
Architecture and Framework
for Supporting Open-Access

Multi-user Wireless
Experimentation

S.Ganu, I. Seskar, Max Ott, D. Raychaudhuri, S. Paul

http://www.orbit-lab.org

Project Rationale
• Current wireless research

– Primarily simulation based or small in-house experimental setups
– Difficult to repeat experiments
– Excessive setup and data collection times may hinder rapid

prototyping and experimentation

• Key design goals
– Support multi-user wireless experimentation
– Remotely accessible, lights-out operation
– Facilitate choreographing of experiments
– Automate measurement collection
– Capture experiment description so as to repeat as often as

necessary

ORBIT Testbed: Background
• Seeded by NSF grant under the Networking

Research Testbeds (NRT) program

• Collaborative effort: Rutgers, Columbia, and
Princeton, along with industrial partners Lucent
Bell Labs, IBM Research and Thomson

• Developed and operated by WINLAB, Rutgers
University

ORBIT: Indoor Grid

80 ft (20 nodes)

70
 ft

 m
 (

20
 n

od
es

)

Control switch

Internet VPN Gateway /
Firewall

Back-end servers

Data
switch Application Servers

(User applications/
Delay nodes/

Mobility Controllers
/ Mobile Nodes)

Front-end
Servers

Gigabit backbone
VPN Gateway to

Wide-Area Testbed

SA1 SA2 SAP IS1 IS2 ISQ

RF/Spectrum Measurements Interference Sources

Key Requirements
• scalability, in terms of the total number of wireless nodes

(~100’s).
• reproducibility of experiments which can be repeated with

similar environments to get similar results.
• open-access flexibility giving the experimenter a high-

level of control over protocols and software used on the
radio nodes

• extensive measurements capability at radio PHY, MAC
and network levels, with the ability to correlate data across
layers in both time and space

• remote access testbed capable of unmanned operation and
the ability to robustly deal with software and hardware
failures

Key Software Considerations

• Unlike wired testbeds, difficult to isolate
experiments – mainly serial mode of
operation

• Need to quickly offload users at the end of
the slot

• Reduce start up and clean up times

Software components

Experiment Controller
Choreograph experiments

Capture experiment details to facilitate repetition

Measurement Framework
Efficient measurement collection at run-time

Avoids delays at end of experiment to collate measurements

Libmac
Provides driver independent hooks to the application developers to
collect measurements from at radio PHY, MAC layers

Experiment Controller (NodeHandler)
NodeHandler NodeAgent(s)Support Services

Repository

Applications

Experiment
Script

Interface
initializations

and configuration
e.g Intel, Atheros,

Cisco

M
ul

tic
as

t c
ha

nn
el

Experiment Controller
• A central NodeHandler process communicates

with NodeAgents (present on each active node in
the experiment)

• Instructs nodes to configure interfaces, launch
applications etc.

• Communication
– Over multicast – scalable
– Using experiment scripts

OML: Orbit Measurement Library
• Experiments are about collecting measurements
• How to collect them efficiently in a distributed

environment like ORBIT?

OML: Orbit Measurement Library

• Client
– Simple API for application writers
– Filters reduce the amount of reportable data
– XDR encoded data over multicast channel

• Collection Server
– Berkeley DB used for scalability
– SQL database for persistent for data archiving
– One multicast channel per experiment for logical

segregation of data, and scalability

OML: Pluggable Filters

• Not all measurements
may be needed

• Allow dynamic
preprocessing before
reporting to database

• Experimenter can choose
the granularity (per
packet or every N
packets, per second or
every N seconds)

Real time Statistics

MATLAB, Excel for Mysql allows easy post processing

Libmac
User-space C library

– To inject and capture MAC
layer frames.

– To manipulate wireless
interface parameters at both
aggregate and per-frame
levels.

