present in a host signal.

Suppose that colluders are involved in forming a colluded
signal . We desire to identify the basis vectors of these
colluders. For a set where is an indexing set,
we define the sum of by SUM . We start by
considering the case of detecting 1 watermark. Let us denote
by the set of orthogonal watermark signals,
and suppose the test signal is. Suppose that we break into
two complementary subsets and . If we correlate the test
signal with SUM , then the correlation will satisfy

(9)

where denotes a correlation statistic, such as is described
in (4). If the one watermark we desire to detect belongs to the
set , then SUM will experience a large contribu-
tion from that one basis vector, and all the other terms will
have small values. If this watermark is not present in, then

SUM will consist only of small contributions due to
noise. Therefore, if we test two sets and such that

, then we are likely to get a large value in at least one of the
two correlations with the sum of the basis vectors. We can re-
peat this idea by further decomposingand/or if they pass
a threshold test. This idea can be extended to detecting the pres-
ence of orthogonal signals. At each stage, we test two sets

and , and if a set passes a threshold test, then we further
decompose it.

We use this idea to develop a recursive detection algorithm for
detecting the presence of orthogonal signals in a test signal

. In Algorithm 1, we begin by initially splitting the set into
and . There are many possible choices for dividinginto
and in such an algorithm. In Algorithm 1, we have chosen
such that , which is the largest power of

2 less than . Another possible choice would be to take
such that . The algorithm proceeds in a recursive
manner, subdividing either or if a threshold test is passed.
As we will discuss, the choice of the thresholdsand is
dependent on the signal-to-noise ratio (SNR), the cardinality of
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ALGORITHM 1
TREE-STRUCTUREDDETECTION ALGORITHM TreeDet(y; S)

either or , and the desired probability of detection for that
level.

We now make some observations about the performance of
this algorithm. First, the algorithm can be described via a binary
tree, where each internal node corresponds to two correlations.
Let us assume that each correlation truthfully reveals whether
there is a colluder present or not. We denote by the
number of correlations needed in Algorithm 1 to identify
signals from a set of orthogonal signals. We can derive a
bound for in the ideal case where each correlation is
truthful, namely

(10)

This bound can be shown using standard techniques for
tree-based algorithms [29]–[32]. In particular, the bound on
the amount of truthful correlations needed to identify
colluders is . Further, we observe that if we
were trying to detect a single signal, then we need to perform
at most correlations as opposed to in a
traditional implementation. In addition, as becomes larger,
the improvement in the amount of correlations performed
decreases since it becomes necessary to perform correlations
for multiple branches of the tree.

Realistically, however, the correlations performed at each
node of the algorithm are not guaranteed to be truthful. In fact,
although we have achieved an improvement in computational
efficiency, this comes at a tradeoff in detector variance. When
we calculate the correlation with the sums of basis vectors, we
get many small, noisy contributions from correlating the test
signal with signals not present in the test signal, as in (9).

We now provide analysis for this phenomenon when there is
only one colluder, i.e., . For simplicity, let

. The are known and have power .
The two possible hypotheses are

(11)

We break into and
. For simplicity of derivation, we

use an unnormalized correlator for the detection statistics
and . That is

(12)

Under hypothesis , the calculation for is

(13)

Under hypothesis , the calculation for is

(14)

Then, , , and
. Thus, under

, and under . Similar results can be
derived for . The probability of detection is

(15)

The probability of false alarm is

(16)

As we iterate down the tree, the SNR will become better.
For example, at the second level of the algorithm’s tree, the
set has elements, and under ,
and under . At each level of the algo-
rithm, the decision thresholdmay be determined using either
a chosen value for the probability of detection or probability
of false alarm for the one colluder case, i.e., from (15) or (16).
If we choose at each level of the tree to keep fixed at a
sufficiently high value, then the probability of a false alarm will
change at each level of the tree. This means that initially, we will
let through some false alarms until we proceed further down the
tree, where there are higher effective SNRs.

It can be shown that a bound for the expected amount of cor-
relations needed to identify a single colluder using
Algorithm 1 when is

(17)

where is the binary string consisting of zeros followed
by a single 1. Here, we have chosen to label the one colluder as
user 1 and have denoted the probability of false alarm for a node

by .
The bound depends on the choice of and the values.

