
804 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 6, JUNE 2005

Anti-Collusion Forensics of Multimedia
Fingerprinting Using Orthogonal Modulation

Z. Jane Wang, Member, IEEE, Min Wu, Member, IEEE, Hong Vicky Zhao, Member, IEEE,
Wade Trappe, Member, IEEE, and K. J. Ray Liu, Fellow, IEEE

Abstract—Digital fingerprinting is a method for protecting dig-
ital data in which fingerprints that are embedded in multimedia
are capable of identifying unauthorized use of digital content. A
powerful attack that can be employed to reduce this tracing capa-
bility is collusion, where several users combine their copies of the
same content to attenuate/remove the original fingerprints. In this
paper, we study the collusion resistance of a fingerprinting system
employing Gaussian distributed fingerprints and orthogonal mod-
ulation. We introduce the maximum detector and the thresholding
detector for colluder identification. We then analyze the collusion
resistance of a system to the averaging collusion attack for the per-
formance criteria represented by the probability of a false negative
and the probability of a false positive. Lower and upper bounds
for the maximum number of colluders max are derived. We then
show that the detectors are robust to different collusion attacks. We
further study different sets of performance criteria, and our results
indicate that attacks based on a few dozen independent copies can
confound such a fingerprinting system. We also propose a likeli-
hood-based approach to estimate the number of colluders. Finally,
we demonstrate the performance for detecting colluders through
experiments using real images.

Index Terms—Colluder detection, collusion attacks, collusion re-
sistance, digital fingerprinting, spread spectrum embedding.

I. INTRODUCTION

WITH the rapid deployment of multimedia technologies
and the substantial growth in the use of the Internet,

digital representations of multimedia data have become in-
creasingly popular. Due to the ease with which digital content
can be accessed, retrieved and manipulated, there is a demand
for methods to protect digital media and facilitate digital rights
management. Several methods have emerged in the literature
to offer this protection, and may be broadly classified into
the categories of cryptographic solutions and steganographic
solutions. The protection provided by cryptography technology
disappears once data is decrypted, while digital watermarking

Manuscript received February 6, 2004; revised June 11, 2004. This work was
supported in part by the Air Force Research Laboratory under DDET Grant
F30602-03-2-0045 and in part by the National Science Foundation under CA-
REER Award CCR-0133704. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Jelena Kovačević.
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and steganography offer a supplemental form of protection that
extends into cleartext [15] and can be used to identify pirates
and discourage the unauthorized use of digital content, such as
redistribution [6], [8], [26].

Digital fingerprinting is one possible application of data em-
bedding techniques, whereby some unique information, such as
a serial number or a label assigned by the vendor to a given
user/purchaser, is embedded in the multimedia content using
watermarking techniques. A wide range of requirements have
been proposed for watermarking [15], [18]. One requirement
of watermarking is that the marked copy should differ imper-
ceptibly from the original. An equally important requirement is
that the watermark is able to perform its function in the pres-
ence of attacks mounted by adversaries. One powerful class of
attacks that adversaries may employ against watermarks and the
corresponding fingerprints is collusion, whereby a coalition of
users combine their different marked copies of the same mul-
timedia content in an attempt to attenuate/remove the trace of
any original fingerprint. The fingerprint must, therefore, survive
both standard distortions (such as compression, filtering, data
conversion, and channel noise) and collusion attacks by users
intending to destroy it.

Several methods have been proposed in the literature to
embed and hide fingerprints (watermarks) into different media
and, depending on the function they are intended to serve, these
watermarks can be invisible or visible [2], [3], [8], [9], [13],
[29]. Though most watermarking methods are easy to defeat by
collusion attacks, the spread spectrum watermarking method
proposed in [9], where the watermarks have a component-wise
Gaussian distribution and are statistically independent, was
argued to be highly resistant to collusion attacks [9], [15]. The
basic intuition of this natural strategy is that the randomness
inherent in such watermarks makes the probability of accusing
an innocent user very unlikely. It was shown that randomness
is needed to obtain collusion resistance [31]. Since collusion
resistance is the main focus of this paper, we focus our study in
this paper on Gaussian watermarks.

The research on collusion-resistant fingerprinting systems
can be broadly divided into two main directions. One direction
focuses on designing collusion-resistant fingerprint codes. One
of the first such fingerprinting schemes was presented by Boneh
and Shaw [4], [5] for generic data. They proposed a coding
scheme requiring code length as to capture at
least one out of at most colluders with high probability. This
fingerprinting scheme is further improved in [30] by combining
a Direct Sequence Spread Spectrum embedding layer with the
Boneh-Shaw layer. Recently, a two-layer fingerprinting system
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was presented in [7], where the inner code of the spread spec-
trum was combined with the outer Boneh–Shaw’s fingerprint
code. It was noted that, for a 2-h video distributed to 10 000
users, with no more than three colluders, that their system could
detect at least one colluder correctly with probability 0.9. The
Boneh-Shaw scheme has also been used to build more complex
schemes to yield better collusion properties [20], [21]. A col-
lusion-secure fingerprint built on top of a robust watermarking
algorithm was presented in [11], where the security against
two colluders was achieved by using dual Hamming codes. To
reduce the computation time and memory requirements of the
decoding algorithm, a two-level coding scheme in a -secure
fashion was presented in [31]. In this approach, an inner Cox
watermarking code is combined with an outer error-correcting
code with large minimum distance to maintain collusion re-
sistance. By taking advantage of the overlap between different
codevectors to identify up to colluding users, the authors in
[10] proposed a scheme based on finite geometries, and the
authors in [26] developed a fingerprinting scheme based upon
anti-collusion codes (ACC) that used the theory of combina-
torial designs. It is worth mentioning that most of the above
schemes implicitly use the Cox watermarking method in some
manner.