– To communicate wireless
interface parameters over
the air, on a per-frame level

– Allows application
developers to interface with
driver measurements
through simple function call

Mobility Emulation: Our Approach
• Uses software spatial switching
• Emulates trajectory by switching to different radio

and antenna positions as time progresses

Essential Orbit Services

Chassis Manager Controller
• Web/Program interface for
remote control of nodes

• Provides facilities for power on,
reboot, hard/soft power off

• Console access to node

• Logging of node state (on/off),
temperature, and voltage

Frisbee*
Fast and automated way to image any number of
nodes

Frisbee – Client/Server application that facilitates
fast transfers of entire disk images.

Baseline Node Image (300 MB) currently takes ~5
minutes to install on all 64 grid nodes

* From Emulab Testbed, University of Utah

Putting it all together

OML Server

USER / CONTROLLER

OBSERVER SERVICES

GRID

Node configuration

- Select nodes

- Configure interfaces

Application configuration

- Download application and libraries

- Configure application parameters

OML configuration

- Configure measurement collection

parameters

Experiment Script

DB

N
od

eH
an

dl
er

N
od

eA
ge

nt
(p

er
 n

od
e)

OML Client (per node)

START

END

w
w

w Fetch results

Experiment
details

Run time
statistic

collection

Off-line Storage of
results

Display

S
ta

tic
D

yn
am

ic

(Change channel, power, sleep

on/off etc during experiment)

Sample Experiments using ORBIT

• Sender-Receiver Experiment
• Node 4-3 sends to Node 5-4

– 11 Mbps
– ‘b’
– Ad-hoc (or Master-Managed)
– 3 Mbps offered load
– Measure RSSI, Throughput at receiver and

offered load at sender

Define Sender
#
Define nodes used in experiment
#
nodes([4,3], 'sender') {|node|

node.image = nil # Use default disk image

experiment property space
node.prototype("test:proto:sender", { # use prototype "sender"

'destinationHost' => '192.168.5.4', # Set it's property "destinationHost"
'packetSize' => Experiment.property("packetSize"),
'rate' => Experiment.property("rate") # bind the remaining properties to defaults

}) # Can be overridden later
node.net.w0.mode = "master"
node.net.w0.type = 'b'
node.net.w0.essid = "helloworld” # Set wireless parameters
node.net.w0.ip = "%192.168.%x.%y"
node.net.w0.rate = "11m"

}

w0, w1 are interpreted by nodeAgent according to the card being used
e.g Intel w0= eth2, w1= eth3
Atheros w0=ath0, w1= ath1

Define Receiver

#
Define nodes used in experiment
#
nodes([5,4], 'receiver') {|node|
node.image = nil # assume the right image to be on disk
node.prototype("test:proto:receiver" , {
'hostname' => '192.168.5.4',
'protocol' => 'udp_libmac’ # Use Libmac to report RSSI
})
node.net.w0.mode = "managed"
node.net.w0.type = 'b'
node.net.w0.essid = "helloworld"
node.net.w0.ip = "%192.168.%x.%y"

}

Script..
Now, start the application
whenAllInstalled() {

allNodes.startApplications

#Set packet size to 1024 bytes
and packet rate to 3000 Kbps
NodeSet['sender'].send(:STDIN, 'proc/otg', 'size 1024')
NodeSet['sender'].send(:STDIN, 'proc/otg', 'rate 3000')

Run the experiment for 60 seconds
wait 60

Stop the applications
allNodes.stopApplications
Experiment.done

}

View Results (during exp.)

Cross layer effects! Throughput, RSSI vs time

www.orbit-lab.org

	Architecture and Framework for Supporting Open-Access Multi-user Wireless Experimentation
	Project Rationale
	ORBIT Testbed: Background
	ORBIT: Indoor Grid
	Key Requirements
	Key Software Considerations
	Software components
	Experiment Controller (NodeHandler)
	Experiment Controller
	OML: Orbit Measurement Library
	OML: Orbit Measurement Library
	OML: Pluggable Filters
	Real time Statistics
	Libmac
	Mobility Emulation: Our Approach
	Essential Orbit Services
	Chassis Manager Controller
	Frisbee*
	Putting it all together
	Sample Experiments using ORBIT
	Define Sender
	Define Receiver
	Script..
	View Results (during exp.)
	www.orbit-lab.org