In Fig. 2, we present the bound for the expected amount of cor-
relations needed when there is one colluder, users,
and for each level. As a baseline, we have plotted
the bound for against , which is the
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Fig. 2. Bound for the expected amount of correlations needed when there is
one colludern = 128 users andP = 0:99 for each level. As a baseline, we
plot the bound forE[C(128; 1)] against the amountn, which is the amount of
computations needed in performing simple detection.

amount of computations needed in performing simple detection.
Examining this figure, one observes that at low WNR, which
could correspond to a blind detection scenario, the bound on the
amount of correlations needed in Algorithm 1 is above the base-
line amount of correlations needed for simply correlating with
each of the fingerprint waveforms. This poor performance of the
bound is due to the tradeoff between and . Specifically,
given , it is not possible to make the small at low
WNR. Thus, at low WNR, the tree-structured detection scheme
may not be advantageous over a simple detection scheme. How-
ever, at higher WNR, which corresponds to nonblind detection
scenarios, the separation between the detection hypotheses in-
creases, and it does become possible to make small. In
these cases, the bound guarantees that we will need fewer cor-
relations than simply correlating with each waveform to identify
a single colluder.

B. Experiments on Tree-Based Detection of
Orthogonal Fingerprints

We wanted to study the performance of the tree-structured de-
tection algorithm and the effect that collusion had on the detec-
tion statistics. In our experiments, we used an additive spread
spectrum watermarking scheme similar to that in [6], where
a perceptually weighted watermark was added to DCT coeffi-
cients with a block size of 8 8. The detection of the watermark
is performed without the knowledge of the host image via the
detection statistics, as shown in (6). The 512512 Lenna was
used as the host image for fingerprinting, and the fingerprinted
images had no visible artifacts with an average PSNR of 41.2
dB. Fig. 3 illustrates the process of identifying colluders out of
eight users using the tree-structured detection algorithm (Algo-
rithm 1). The detection statistics are averaged over ten different
sets of watermarks, and each set has eight mutually uncorrelated
spread spectrum watermarks for eight users. These watermarks

(a)

(b)

Fig. 3. Detection trees for identifying colluders using Algorithm 1. The
images for different users are fingerprinted via orthogonal modulation. The
fingerprints of colluders are indicated by shadowed boxesU . The notation
“T jU ” denotes the detection statistics from correlating the test image with
the sum of the fingerprintsU . (a) One colluder. (b) Three colluders

are generated via a psedudo-random number generator and used
as an approximate orthogonal basis in orthogonal modulation.

Fig. 3(a) shows the process of detecting colluders from
an image with user 1’s fingerprint embedded. The notation
“ ” denotes the detection statistics when correlating
the test image with the sum of the fingerprints. Detection
statistics close to zero indicate the unlikely contributions
from the corresponding fingerprints, and the branches of the
detection tree below them, which are indicated by dotted lines,
are not explored further. The number of correlations performed
is 6. Fig. 3(b) shows the process of detecting colluders from an
image colluded from user 1, user 2, and user 4’s fingerprinted
images. The number of correlations performed is 8.

We see from Fig. 3(a) that the detection statistics when corre-
lating with a sum of a larger number of basis vectors are smaller
than that with a smaller amount of basis vectors. This reflects
the noisy contributions from the basis vectors that are present
in the sum of basis vectors but are not present in the test image.
We discussed this phenomena earlier in Section III-A. Since the
detection statistics we use have their variance normalized to 1,
the noisy contributions lower the detection statistics values. We
also observe, in Fig. 3(b), a decrease in the detection statistics
in images colluded by more users.

In addition, we conducted a nonblind detection test with one
colluder amongst users on the Lenna image. Our
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test confirmed the findings of Fig. 2. Only 14 correlations were
needed, which is a significant reduction over the 128 correla-
tions needed in a simple detection approach.

IV. CODE-MODULATION EMBEDDING

AND ANTICOLLUSION CODES

In the previous section, we mentioned that a drawback of the
usage of orthogonal signaling is the large amount of basis vec-
tors needed to convey user information. In this section, we will
present another form of modulation, known as code modulation,
that may be used to convey more fingerprint code bits for a given
amount of basis vectors than orthogonal modulation. Therefore,
we are able to accommodate more users than orthogonal modu-
lation with the same amount of orthogonal signals. We will use
this modulation technique, in conjunction with appropriately de-
signed codewords, known as anti-collusion codes, to construct a
family of watermarks that have the ability to identify members
of the colluding set of users.