The other direction of research is characterized by examining
the resistance performance of specific watermarking schemes
when considering different types of attacks. The main purpose
is to study the relationships between the length of the data to
be marked ; the number of users accommodated in a finger-
printing system ; and the number of colluding users . We
are aware of only a few works that focus on analyzing the collu-
sion resistance of digital watermarks [12], [15], [24], [25]. Fo-
cusing on a simple linear collusion attack that consists of adding
noise to the average of independent copies, the authors con-
cluded in [15] that independently marked copies
are sufficient for an attack to defeat the underlying system with
nonnegligible probability when the watermarks are Gaussian. It
is further shown in [15] to be optimal: No other watermarking
scheme can offer better collusion resistance. These results are
also supported by [12]. By studying several types of attacks,
including some nonlinear types, Stone suggested that the most
powerful attack may succeed in defeating uniformly distributed
watermarks if as few as one to two dozen independent copies
are available [24]. Although these works study collusion, they
do not provide a precise analysis of the collusion resistance of
watermarks when employed with different possible detection
schemes. This paper addresses this issue.

This paper focuses on issues related to collusion, and presents
results quantifying the collusion resistance of a fingerprinting
system by evaluating how many colluders are allowed before
the collusion undermines the tracing capability of the system.
We employ a few basic assumptions in this paper.

• We apply the spread spectrum watermarking method and
consider independent Gaussian watermarks. That is, iid
normally distributed random values are used as finger-
prints, since this watermarking scheme has been shown
to be highly robust to a variety of attacks [9] and it al-
lows for theoretical statistical analysis. Further, we as-

sume that the fingerprints use orthogonal modulation, or
at least the correlation between different fingerprints can
be ignored. This feature helps to decrease the probability
of a false positive and leads to simple detection schemes
employing correlation.

• A nonblind detection scenario is assumed. There are two
common detection scenarios for data embedding, namely,
blind and nonblind detection. They are characterized by
the absence or presence of the host signal at the detector.
In the blind scenario, the host signal is not available to the
detector and serves as an additional noise source that hin-
ders the detectability;1 therefore, the blind scenario can
be regarded as a nonblind scenario with very low wa-
termark-to-noise ratio (WNR). Analysis provided later in
this paper shows that the resistance capability of a system
is proportional to the square root of the WNR value, and,
thus, two or three independent copies may defeat the
spread spectrum watermark under the blind scenario.

• The additive distortion is modeled as iid Gaussian noise.
Though we focus on collusion attacks in this paper, it is worth

mentioning that there are other noncollusion attacks, such as
geometric distortions, which may be effective. Recent research
showed that even very small geometric distortions, such as ro-
tation, scale, shift, and cropping, can prevent the detection of
a watermark [17]. One may argue that combined attacks, such
as a collusion attack combined with a noncollusion attack (e.g.,
geometric distortion), can defeat a fingerprinting system more
effectively. However, since we focus in this paper on the spread
spectrum additive embedding technique, we benefit from the
resilience of spread spectrum embedding to noncollusion at-
tacks. For example, let us consider geometric distortion as a
noncollusion attack. With appropriately chosen features and ad-
ditional alignment procedures, it has been observed that a small
set of salient points of the host signal available to the detector
will suffice for the embedded watermark to survive moderate
geometric distortions [14]. Further, since we assume the non-
blind scenario, meaning the host signal is available in detection,
the watermarked copy can often be registered to the original
and the geometric distortion thereby inverted. Undoing geomet-
rical distortions may inevitably leave some unrecovered residue.
However, the alignment noise/error has been shown to be very
small in general [19] and, thus, can be approximated by additive
noise. Therefore, we concentrate on collusion attacks, though a
real system should also include other decision components to
combat with other types of distortions.

The paper is organized as follows. We begin with the descrip-
tion of the collusion problem of interest in Section II. We in-
troduce two detection schemes, namely, the maximum detector
and the thresholding detector, and also examine the theoretical
collusion resistance of orthogonal fingerprinting when consid-
ering the average collusion attack. We represent the system per-
formance by the probability of a false positive and the proba-

1Note that we can apply some preprocessing technique to reduce the noise
effect of the host signal; however, it will also distort the fingerprint to some ex-
tent and make the detection of fingerprint vulnerable. We also note that there
are other types of watermarking techniques that do not require the original un-
marked copy at the detector. We are going to investigate their appropriateness
for fingerprinting and their collusion resistance performance in our future work.
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Fig. 1. Model for collusion by averaging.

bility of a false negative. Since different detection goals arise
under different application scenarios, two more sets of perfor-
mance criteria are examined in Section III. In Section IV, we
further study other types of collusion. Since the knowledge of
the number of colluders is normally not available in practice, we
propose in Section V a maximum-likelihood (ML) approach to
estimate the number of colluders , and carry out simulations.
Experiments using real images are demonstrated in Section VI.
Finally, we present conclusions in Section VII.

II. DETECTION APPROACHES

In this paper, we use independent normally distributed
random values as fingerprints. We first introduce the average
collusion attack for these fingerprints. There are different types
of collusion attacks in the literature [24]. We start with average
collusion due to its popularity, its simple form and its feasibility
for analysis. We will extend our study to other attacks later in
Section IV.

Additive embedding is a widely used watermarking scheme,
where a watermark signal is added to a host signal . As
shown in Fig. 1, the content owner has a family of watermarks,
denoted by , which are used to mark copies of the content
and facilitate colluder tracing. For the th user, the owner com-
putes the marked version of the content by adding the water-
mark to the host signal, . In addition to attacks
operating on a single copy, collusion attacks are possible when
several buyers/users having different marked copies of the same
host signal come together and combine several copies to gen-
erate a new composite copy such that the traces of each “orig-
inal” fingerprint in the new version is removed or attenuated. We
illustrate the average collusion attack in Fig. 1, a similar model
was used in [12], [25], [26]. Based on this average attack model,
the observed content after collusion is

(1)

where all vectors have dimension , is the number of col-
luders, where since each single copy is marked, and
indicates the colluder subset of size , where
and is the total number of users. The fingerprints are as-
sumed to be orthogonal to each other, have equal energy, and
normally distributed. Due to the orthogonality of , we have

. We also assume the distortion is an -dimensional
vector following an iid distribution, and define the
WNR as . In this paper, we
will be concerned with detecting colluders, and will study the
collusion resistance performance of the fingerprinting system.
Our detection scheme seeks to identify the colluders based on
the observations . Since we assume a nonblind detection sce-
nario in this paper, the host signal is always subtracted from .
Because of the orthogonality of the basis , when performing
detection it suffices to consider the correlator vector , where
the th component is given by

(2)

for . It is straightforward to show that

if

otherwise
(3)

where represents the hypothesis that there are colluders,
for all due to the equal energy assumption, and

each component is independent of each other due to the
orthogonality of .