In code modulation, there are orthogonal basis signals
, and information is encoded into a watermark signal

via

(18)

where or . The first of the two pos-
sibilities for choosing the values of corresponds to OOK,
whereas the second choice of corresponds to an antipodal
form [27]. If , this is equivalent to having no contribu-
tion in the direction. At the detector side, the determination
of each is typically done by correlating with the and com-
paring against a decision threshold.

We assign a different bit sequence for each user . We
may view the assignment of the bits for different watermarks
in a matrix , which we call thederivedcode matrix,
where each column of contains aderivedcodevector for a dif-
ferent user. This viewpoint allows us to capture the orthogonal
and code modulation cases for watermarking. For example, the
identity matrix describes the orthogonal signaling case since the
th user is only associated with one signal vector. In the fol-

lowing section, we will design a code matrixwhose elements
are either 0 or 1. By applying a suitable mapping that depends
on whether the OOK or antipodal form of code modulation is
used, the code matrix is used to derive the matrix that is
used in forming the watermark signals.

In binary code modulation, if we average two watermarks
and corresponding to bit sequences and , then when

, the contributions attenuate or cancel, depending on
whether the OOK or antipodal form is used. However, when

, the contributions do not attenuate. For example, if
antipodal code modulation is used with for each compo-
nent, then the result of averaging two watermark signals is that
many of the components will still have amplitude, which
is identical to the amplitude prior to collusion, whereas other
components will have 0 amplitude. When we averagewater-
marks, those components in the bit sequences that are all the
same will not experience any cancellation, and their amplitude

will remain , whereas others will experience diminishing
(although not necessarily complete cancellation).

A. Anti-collusion Codes

In this section, we design a family of codevectors whose
overlap with each other can identify groups of colluding users.
A similar idea was proposed in [33], where projective geometry
was used to construct such code sequences. As we will explain
in this section, our proposed code construction makes more effi-
cient usage of the basis vectors than the codes described in [33].

For this section, we describe codes using the binary sym-
bols . These codevectors are mapped toderivedcode-
vectors by a suitable mapping, depending on whether the OOK
or antipodal form of binary code modulation is used for water-
marking. For example, when used in the antipodal form, the bi-
nary symbols are mapped to via .

We assume, when a sequence of watermarks is averaged and
detection is performed, that the detected binary sequence is the
logical AND of the codevectors used in constructing the wa-
termarks. For example, when the watermarks corresponding to
the codevectors and are averaged, we assume
the output of the detector is . When we perform two or
more averages, this assumption might not necessarily hold since
the average of many 1’s and a few 0’s may produce a decision
statistic large enough to pass through the detector as a 1. We
discuss the behavior of the detector in these situations further in
Section IV-B and detail approaches to improve the validity of
theAND assumption.

We want to design codes such that whenor fewer users
collude, we can identify the colluders. We prefer shorter codes
since for embedded fingerprints longer codes would distribute
the fingerprint energy over more basis vectors, which would
lead to a higher error rate in the detection process. In order to
identify colluders, we require that there are no repetitions in
the different combinations of or fewer codevectors. We will
call codes that satisfy this property ACCs. In the definition that
follows, we provide a definition appropriate for this paper in-
volving binary values but note that the definition can be easily
extended to more general sets.

Definition 1: Let . A code
of vectors belonging to is called a -resilientAND anti-col-
lusion code (AND-ACC) when any subset of or fewer code-
vectors combined element-wise underAND is distinct from the
element-wiseAND of any other subset of or fewer codevec-
tors.

We first present a -resilient AND-ACC. Let consist of all
-bit binary vectors that have only a single 0 bit. For example,

when , . It is easy to see
that any element-wise logicalAND of of these vectors is
unique. This code has cardinalityand, hence, can produce at
most differently watermarked media. We refer to this code as
the trivial AND-ACC for users.

It is desirable to shorten the codelength to squeeze more users
into fewer bits since this would require the use and maintenance
of fewer orthogonal basis vectors. To do this, we need to give up
some resiliency. We now present a construction of a-resilient
AND-ACC that requires basis vectors for users.
This construction uses balanced incomplete block designs [34]:
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Definition 2: A balanced incomplete block design
(BIBD) is a pair , where is a collection of -element
subsets (blocks) of a-element set , such that each pair of
elements of occur together in exactly blocks.

The theory of block designs is a field of mathematics that has
found application in the construction of error correcting codes
and the design of statistical experiments. A -BIBD has
a total of blocks. Corresponding to a
block design is the incidence matrix defined
by

if the th element belongs to theth block,
otherwise.