In this section, we are interested in the theoretical collusion
resistance of such fingerprinting systems. When studying the ef-
ficiency of a detection algorithm in collusion applications, ap-
propriate criterion should be used to address the need of each
specific application. The probability of a false negative and the
probability of a false positive are popular criteria explored by
researchers [12], [15]. From the detector’s (owner’s) point of
view, a detection approach fails if either the detector fails to
identify any of the colluders (a false negative) or the detector
falsely indicates that an innocent user is a colluder (a false pos-
itive). Therefore, it is desirable to find an efficient detector that
minimizes the probability of a false negative , with a given
probability of a false positive . In general, should be
exceptionally low, since a false positive may have severe con-
sequences, such as serving as false testimony in a court of law.
Though we consider the criteria and in this section, it
is worth mentioning that other performance criteria also deserve
consideration. We will present the study of two additional sets
of criteria in Section III.

Next, we will introduce two other detection approaches and
study their collusion resistance under the average attack.
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A. Maximum Detector

We have observed in collusion detection that the more col-
luders a detector aims to catch, the higher probability a false
positive occurs. A detector designed to catch only one colluder
should be capable of providing a smaller . A maximum de-
tector is

(4)

where is defined as in (2), can be applied to catch one
colluder with high confidence. This maximum detector should
be compared to a threshold chosen to yield the desired .
Thus, we have the following test [see (5), shown at the bottom
of the page] where indicates the index of the accused user,
and means that no accusation is made. In practice, it is
possible that more than one maximizes simultaneously.
In this case, the test randomly accuses one of these users. The
following analysis reveals that the threshold is determined by
parameters including the length of the host signal , the total
number of users , the number of colluders and the WNR.

1) Performance Analysis: To analyze the detection perfor-
mance of the maximum detector, we assume that the number of
colluders is known, and without loss of generality, we set the
subset , indicating that the first users are
colluders. We now have

(6)

with the statistics and
. Here, is the total number of users,

and is the pdf of the random variable . Clearly, is
independent of due to the independency of . We also
define the detection probability as

(7)

Since is given as in (3), we have

(8)

where the -function is defined as
. The pdf and can

be derived correspondingly from the above cdf. Therefore, for a
given small value of , we can numerically solve for to yield

for different , and WNR, and then numerically
compute the corresponding .

One important efficiency measure of a fingerprint detector is
the maximum number of colluders that can be tolerated by a
fingerprinting system with a total of different -point fin-
gerprints. Specifically, with a given , we explore how many
differently marked copies of the host signal are required for an
averaging attack to generate a colluded copy from which no col-
luder’s fingerprint can be detected with a high probability. A
reasonably high and a reasonably low are necessary to
maintain the system’s resistance to collusion.

We illustrate the resistance performance using an example,
where dB and the vector length is . Since
0-dB corresponds to a nonblind scenario, the distortion

only consists of the additional additive noise. The variance
is assumed known and set to 1 for simplicity. In this ex-

ample, the system requirements are expressed as
and . The symbol represents the maximum
number of colluders the fingerprinting system can successfully
resist. In the examples shown in Fig. 2(a) and (b), when the
number of users is as high as , the fingerprinting system
can resist up to 29 colluders; while, when is set as a small
number 75, the fingerprinting system can resist up to 75 col-
luders. It is also noted in Fig. 2(a) that, if an attacker can collect
50 independent copies, the chance that the system can trace any
original copy is only 4%. We note in Fig. 2(b) that, as in-
creases, first decreases slowly, then decreases quickly over
the range , and then increases. This behavior
is determined by the expressions of and in (6) and (7).
We will give a similar explanation in Section II-B, where a sim-
ilar behavior is observed for the thresholding detector and the
reason is more obvious. To have an overall understanding of the
collusion resistance of this scheme, in Fig. 3, we also plot the
maximum resistible number of colluders as a function of
the total number of users , under and dB.
It is noted that the system can resist up to colluders when the
total number of users (fingerprints) is less than 75. However,
as a system accommodates more than 75 users, the collusion
resistance of the system starts to decrease. For a system accom-
modating more than one thousand users, the maximum number
of colluders that the system can handle is 30.

B. Thresholding Detector

Although the goal of this section is to identify at least one of
the colluders, from the content owner’s point of view, it is ben-
eficial to catch as many colluders as possible as long as we sat-

if

if
(5)
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Fig. 2. Probability of detection P as a function of the number of colluders K when apply the maximum detector, with WNR = 0 dB, N = 10 , and P �

10 . In (a), the number of users n is 10 . In (b), n = 75.

isfy the requirement. We employ the traditional correlator
and compare it to a threshold , and finally report that

the th fingerprint is present if exceeds . This simple
approach is described as

(9)

where the set indicates the indices of colluders, and an empty
set means that no user is accused. Similar to the case of the
maximum detector, the threshold here is determined by such
parameters as the document length , the total number of users

, the number of colluders , and the WNR.
1) Performance Analysis: The threshold in test (9) is

chosen to yield , where is a desired small value. Same
as in Section II-A.I, to analyze the theoretical performance, we
assume that the number of colluders is known. And without
loss of generality, we set the subset . We
now have

(10)

where is the complement set of , ,
, and the total number of users. Due to

the independency among , is independent of . The
cdfs of the order statistics and are given as in (8). There-
fore, according to (10), we can numerically calculate to yield

with given , , and WNR, and then compute the cor-
responding . Similar to the analysis in Section II-A, our goal
is to study the resistance of the fingerprinting system to aver-
aging collusion when employing the thresholding detector (9).
A sufficiently high and a sufficiently low are required to
make a fingerprinting system resistant to collusion attacks.