If we define the codematrix as the bit-complement of and
assign the codevectors as the columns of , then we have
a -resilient AND-ACC. Our codevectors are therefore
-dimensional, and we are able to accommodate

users with these basis vectors. Assuming that a
BIBD exists for users, we therefore need basis
vectors.

Theorem 1: Let be a -BIBD and the cor-
responding incidence matrix. If the codevectors are assigned as
the bit complement of the columns of , then the resulting
scheme is a -resilient AND-ACC.

The proof is provided in the Appendix. We now present an
example. The following is the bit-complement of the incidence
matrix for a -BIBD:

(19)

This code requires 7 bits for seven users and provides 2-re-
siliency since any two column vectors share a unique pair
of 1 bits. Each column vector of is mapped to
by . The code modulated watermark is then

. When two watermarks are averaged, the
locations where the corresponding AND-ACC agree and have
a value of 1 identify the colluding users. For example, let

(20)

(21)

be the watermarks for the first two columns of the above
code; then, has coefficient vector

. The fact that a 1 occurs in the fifth
and seventh location uniquely identifies users 1 and 2 as the
colluders.

The example that we presented had no improve-
ment in bit efficiency over the trivial AND-ACC for seven
users, and it had less collusion resilience. A useful metric for
evaluating the efficiency of an AND-ACC for a given collusion
resistance is , which describes the amount of users

that can be accommodated per basis vector. AND-ACCs with
a higher are better. For codes -BIBD AND-ACC,
their efficiency is . Therefore, the
efficiency of an AND-ACC built from BIBDs improves as
the codelength becomes larger. By Fisher’s inequality [34],
we also know that for a -BIBD, and thus,

using the BIBD construction. In contrast, the-resilient
construction in [33] has efficiency much less than 1 and thus
requires more spreading sequences (or marking locations)
to accommodate the same number of users as our scheme.
It is possible to use the collusion-secure code constructions
of [4] in conjunction with code modulation for embedding.
However, the construction described in [4] is limited to a
collusion resistance of and is designed to trace one
colluder among colluders. Their construction has codelength

, where is the decision error
probability. This codelength is considerably large for small
error probabilities and practical values. For example, when

, the codelength of [4] is on the order of 10, whereas
the codelength for our proposed AND-ACC is on the order
of 10 . Additionally, for the same amount of users, the use of
code-modulation watermarking with an AND-ACC constructed
using a -BIBD requires fewer spreading sequences
than orthogonal modulation. A code-modulation scheme would
need orthogonal sequences for users,
whereas orthogonal signaling would requiresequences.

There are systematic methods for constructing infinite fami-
lies of BIBD’s. For example, systems (also known as
Steiner triple systems) are known to exist if and only if or

; the Bose construction builds Steiner triple systems
when , and the Skolem construction builds
Steiner triple systems when [35]. Another ap-
proach to constructing BIBDs is to use-dimensional projective
and affine geometry over , where is of prime power. Projec-
tive and affine geometries yield
and BIBDs [34], [36]. Techniques for constructing
these and other BIBDs can be found in [37]. Finally, we men-
tion that other combinatorial objects, such as packing designs
and pairwise balanced designs, have very similar properties to
BIBD and may be used to construct AND-ACC, where the code-
vectors do not all have the same weight. The construction and
use of AND-ACC built from other combinatorial objects is be-
yond the scope of this paper.

B. Detection Strategies

In this section, we discuss the problem of detecting the col-
luders when our AND-ACCs are used with code modulation. We
present several detection algorithms that can be used to identify
possible colluders. This section serves as a basis for demon-
strating the performance of our ACC. Our goal here is to find
efficient detection structures by taking advantages of the spe-
cial characteristics of our ACC.

We assume that the total distortionis an -dimensional
vector following an i.i.d. Gaussian distribution with zero-mean
and variance . Under the colluder-absent hypothesis, the
observed content is the distortion signal . Under the
colluder-present hypothesis , colluders come together and
perform an averaging attack that produces a colluded version of
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the content . Presented in a hypotheses-testing framework, we
have

(22)

where is the number of colluders, and indicates a subset
with size . The marked content for each user is given as

(23)

where is used to control the strength of the fingerprint. Clearly,
the precise probability law under depends on fingerprint sig-
nals of the colluders, and since the collusion behavior repre-
sented by and is unknown, the hypotheses to be tested are
composite. Due to the discrete nature of our model, the optimal
maximum likelihood (ML) approach usually involves the enu-
meration of all possible parameter values, and hence, the com-
putational cost can be prohibitively high.