We illustrate the resistance performance using an example,
where dB, and . The variance is set to
1 like before. The system requirements are defined as
and . As shown in Fig. 9(a) and (b), when the
number of users is on the order of , the fingerprinting
system can resist to up to 28 colluders; when is set as a small
number 75, the system can resist to up to 46 colluders. Similar
to Section II-A, Fig. 9 shows that first decreases slowly, then
decreases quickly, and then increases, as increases. This be-
havior can be intuitively explained by the expressions of
and in (10). The sudden quick decrease is due to the expo-
nential nature of the function; when is reasonably small,
the term in function is the dominating factor
in deciding , this term decreases as increases and, there-
fore, results in a decreasing . On the other hand, when is
sufficiently large, the exponent term is the dominating factor
in deciding , and, thus, increases as increases. To have
an overall understanding of the collusion resistance of the or-
thogonal fingerprinting scheme, we plot the maximum resistible
number of colluders as a function of the total number of
users in Fig. 3, where and dB. It is noted
that the system can resist to up to colluders when the total
number of users is less than 60. However, for a system ac-
commodating more than 60 users, its collusion resistance starts
to decrease. For a system accommodating more than one thou-
sand users, the number is 28, meaning that the system
requirements for the fingerprinting system is no longer met if
the number of colluders is larger than 28.

We also compare the collusion resistance of the orthogonal
fingerprinting scheme when applying both test (5) and test (9).
Fig. 3(a) shows as a function of the total number of users

, with and dB. In Fig. 3(b), we present
as a function of for a specific system with users.

We note that the maximum detector provides better performance
than the thresholding detector. The intuitive explanation for this
observation is that the maximum detector is designed to catch
only one colluder. The overall difference is small, however, es-
pecially when the total number of users is large.

2) Lower and Upper Bounds of : Next, we provide an-
alytic bounds on the maximum number of colluders for
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Fig. 3. Collusion resistance of the orthogonal fingerprinting system to the averaging attack. Here, WNR = 0 dB, N = 10 and � = 10 , and � = 0:8.

an orthogonal fingerprinting system employing the thresholding
detector. Since the above analysis is based on numerical compu-
tation, it does not provide an explicit understanding of the rela-
tionships between and other system parameters, such as
the sample length , the , the total number of users , and
the performance requirements of and . To get more in-
sight into the collusion resistance of the thresholding detector, it
is useful to study the analytic lower and upper bounds of .
We begin by introducing two important lemmas.

Lemma 1: Define the Gaussian tail integral as
. is nonnegative for all and

monotonously decreases as increases for . We have
by definition. This tail integral can be

lower and upper bounded by

(11)

for , respectively. Please refer to [23] for a detailed proof.
Lemma 2: Let be a positive integer. For ,

can be bounded by

(12)

Proof: We first expand as

(13)

and utilizing the fact that for

, we derive the above inequality.
Setting for convenience, note that now

with the WNR . Recalling the expressions for
and in (10), we restate the system requirements as

(14)

where is a small number and is close to 1. For instance, a
typical setting is and . A key step in deter-
mining is to figure out the appropriate threshold in (14).
Though the explicit solution of is hard to obtain, we can take
advantage of the lower and upper bound of the threshold by
linking it to the lower and upper bounds of . The following
inequalities are observed by applying Lemma 1:

(15)

The assumption that is small implies that the choice of can
meet the condition . Based on this observation and
inequality (15), we obtain a lower and upper bound of as

(16)

where the bounds are defined as and

The detailed derivation of (15) and (16) is given in Appendix A.
So far, we have obtained a lower and upper bound for the

threshold with a few reasonable assumptions. We now pro-
ceed to show that a lower and upper bound of the maximum
number of colluders can be obtained by using the bounds
of in (16) to evaluate the probability of accurate detection,

, in (14). The basic idea is to find a lower bound of
such that the resulting pair simultaneously satisfies
the conditions that the corresponding is larger than but close
to the requirement , and is smaller than but close to the
requirement . Similarly, an upper bound is chosen such
that the pair results in a , which is smaller than but
close to the requirement , and a , which is larger than but
close to the requirement . The smaller the difference between
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the two sets of results, the tighter the bounds represented by
and . A detailed derivation, given in Appendix B, leads to
the following collusion resistance:

with

with

(17)

where represents the inverse function, and serves
as an upper bound of

(18)

It is worth mentioning that a tighter lower and upper bound of
can be obtained by solving the one-dimensional problem

when and are considered, respectively. How-
ever, this would require more computation and no explicit ex-
pressions of and as in (17) would be available due to the
complex nature of . In addition, though the bounds (17) are
derived for the thresholding detector, they are also applicable
to the maximum detector since, as shown in Fig. 3, the overall
performance difference between these two schemes is small and
can be neglected.

We illustrate the resistance analysis in Fig. 4, where ,
dB, and . Setting the requirements

and , we plot the lower and upper bound of
versus the number of users , along with the numerical result

. It is noted that the lower and upper bounds are within a
factor of 2 of the true value of . Given the lower and upper
bounds, some interesting observations are noted from this ex-
ample. From the attacker point of view, if an attacker can only
collect up to 20 copies, he/she can never succeed in removing
all trace of the fingerprints; however, an attacker is guaranteed
success if 80 independent copies are available. From the owner
(detector) point of view, if the owner has a means to ensure that
a potential attacker has no way to obtain 20 or more indepen-
dent copies, the fingerprinting system is essentially collusion
resistant. Further, in order to maximize the worst case of ,
the owner should limit the number of independent distributions.
For instance, if the number of independent copies is less than
60, the system is also collusion resistant.

III. EXTENSIONS TO OTHER PERFORMANCE CRITERIA

In Section II, we were concerned with capturing one true col-
luder with high confidence. The motivating application was to
provide digital evidence in the court of law. However, different
goals arise under different situations, and there are other pos-
sible performance measures for colluder identification. These
measures place a varying amount of emphasis on capturing col-
luders and placing innocents under suspicion. In fact, colluder
identification might only be one component of the evidence
gathering process. Since the final decision will depend upon
many types of evidence, there might be different roles that col-

Fig. 4. Lower and upper bound of K as a function of the number of users
n when apply the thresholding detector in (9). Here,WNR = 0 dB,N = 10 ,
� = 10 , and � = 0:8.

lusion detection will play in protecting content value. For ex-
ample, it might be desirable to use colluder identification to
identify a set of suspects and then perform other types of surveil-
lance on these suspects to gather the remaining evidence. This
suggests that researchers should consider a wider spectrum of
performance measures.

We consider two additional sets of performance criteria in this
section and study the thresholding detector under the average
attack. The analysis of the thresholding detector is easier than
the maximum detector. However, the results are similar, and for
that reason we will omit the analysis of the maximum detector.

Case 1: Capture More : This set of performance criteria con-
sists of the expected fraction of colluders that are successfully
captured, denoted by , and the expected fraction of innocent
users that are falsely placed under suspicion, denoted by .
Here, the major concern is to catch as many colluders as pos-
sible, though potentially at a cost of accusing more innocents.
The balance between capturing colluders and placing innocents
under suspicion is represented by these two expected fractions.
We define

if th user is accused
otherwise.

(19)

Considering the thresholding detector and the average attack,
we have

(20)
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Fig. 5. Resistance performance under the criteria r and r , when applying the thresholding detector in (9). In (a), we plot the expected fraction r versus the
number of colluders K , with N = 10 , the WNR � = 1, and the expected fraction r = 0:01. K under different requirements of � is illustrated in (b).

The above observation indicates that studying the behavior of
the fractions and is equivalent to studying the probability
of correctly detecting a specific colluder and the probability
of falsely accusing a specific innocent user. Based on this pair

, now the system requirements are

and (21)

meaning a reasonably high and a reasonably low are re-
quired to keep the fingerprinting system safe to attacks.

We now study the resistance performance of orthog-
onal fingerprints under requirements (21). In our analysis,

with being the WNR and being the vector
length. Based on (20) and (21), we can obtain the threshold
and the maximum number of colluders as

(22)

It is interesting to note that the threshold is a constant value
determined by , and is not affected by the total number
of users . The collusion resistance is proportional to the
square root of the vector length and the WNR . To illustrate
this, in Fig. 5(a), we observe that a system with the requirements

and , which involves fingerprints,
can withstand 43 colluders. If we allow a larger fraction of in-
nocents to be placed under suspicion, then the system can re-
sist more colluders, as depicted in Fig. 5(b). Here, let us look
at an example represented by the point with coordinate values

in Fig. 5(b). In this example, since ,
and , the decision maker will have to iden-

tify 68 suspected colluders (calculated as ) from a pool
of people containing up to one thousand innocent users (calcu-
lated as ).

Case 2: Capture All: This set of performance criteria con-
sists of the efficiency rate , which describes the expected
number of innocents accused per colluder, and the probability
of capturing all colluders, which we denote by . Here,
the goal is to capture all colluders with a high probability. The
tradeoff between capturing colluders and placing innocents

under suspicion is managed through the adjustment of the
efficiency rate . More specifically, when considering the
thresholding detector and the average attack, we have

(23)

Based on this pair , the system requirements are ex-
pressed as

(24)

We first illustrate the resistance performance of the finger-
printing system under these requirements by examples, where

and . We set for simplicity and recall
that . First, for a system accommodating as many
as users and requiring , we study the behavior
of when the number of colluders increases as shown in
Fig. 6. For each choice of , the threshold is chosen to yield

and then the corresponding is calculated. It is
clear that almost all users will be placed under suspicion if
more than 100 users come together and perform the collusion.
The decision of placing all users under suspicion certainly
provides no useful clues to the identity of the colluders. If the
rate is set as 0.01, the system can resist to up to 13 colluders.
To obtain an overall understanding of the collusion resistance
of the system, we further study the performance of the system
when different amounts of users are involved, as illustrated in
Fig. 7 by requiring and . It is clear that the
system can afford up to colluders if the number of total users

is smaller than 21. The resistance performance degrades when
more than 21 users are accommodated. In situations where
the system is required to distribute more than one thousand
independently marked copies, an attacker having as few as
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(a) (b)

Fig. 6. Behaviors of the efficiency rate R and the expected number of users
suspected as K increases. Here, N = 10 , � = 1, n = 10 , and P = 0:99.
We plot the rateR versus the number of colludersK in (a). The expected number
of users suspected is plotted against K in (b).

Fig. 7. Resistance performance of the orthogonal fingerprinting system under
the criteria R and P . Here, N = 10 , � = 1, � = 0:01, and P = 0:99. The
lower and upper bound is also plotted.

15 independent copies has the capability to break down the
system. Similar to Section II-B, we provide a lower and upper
bound of under this set of criteria. Assume for
convenience. A derivation similar to that in Section II-B leads
to the following bounds:

with

with

(25)

with being

The details of this derivation are omitted due to the limitation of
space and due to its similarity to the derivations in Section II-B.
An example is given in Fig. 7.

The analysis in this section reveals that the maximum number
of colluders allowed by a Gaussian fingerprinting system is on
the same order, under three different sets of criteria. Basically, a
few dozen colluders could break down the orthogonal Gaussian
fingerprinting system by generating a new composite copy such
that the identification of the original fingerprints would unlikely
be successful.

IV. EXTENSIONS TO OTHER TYPES OF ATTACKS

So far, we have studied the collusion resistance of the
Gaussian fingerprinting system for the average attack. When
an attacker has access to multiple independently watermarked
copies of the same host signal, attacks other than the averaging
attack are also possible. In this section, we consider several
nonlinear attacks suggested by Stone in [24], and we evaluate
the resistance of the maximum detector and the thresholding
detector. We have further considered a few other collusion at-
tacks (see [32]), such as randomly copying and pasting parts of
content from individual copies, or randomly choosing any value
between the minimum and the maximum values. Our study has
shown that this additional set of attacks can be approximated
as the collusion attacks discussed in this paper followed by
additive noise. Thus, the attacks studied here represent a wide
range of attacks.

1) Attacks based on the median operation.
Under this attack, the attacker obtains indepen-

dently marked copies of the same host signal, and
computes the composite observation such that the th
component of is

(26)

for , where the subset indicates the
colluder index and represents the median op-
eration. This attack is named the median attack, as indi-
cated by its definition.

2) Attacks based on the minimum operations.
Under the minimum attack, the attacker creates a copy
whose th component is the minimum of the th compo-

nents of the observed copies plus a noise term. Similarly,
we can define the maximum attack and the so called ran-
domized negative attack (also referred as Kilian’s attack)
[32]. Since our statistical analysis reveals that these three
attacks share the same property in terms of collusion re-
sistance, we study only the minimum attack here to save
space.