Due to the orthogonality of the basis , for the purpose of
detecting colluders, it suffices to consider the correlator vector

, with the th component expressed by

(24)

for . It is straightforward to show that

(25)

where the column vector indicates col-
luders via the location of components whose value are 1;

is assumed known, with for all
, and follows a

distribution. Here, is the derived code matrix, and is the
number of 1’s in . Thus, the model (22) can be equivalently
presented as

(26)

with reference to (22) and (25).
Our goal in this section is to efficiently estimate. How-

ever, before we examine the candidate detectors, we discuss the
choice of using either the OOK or antipodal form of code mod-
ulation. Suppose that a codevectorhas weight .
In the OOK case, the remaining positions would be zeros,
whereas in the antipodal case, the remaining positions
would be mapped to . If we allocate energy to this code-
vector, then the OOK case would use energy to represent
each 1, whereas the antipodal case would use energy to
represent each . The amplitude separation between the con-
stellation points for the 0 and 1 in OOK is , whereas the
separation between and 1 in antipodal is . Therefore,
since it is desirable to have the separation between the constel-
lation points as large as possible, we should choose OOK only
when . In the AND-ACCs presented in Section IV-A,

ALGORITHM 2
ALGORITHM HardDetAlg (�), WHICH DETERMINES THEVECTOR� THAT

DESCRIBES THESUSPECTSET

the weight of each codevector is . OOK is advanta-
geous when , and antipodal modulation is preferable
otherwise. Typically, in BIBDs with , the block size is
much smaller than [37], and therefore, the antipodal form of
code modulation is preferred.

1) Hard Detection: We first introduce a simple detection
scheme based upon hard thresholding. Upon applying hard
thresholding to the detection statistics , we obtain a
vector , where if and

otherwise. Given the vector, we must determine who
the colluders are.

Algorithm 2 starts with the entire group as the suspicious
set and uses the components ofthat are equal to 1 to fur-
ther narrow the suspicious set. We determine a vector

that describes the suspicious set
via the location of components of whose value are 1. Thus,
if , then the th user is suspected of colluding. In the
algorithm, we denote theth row vector of by and use the
fact that the element-wise multiplication “” of the binary vec-
tors corresponds to the logicalAND operation. We start with
and , where is the -dimensional vector consisting of
all ones. The algorithm then uses the indices whereis equal
to 1 and updates by performing theAND of with the rows
of the code matrix corresponding to indices whereis 1.

2) Adaptive Sorting Approach:One drawback of the hard
detection approach above is that the thresholdis fixed at
the beginning. This choice of is applied to every detection
scenario, regardless of the observations. To overcome this dis-
advantage, it is desirable to avoid the hard-thresholding process.
Consequently, in Algorithm 3, we present a soft-thresholding
detection scheme where is updated iteratively via the
likelihood of . We start with the highest detection statistic

to narrow down the suspicious set. At each iteration,
we check whether the next largest statistic increases
the likelihood. If the likelihood increases, then we use this to
further trim the suspicious set. The iteration stops when the
likelihood decreases.

3) Sequential Algorithm:The approaches in both Section s
IV-B1 and B2 share the same idea that the colluders can be
uniquely identified by utilizing the locations of 1’s in due
to the structural features of our AND-ACC. One key disadvan-
tage of these schemes is that, in practice, the noise causes the
thresholding decision to have errors, which in turn results in in-
correct indications of colluders. Therefore, it is desirable to es-
timate directly from the pdf behavior of , as suggested by
model (26).
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ALGORITHM 3
ALGORITHM AdSortAlg (�), WHICH USES AN ADAPTIVE SORTING

APPROACH TODETERMINE THEVECTOR� THAT DESCRIBES THESUSPECTSET

Thus, we introduce Algorithm 4, which we refer to as the se-
quential algorithm, for estimating from the pdf of . This
algorithm is similar to the adaptive sorting scheme in its sequen-
tial nature. The difference is that Algorithm 4 directly estimates
the colluder set, whereas the adaptive sorting algorithm first es-
timates the code bits before deciding the colluder set.

Finally, we note that since a binary variable is assigned to
each user that indicates his/her presence or absence in the coali-
tion, the collusion problem (25) is related to the estimation of
superimposed signals [38]. One may apply the alternating max-
imization (AM) method [39], [40] to the problem of identifying
the colluders. In our experience, we found that there was no sig-
nificant performance difference between the AM approach and
our sequential algorithm.