3) Attacks based on the average of the minimum and max-
imum operations.
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Under the minmax attack, the attacker creates a copy
whose th component is

(27)

for , where and are the
minimum and maximum operations, respectively.

4) Attacks based on the median, minimum, and maximum
operations.

Since Kilian’s attack produces unacceptable distortion,
Stone suggested a modified version of Kilian’s attack
such that

(28)

for . It is noted that Stone’s attack pro-
duces less distortion than Kilian’s.

For a specific attack, we should examine the overall distortion
introduced to the host signal, and the efficiency comparison of
different attacks should be carried out under the assumption that
the distortion level created by different attacks is approximately
equal. The purpose of this section is to show that the nonlinear
attacks described above can be regarded as attacks by averaging
in the sense that they yield pretty similar performance when
employing the maximum and the thresholding detectors, as long
as the overall MSE (mean-square-error) introduced to the host
signal by different attacks is the same. More specifically, our
goal is to demonstrate that the attacks

and (29)

provide close collusion resistance performance as long as

(30)

where represents the attack operation, and the additive noise

are distributed where the variance is deter-
mined by the power . Note that the power of the composite
observation indicates the level of MSE introduced to the host
signal. Therefore, given the MSE level allowed by the system,
we want to show that the underlying attack model does not
matter from the detector point of view. In other words, we want
to demonstrate that the thresholding detector is robust to dif-
ferent attacks. A similar argument can be made for the max-
imum detector.

First, we illustrate an example based on simulation runs
in Fig. 8, where , , and thresholds are chosen
to yield . Three types of attacks are studied: the
average, minmax, and minimum attacks. The fingerprints are

Fig. 8. Probability of detection as a number of colluders K under different
attacks, when applying the thresholding detector and the same MSE level is
introduced. Here, N = 10 , n = 100 and P = 10 .

taken as distributed random values with , and
the additive noise added to the minimum attack follows

distribution. Thus, the additive noises introduced by the
average attack and the minmax attack are correspondingly gen-
erated to provide the same MSE level as by the minimum attack.
From Fig. 8, it is noted that the performance curves are close to
each other, with the minimum attack marginally superior to the
other two attacks from the detector’s point of view (i.e., worse
from the attacker’s point of view).

The observation noted in the above example is encouraging.
We intuitively explain the reasons by referring to the statistical
analysis in [32]. We need to analyze the statistical behavior of
the test under different collusion attacks. Due to the iid
Gaussian assumption of the fingerprint components and since

is generally in the order of for 256 256 images, by ap-
plying the central limit theorem (CLT), we propose to approxi-
mate the distribution of with a Gaussian distribution. Our
results show that the correlator still yields zero mean for

, and the mean of , for , is the same under
different attacks. By calculating the corresponding mean and
variance, we have that the correlator is approximately
distributed as (31), shown at the bottom of the next page, in
which, for

Under each attack, , for , is independent of each
other. It is clear that for a given , the behavior of , for

, is fully characterized by the overall power ; therefore,
the threshold and are not affected by the type of attack. The
derivation of the mean and the variance under the minimum
attack is given in Appendix C. The analysis of other attacks can
be similarly derived. We refer the interested readers to [32] for
more details. It is worth mentioning that there is no closed form
expression for the variance available under most attacks,
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TABLE I
CORRESPONDING � , � , � , AND varfT (j)g UNDER DIFFERENT ATTACKS, WHERE K = 15, � = 1

due to the existence of terms in the distributions. Therefore,
in our implementation, we numerically evaluate the integrals by
employing the recursive adaptive Simpson quadrature method.
As an example, suppose and no noise is added to the
minimum attack, we report the results in Table I, where we can
see that the variance of , for , is comparable under
different attacks and, thus, results in comparable under dif-
ferent attacks. Our results also reveal that the difference of this
variance among different attacks gets smaller as the number of
colluders increases.

The above fact that different attacks provide comparable per-
formance from the detector’s point of view suggests, for the
same MSE distortion, the average attack is the most efficient
from the attacker point of view. This is because, from the de-
tector point of view, there exists better detection schemes than
detectors based on the correlators for attacks other than
the average attack. For this reason, we have concentrated only
on the average attack in this paper, and we only address the col-
lusion resistance of a fingerprinting system under the average
attack.

In addition, to maintain an acceptable quality of the image,
a basic requirement is that the collusion attack is unlikely to
generate noticeable distortion. Therefore, three types of attacks,
namely the minimum attack, the maximum attack, and Kilian’s
attack, should be excluded from consideration, since our anal-
ysis indicates that the energy of the composite watermark gen-
erated by these attacks is greater than that of the original wa-
termark (e.g., large and ), and grows with the number
of colluders . This unfortunate feature of these attacks sug-
gests that these attacks are likely to produce noticeable distor-
tion which increases with .

V. PRACTICAL ESTIMATOR FOR

In the above analysis, we have assumed the number of col-
luders is known. However, knowledge of is normally not
available in a practical collusion scenario. Therefore, in real col-
luder-identification situations, we need to estimate the number

of colluders . To start, we present the problem in a multiple-
hypotheses-testing framework, where the different hypotheses
lead to different as

(32)

for . An optimal way to estimate can be based on
the Bayesian classifier

(33)

where represents likelihood functions. However, it is im-
mediately noted that the probability summation over all subsets

with size is infeasible in practice. We address this issue
by obtain the maximum-likelihood (ML) estimates of and
jointly based on the observations

(34)

Because of the orthogonality of the basis , it suffices to con-
sider the correlator vector , defined in (2). Now the estimator
equals to

thus

the set of indices of largest (35)

where are the order statistics of the sample such that
. We refer the interested reader to

Appendix D for the detailed derivation of (35).
Based on obtained from the above approach, a fin-

gerprinting system may accuse all users indicated by as col-
luders. However, the above approach is aimed at jointly finding
the ML estimates of and the colluder set . Although it
might be interesting to study and of this approach in
(35), this approach is not designed to allow one to adjust the

if

if
(31)
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Fig. 9. Probability of detection P as a function of the number of colluders K when applying the thresholding detector, with WNR = 0 dB, N = 10 and
P � 10 . In (a), the number of users n is 10 . In (b), n = 75.

tradeoff between and , which is a desirable function-
ality for colluder tracing applications. Therefore, the above ap-
proach is not appropriate to meet our specific detection goal.
Thus, we only use it to estimate the total number of colluders

, and examine the effects of the estimated next.

A. Simulations for the Maximum Detector

Since is unknown in a practical collusion scenario, we
need to estimate first before setting a suitable threshold for
the detection process. With given , WNR and , the colluder
identification algorithm using the maximum detector becomes
as follows.

1) Estimate the number of colluders via (35).
2) Determine the threshold correspondingly to yield a de-

sired , according to (6). It is clear that the threshold
is only a function of when , WNR, and are given.

3) Apply the maximum test statistic described in (5) and
return the index .

In Fig. 2(a) and (b) for and dB, the
simulation results are compared to the ideal performance anal-
ysis shown in Section II where is assumed known. Unlike
the ideal case that is assumed known, when is estimated
based on simulated observations, the resulting always de-
creases with the increasing of . Good match is observed over
the nonincreasing part of the ideal case, i.e., when is small.
Mismatch is noted over the increasing part of the ideal case,
i.e., when is close to , since is underestimated in this sit-
uation due to the increasing overlap between the two Gaussian
distributions and as increases.
However, using an estimate of will not alter signifi-
cantly from the results when we use the exact value of since
only the nonincreasing part (also the matched part) of the ideal
case in the versus curve is evaluated to decide , the
maximum number of colluders a system can afford.

B. Simulations for the Thresholding Detector

As in Section V-A, we need to first estimate before set-
ting a threshold for the detection process. We introduce the
following implementation

1) Estimate the number of colluders via (35).
2) Determine the threshold correspondingly to yield a de-

sired , according to (10). It is clear that the threshold
is only a function of when , WNR, and are given.

3) Apply the thresholding test statistic described in (9) and
return the set .

We compare the simulation results with the ideal performance
analysis in Fig. 9(a) and (b). We can see that, with the esti-
mated number of colluders, the observation when employing
the thresholding detection is similar to that of the maximum
detection.

VI. EXPERIMENTS WITH IMAGES

In order to demonstrate the performance of a Gaussian fin-
gerprinting system using orthogonal modulation on real images
for identifying colluders, we apply an additive spread spectrum
watermarking scheme similar to that in [22], where the orig-
inal host image is divided into 8 8 blocks, and the watermark
(fingerprint) is perceptually weighted and then embedded into
the block DCT coefficients. The detection of the fingerprint is
performed with the knowledge of the host image. To generally
represent the performance, the 256 256 Lena and Baboon im-
ages with quite different natures are used as the host images for
fingerprinting. The fingerprinted images have an average PSNR
of 44.6 dB for Lena and 41.9 dB for Baboon. We compare the
performance of the thresholding detector under average, min-
imum and minmax collusion attacks, respectively. We show in
Fig. 12 the original host images, the colluded images, and the
difference images. With , an average PSNR of 37.3 dB
for Lena and 34.6 dB for Baboon are resulted after collusion
attacks.

Denoting as the Gaussian fingerprint, we note that the th
component of the th fingerprint is actually embedded as

(36)

where the superscript means actual, with being the
just-noticeable-difference (JND) parameters from human visual
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model to achieve the imperceptibility of the embedded finger-
print. Therefore, the composite embedded fingerprint after
attack is represented as

(37)

where is the collusion function discussed in Section IV, and
the noise is independently distributed. Under nonblind detec-
tion, are known in the detector side, and, thus, the effects
of real images can be partially compensated by computing

(38)

for . In practice, the variance of is often pro-
portional to the value of , for example, in image compres-
sion attack. As such, can be approximately modeled
as iid distributed. Therefore, the test statistic
used in the thresholding detector is now defined as

(39)

for .
We present the results in Figs. 10 and 11 based on simu-

lations using real images. The number of total users is set to
100. We ignored the round-off error introduced by DCT/IDCT
transform in simulations. The fingerprint is assumed to be

. To make a fair comparison between the experimental
and analytical results, we first demonstrate the results for Lena
image under the average attack in Fig. 10, where the additive
noise is with variance and is required. We
note that the result from the real image is comparable to that
based on analysis in Section II-B.

We further compare the performance of the thresholding de-
tector under different types of attacks in Fig. 11. The threshold
for each is chosen to satisfy by simulation
runs. is set as 1 for the minimum attack case, and the cor-
responding is properly adjusted for the cases of the average
and minmax attacks to ensure the attacked images have the same
MSE level (thus, PSNR) with respect to the host image. The
level of MSE is larger as increases. It is noted that the de-
tection performance is better under the minimum attack than
under the other two attacks. This suggests that the minimum
attack is less efficient from the attacker point of view, an obser-
vation that matches with the analysis. It is also noticed that a
better performance is observed in the Baboon example than in
Lena. One possible explanation for this is that, in Lena, the effi-
cient length of the fingerprint is , while a longer

is allowed in Baboon. Different characteristics
such as the amount of edges and smooth regions of these two
images also contribute to the difference in the performance. It
is worth mentioning that, for Gaussian watermarking, if is
large, the minimum attack is likely to produce noticeable dis-
tortion even with no additive noise is added. For instance, under
the minimum attack, the MSE is as large as 13.3 for Lena when

. In order to have the same MSE under the average at-
tack, we need to have a corresponding WNR as low as dB.
With such a low WNR, noticeable distortion is introduced to the
host signal and the quality of the image may not be acceptable.

Fig. 10. Detection performance of the thresholding detector on Lena images
under the average attack, where, equivalently, N = 13691. Here, � = 1,
n = 100, and P = 10 .

Thus, the minimum attack is not favored in practice because it
generates noticeable distortion.

VII. CONCLUSION

In this paper, we have investigated the collusion resistance of
a Gaussian fingerprinting system based upon orthogonal modu-
lation. Specifically, assuming the host content is available on the
detector side (nonblind scenario), we study the problem of de-
termining how many independently marked copies of the same
multimedia content is required for an attacker to cause a finger-
printing system to fail. We introduced the collusion problem for
additive embedding and started with the average collusion attack
where an average operation is performed by weighing marked
copies equally. Since knowledge of the number of colluders (dif-
ferent marked copies) is normally not available in practice, a
likelihood-based classifier approach was proposed to estimate
the number of colluders . Simulation results show that the col-
lusion resistance based on the estimated matches the analysis
of the ideal case.