C. ACC Simulations With Gaussian Signals

In this section, we study the behavior of our AND-ACC when
used with code modulation in an abstract model. The distortion
signal and the orthogonal basis signalsare assumed to be
independent, and each of them is an point vector
of i.i.d. Gaussian samples. The factoris applied equally to

all components and is used to control the WNR, where WNR
dB. We use these simulations to verify

some basic issues associated with collusion and code modula-
tion.

In the simulations that follow, we used a -BIBD to
construct our AND-ACC code. The codes exist if and
only if or . By complementing the incidence
matrix, we get the code matrix in (27), shown at the bottom of
the page. With this code, we use 16 orthogonal basis vectors to
handle 20 users and can uniquely identify up to col-
luders. The fingerprints for each user were assigned according
to the antipodal form of code modulation using the columns of

as the codevectors.
We first wanted to study the behavior of the detector and the

legitimacy of theAND logic for the detector under the collusion
scenario. We randomly selected three users as colluders and av-
eraged their marked content signals to produce. The colluded
content signal was used in calculating , as described in (24).

For three colluders using antipodal modulation, there
are four possible cases for the average of their bits, namely,

, and 1. We refer to the cases and
as the non-1 hypothesis since under theAND logic assumption
of our proposed AND-ACC they would be mapped to 0. We
examined the tradeoff between the probability of cor-
rectly detecting a 1 when a 1 was expected from theAND logic
and the probability of non- , where the detector decides
a 1 when the correct hypothesis was a non-1. We calculated

and non- as a function of WNR when using hard
detection with different thresholds. The thresholds used were

, , and . In
order to calculate , we used (5) and assumed that the
detector knows the WNR and hence the power of the distortion.
The plot of for different thresholds is presented in
Fig. 4(a), and the plot of non- is presented in Fig. 4(b).
We observe that for the smaller threshold of , the
probability is higher but at an expense of a higher
probability of false classification non- . Increasing the
threshold allows us to decrease the probability of falsely

(27)
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ALGORITHM 4
ALGORITHM SeqAlg (T ), WHICH IS A SEQUENTIAL ALGORITHM TO DETERMINE THEVECTOR� THAT DESCRIBES THESUSPECTSET

(a) (b)

Fig. 4. (a) Probability of detectionp(1j1) and (b) probability of false alarmp(1jnon-1) for different WNR and different thresholds using hard detection.

classifying a bit as a 1 but at the expense of also decreasing the
probability of correctly classifying a bit as a 1.

We next examined the performance of the different detection
strategies for identifying the colluders. The following six mea-
sures present different yet related aspects of the performance for
capturing colluders:

a) the fraction of colluders that are successfully captured;
b) the fraction of innocent users that are falsely placed under

suspicion;
c) the probability of missing a specific user when that user is

guilty;
d) the probability of falsely accusing a specific user when

that user is innocent;
e) the probability of not capturing any colluders;

f) the probability that we falsely accuse at least one user.
We calculated these six different performance measures for

each of the detection strategies described in Section IV-B and
present the results in Fig. 5. For each WNR, we averaged over
2000 experiments.

We observe in Fig. 5(a) and (b) that for all WNRs, the use
of a higher threshold in the hard detection scheme is able to
capture more of the colluders but also places more innocent
users falsely under suspicion. As WNR increases, the hard de-
tector has lower non- and therefore does not incorrectly
eliminate colluders from suspicion. Similarly, at higher WNR,
the hard detector has a higher , thereby correctly iden-
tifying more 1’s, which allows for us to eliminate more inno-
cents from suspicion. Therefore, at higher WNR, we can cap-
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. (a) Fraction of colluders that are successfully captured or placed under suspicion. (b) Fraction of the total group that are innocent and falsely placed under
suspicion for different WNR and different thresholds. (c) Probability of missing user 1 when he is guilty. (d) Probability of falsely accusing user 1 when he is
innocent. (e) Probability of not capturing any colluder. (f) Probability of putting at least one innocent under suspicion. In each plot, there were three colluders.

ture more colluders as well as place fewer innocent users under
suspicion. We note, however, that in Fig. 5(b), at low WNR be-
tween and dB, the fraction of innocents under suspi-
cion using threshold is lower than at slightly
higher WNR. This behavior can be explained by examining

Fig. 4(a) and (b). We observe that at low WNR, the non- is
higher than slightly higher WNR, particularly for the threshold

. However, for this threshold, the at these
WNR is relatively flat. These two observations combined indi-
cate that at lower WNR we falsely decide 1 more often than at
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Fig. 6. (Top) Original images. (Middle) Fingerprinted images. (Bottom) Difference images for Lenna and Baboon. In the difference images, gray colorindicates
zero difference between the original and the fingerprinted version, and brighter and darker indicates larger difference.

slightly higher WNR, whereas we do not experience much dif-
ference in the amount of correctly identified 1’s. As more 1’s
pass through the detector, we remove more users from suspi-
cion. Therefore, since the amount of correctly detected 1’s in-
creases slowly for WNRs between and dB, the addi-
tional 1’s from false detections at lower WNR eliminates more
innocent users (as well as colluders) from suspicion.

Compared with the hard detection scheme with
, the adaptive sorting scheme captures a

larger fraction of the colluders at all WNR, whereas for a large
range of WNRs between and dB, the adaptive sorting
scheme places fewer innocents under suspicion. However,
examining the curves for the sequential algorithm, we find that
we are able to capture more colluders than any other detection
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TABLE I
DERIVED CODEVECTORSFROM A (16; 4; 1) AND-ACC FOR USER1, USER4, AND USER8. VECTORSFROM A TWO-COLLUDER SCENARIO AND A

THREE-COLLUDER SCENARIO. BOTTOM ROW CORRESPONDS TO THEDESIRED OUTPUT OF THEDETECTORUSING THE AND LOGIC

FOR THETHREE-COLLUDER CASE

Fig. 7. Illustration of collusion by averaging two and three images fingerprinted with ACC codes, respectively.

schemes at all WNRs. Further, the amount of innocents placed
under suspicion is less than the adaptive sorting algorithm.

Consistent behavior is observed for the different detection
schemes under the other performance measures, as depicted in
Fig. 5(c)-(f). Overall, the sequential detection scheme provides
the most promising balance between capturing colluders and
placing innocents under suspicion.

D. ACC Experiments With Images

In order to demonstrate the performance of our AND-ACC
with code-modulation fingerprinting on real images for fin-
gerprinting users and detecting colluders, we used an additive
spread spectrum watermarking scheme similar to that in [6],
where the perceptually weighted watermark was added to 8
8 block DCT coefficients. The detection of the watermark is a
blind detection scenario performed without the knowledge of
the host image via the detection statistics as shown in (6). We
used the same code matrix detailed in (27) for the AND-ACC
as in the simulations for Gaussian signals. This code is able to
accommodate 20 users and is designed to capture up to three
colluders. The 512 512 Lenna and Baboon images were
used as the host signals for the fingerprints. The fingerprinted
images have no visible artifacts with an average PSNR of
41.2 dB for Lenna and 33.2 dB for Baboon. Fig. 6 shows the
original images, the fingerprinted images, and the difference
with respect to the originals.

The three derived code vectors that were assigned to users 1,
4, and 8 via antipodal mapping as well as the colluded versions
are presented in Table I. Two collusion examples are illustrated
in Fig. 7, and the detection statistics of the two examples are
shown in Fig. 8. In one example, we averaged the Lenna im-
ages fingerprinted with users 1 and 4’s codes, and the other is
for averaging users 1, 4, and 8’s. The colluded images are fur-
ther compressed using JPEG with quality factor (QF) 50%. The
thresholds determined from the estimated mean of the detec-
tion statistics are also shown in Fig. 8. We then esti-
mate the fingerprint codes by thresholding the detection statis-
tics using a hard threshold of. The estimated fingerprint codes
are identical to the expected ones shown in Table I. We can see
in Figs. 8 and 9 that nonblind detection increases the separation
between the values of the detection statistics that are mapped to

.
We present histograms of the statistics from several

collusion cases with different distortions applied to the colluded
Lenna images in Fig. 9. For each collusion and/or distortion sce-
nario, we used ten independent sets of basis vectors to generate
the fingerprints. Each set consists of 16 basis vectors to rep-
resent 16 ACC code bits. Fig. 9 shows the histograms of the
blind and nonblind detection scenarios, as well as the single-
user, two-colluder, and three-colluder cases. We see that there
is a clear distinction between the three decision regions corre-
sponding to , which is desirable for identifying col-
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Fig. 8. Example detection statistics values for (left) two users’ and (right) three users’ collusion with a(16; 4; 1)-BIBD AND-ACC fingerprint.
(Top) Blind detection scenario and (bottom) nonblind detection scenario. (Left) Users 1 and 4 perform averaging, resulting in the output of
the detector as(�1; 0; 0; 0; 1; 1; 1; 1; 1; 1; 0; 0; 0; 1; 1; 1). (Right) Users 1, 4, and 8 average, resulting in the output of the detector as
(0; 0; 0; 0; 1; 1; 0; 1; 0; 1; 0; 0; 0; 1; 0; 1).