We introduced two detection approaches, and studied the col-
lusion resistance of a fingerprinting system to the average attack
when considering the performance criteria represented by
and . We derived lower and upper bounds of the maximum
number of colluders . It is noted that is an important
factor, where is the watermark to noise ratio. Using the upper
bound, an attacker can determine how many independent copies
are required to guarantee the success of a collusion attack; on the
other hand, an owner (detector) will benefit from these bounds
in designing a fingerprinting system. For instance, in order to
achieve a collusion-free fingerprinting system, a desirable se-
curity requirement is to have it very unlikely for a potential at-
tacker to collect more copies than the lower bound, and further
to have the distribution size limited by the maximum value of

.
Our work was further extended to different attacks and dif-

ferent sets of performance criteria. From the detector point of
view, the thresholding detector is robust to different attacks,
since different attacks yield very close performance as long as
the levels of MSE distortion introduced by different attacks are
the same. Therefore, the average attack is most efficient from
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Fig. 11. Detection performance of the thresholding detector on real images under different kinds of attacks. Here, n = 100 and P = 10 . (a) Lena image
with equivalent N = 13691. (b) Baboon image with equivalent N = 19497.

the attacker side. We also evaluated the performance on real im-
ages, and noted that the average attack is the most efficient from
the attacker point of view under the same MSE (thus, PSNR) as-
sumption. Different sets of performance criteria were explored
to satisfy different concerns, and it seems that attacks based on
a few dozen independent copies will confound a fingerprinting
system accommodating as many as ten thousand users. This
observation suggests that the number of independently marked
copies of the same content that can be distributed should be de-
termined by many concerns, such as the system requirements,
and the cost of obtaining multiple independent copies. Further-
more, it suggests that tracing colluders via fingerprints should
work in concert with other operations, for example, suspecting
a user may lead the owner to more closely monitor that user and
further gather additional evidence. As fingerprinting is one of
the many components in decision-making, it is the confidence
in the fidelity of all technical and nontechnical evidences as a
whole that allows a system to identify a colluder.

APPENDIX I
DERIVATION OF (15) AND (16)

Recall that represents the sample length, is the number
of total users and means the number of colluders.

Since we assume , meaning a false positive should be
unlikely to occur, it immediately implies that the threshold
should yield for a fingerprinting system
accommodating users. We provide an intuitive proof for this
observation, defining

if th user is falsely accused
otherwise

(42)

then the expectation of the number of innocents falsely accused
is

(43)

Thus, if , then a false positive almost always
happens, which is against our assumption. Therefore, it gives
the observation . We further note that
and is normally small compared to ; therefore, it is fair to
claim in most situations. Since , it
is safe to assume due to the fact that and
that is a monotonously decreasing function for . We
summarize these useful observations as follows:

(44)

to help our derivation. By applying Lemma 1 and 2, we have

by Lemma

by Lemma

(45)

therefore, inequalities in (15) follow.
The observations (44) could be used to find a lower bound for

. Since

Suppose we let the last term be equal to

thus

(46)
the corresponding serves as a lower bound of the threshold
to guarantee .
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Fig. 12. (Left) Host images, (middle) colluded images withK = 50, and (right) difference images for Lena and Baboon. The min attack is illustrated for Lena,
and the average attack for Baboon.

Recalling (15) and applying the lower bound result in

(47)

To provide , we can require the last term yield . It gives

thus

(48)

this serves as an upper bound of the threshold to guarantee
.

Since the tighter the bounds of the threshold the better, we
would like to further adjust the lower bound of by considering
(15) and the above upper bound

(49)

By requiring the last term be equal to , we will obtain a lower
bound to satisfy , such that

(50)

By combining together the lower bounds in (46) and (50), we
shall determine a tighter lower bound as .
Therefore, it completes the derivation of (16). We would like to
point out that the above derived is one, but not the
only one, choice of bound pairs satisfying the inequalities in
(14).

APPENDIX II
DERIVATION OF (17)

We repeat the formula of in (14) as below

(51)

where is close to 1. We first show a lower bound of tol-
erated by a Gaussian fingerprinting system with users under
some specific WNR . The lower bound must be chosen
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such that the pair satisfies the probability require-
ments. Since the tail integral monotonously decreases as
increases, we observe that

(52)

if is reasonably large, for instance, gives ,
which is close to 1. Therefore, serves as a loose
lower bound

(53)

Next, we find an upper bound such that the pair
results in a smaller than the requirement , and a larger

than the requirement . The smaller the gap, the tighter the
bound. Similar as in the above observation, if the number of
colluders , then the resulting , thus the
bound is actually a lower bound of the
upper bound and we have assumed for
searching . We further note that

(54)

since and are assumed
by definition. By setting the last term to be , we obtain the
solution

(55)

Clearly, this can serve as an upper bound of the upper bound
. Therefore, we have

(56)

and calculate the corresponding via letting

thus

(57)

Clearly is met with this choice of . Recall that
by definition, it is straightforward that

(58)

It completes the derivation of (17). It is worth mentioning that
the bound can be further tightened by letting and
then updating according to (57) iteratively, until is very
close to .

APPENDIX III
DERIVATION OF THE MEAN AND THE VARIANCE

OF FOR THE MINIMUM ATTACK

Denote the pdf of each Gaussian fingerprint component as
, i.e., , and the cdf as . Now, under

the minimum attack, the correlator is

(59)

Define , we have the pdf of
as

(60)

For , it is easy to show that . For ,
we can express the joint pdf of and as in (61),
shown at the bottom of the page. By employing the rule of
integration by parts, we have

(62)

if
if .

(61)
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by applying log operation

thus (65)

It is clear that, for , the mean of under the min-
imum attack is the same as that of the average attack. We can cal-
culate and numerically.
Therefore, we can calculate the mean and variance of
correspondingly as

(63)

APPENDIX IV
DERIVATION OF (35)

Recall that the estimator is

(64)

By introducing an additional dummy class as
, we have (65), shown at the top of the page, where

are the ordered as . The last
equation is due to the ML estimate

(66)
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