luders. This implies that the average magnitude of, when the
bit values agree, is much larger than the average magnitude for
where the bit values disagree, therefore facilitating the accurate
determination of the AND-ACC codes from colluded images.
The statistics can be used with hard detection to determine
the colluders, as depicted in Fig. 8. Similarly, we can use
with other detectors, whose performance was presented in Sec-
tion IV-C. We have also studied the effect of averaging collu-
sion in the presence of no distortion, JPEG compression, and
lowpass filtering. We found that the one and nonone decision
regions were well separated, which can lead to reliable identifi-
cation of colluders.

V. CONCLUSION

In this paper, we investigated the problem of fingerprinting
multimedia content that can resist collusion attacks and trace
colluders. We studied linear collusion attacks for additive em-
bedding of fingerprints.

We first studied the effect of collusion upon orthogonal em-
bedding. The traditional detection schemes for orthogonal mod-
ulation in embedding applications require an amount of corre-
lations that is linear in the amount of orthogonal basis signals.
To address this deficiency, we presented a tree-based detection

algorithm that reduces the amount of correlations from linear to
logarithmic complexity and is able to identify colluders in a
computationally efficient manner.

A further drawback of orthogonal modulation for embedding
is that it requires as many orthogonal signals as users. We de-
veloped a fingerprinting scheme based on code modulation that
does not require as many basis signals as orthogonal modula-
tion in order to accommodateusers. We proposed anti-collu-
sion codes (ACC) that are used in conjunction with modulation
to fingerprint multimedia sources. Our ACCs have the property
that the composition of any subset ofor fewer codevectors is
unique, which allows for the identification of subgroups of
or fewer colluders. We constructed binary-valued ACC under
the logicalAND operation using combinatorial designs. Our con-
struction is suitable for both the on-off keying (OOK) and an-
tipodal form of binary code modulation. Further, our codes are
efficient in that for a given amount of colluders, they require
only orthogonal signals to accommodateusers. For
practical values of , this is an improvement over prior work on
fingerprinting generic digital data.

We introduced three different detection strategies that can be
used with our ACC for identifying a suspect set of colluders.
We performed experiments to evaluate the proposed ACC-based
fingerprints. We first used a Gaussian signal model to examine
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Fig. 9. Histograms of detection statisticsfT (i)g of embedded fingerprints. (Top row) Single fingerprint case. (Middle row) Two-user collusion case. (Bottom
row) Three-user collusion case. (Left column) Blind detection. (Right column) Nonblind detection.

the ability of the ACC to identify the colluders, as well as re-
veal the amount of innocent users that would be falsely placed
under suspicion. We observed a close connection between the
ability to capture colluders and the side-effect of placing inno-
cent users under suspicion. From our simulations, we observed
that the proposed sequential detection scheme provides the most
promising balance between capturing colluders and placing in-
nocents under suspicion out of the three detection strategies ex-
amined. We also evaluated our fingerprints on real images and

observed that the values of the detection statistics can be well
separated. This behavior allows the detector to accurately deter-
mine the colluder set by estimating a fingerprint codevector that
corresponds to the colluder set.

APPENDIX

We prove the theorem by working with the blocks of the
BIBD. The bitwise complementation of the column vectors cor-
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responds to complementation of the sets . We would like
for to be distinct over all sets with cardinality less
than or equal to . By De Morgan’s law, this corresponds
to uniqueness of for all sets with cardinality less
than or equal to . Suppose we have a set of blocks

; we must show that there does not exist an-
other set of blocks whose union produces the same set. There
are two cases to consider. First, assume there is another set of
blocks with such that
and . Suppose we take a block for . Then,

must share at most one element with each; otherwise,
it would violate the assumption of the BIBD. Therefore,
the cardinality of is at most , which contradicts the re-
quirement that each block haveelements. Thus, there does not
exist another set of blocks with and

. Next, consider . If we choose
and look at , then again, we have that can share at most
one element with each for , and thus, would have
fewer than elements, contradicting the fact that belongs
to a -BIBD. Thus, is unique.
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