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Project Rationale
• Current wireless research

– Primarily simulation based or small in-house experimental setups
– Difficult to repeat experiments
– Excessive setup and data collection times may hinder rapid 

prototyping and experimentation

• Key design goals
– Support multi-user wireless experimentation
– Remotely accessible, lights-out operation
– Facilitate choreographing of experiments
– Automate measurement collection
– Capture experiment description so as to repeat as often as 

necessary



ORBIT Testbed: Background
• Seeded by NSF grant under the Networking 

Research Testbeds (NRT) program

• Collaborative effort: Rutgers, Columbia, and 
Princeton, along with industrial partners Lucent 
Bell Labs, IBM Research and Thomson

• Developed and operated by WINLAB, Rutgers 
University



ORBIT: Indoor Grid
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Key Requirements
• scalability, in terms of the total number of wireless nodes 

(~100’s).
• reproducibility of experiments which can be repeated with 

similar environments to get similar results.
• open-access flexibility giving the experimenter a high-

level of control over protocols and software used on the 
radio nodes

• extensive measurements capability at radio PHY, MAC 
and network levels, with the ability to correlate data across 
layers in both time and space

• remote access testbed capable of unmanned operation and 
the ability to robustly deal with software and hardware 
failures



Key Software Considerations

• Unlike wired testbeds, difficult to isolate 
experiments – mainly serial mode of 
operation

• Need to quickly offload users at the end of 
the slot

• Reduce start up and clean up times 



Software components

Experiment Controller
Choreograph experiments

Capture experiment details to facilitate repetition

Measurement Framework
Efficient measurement collection at run-time

Avoids delays at end of experiment to collate measurements

Libmac
Provides driver independent hooks to the application developers to 
collect measurements from at radio PHY, MAC layers
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Experiment Controller
• A central NodeHandler process communicates 

with NodeAgents (present on each active node in 
the experiment)

• Instructs nodes to configure interfaces, launch 
applications etc.

• Communication 
– Over multicast – scalable
– Using experiment scripts



OML: Orbit Measurement Library
• Experiments are about collecting measurements
• How to collect them efficiently in a distributed 

environment like ORBIT?



OML: Orbit Measurement Library

• Client
– Simple API for application writers
– Filters reduce the amount of reportable data 
– XDR encoded data over multicast channel

• Collection Server
– Berkeley DB used for scalability
– SQL database for persistent for data archiving
– One multicast channel per experiment for logical 

segregation of data, and scalability



OML: Pluggable Filters

• Not all measurements 
may be needed

• Allow dynamic 
preprocessing before 
reporting to database

• Experimenter can choose 
the granularity (per 
packet or every N 
packets, per second or 
every N seconds)



Real time Statistics 

MATLAB, Excel for Mysql allows easy post processing



Libmac
User-space C library

– To inject and capture MAC 
layer frames.

– To manipulate wireless 
interface parameters at both 
aggregate and per-frame 
levels. 

– To communicate wireless 
interface parameters over 
the air, on a per-frame level

– Allows application 
developers to interface with 
driver measurements 
through simple function call 



Mobility Emulation: Our Approach 
• Uses software spatial switching 
• Emulates trajectory by switching to different radio 

and antenna positions as time progresses 



Essential Orbit Services



Chassis Manager Controller
• Web/Program interface for 
remote control of nodes

• Provides facilities for power on, 
reboot, hard/soft power off

• Console access to node

• Logging of node state (on/off), 
temperature, and voltage



Frisbee*
Fast and automated way to image any number of 
nodes

Frisbee – Client/Server application that facilitates 
fast transfers of entire disk images. 

Baseline Node Image (300 MB) currently takes ~5 
minutes to install on all 64 grid nodes

* From Emulab Testbed, University of Utah



Putting it all together
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Sample Experiments using ORBIT

• Sender-Receiver Experiment
• Node 4-3 sends to Node 5-4 

– 11 Mbps
– ‘b’
– Ad-hoc (or Master-Managed)
– 3 Mbps offered load
– Measure RSSI, Throughput at receiver and 

offered load at sender



Define Sender
#
# Define nodes used in experiment
#
nodes([4,3], 'sender') {|node|

node.image = nil  # Use default disk image

# experiment property space
node.prototype("test:proto:sender",  {           # use prototype "sender"

'destinationHost' => '192.168.5.4',               # Set it's property "destinationHost"
'packetSize' => Experiment.property("packetSize"), 
'rate' => Experiment.property("rate")          # bind the remaining properties to defaults

})                                                            # Can be overridden later
node.net.w0.mode = "master"
node.net.w0.type = 'b'
node.net.w0.essid = "helloworld” # Set wireless parameters
node.net.w0.ip = "%192.168.%x.%y"
node.net.w0.rate = "11m"

}

w0, w1 are interpreted by nodeAgent according to the card being used
e.g Intel  w0= eth2, w1= eth3
Atheros w0=ath0, w1= ath1



Define Receiver

#
# Define nodes used in experiment
#
nodes([5,4], 'receiver') {|node|
node.image = nil                    # assume the right image to be on disk
node.prototype("test:proto:receiver" , {
'hostname' => '192.168.5.4',
'protocol' => 'udp_libmac’ # Use Libmac to report RSSI
})
node.net.w0.mode = "managed"
node.net.w0.type = 'b'
node.net.w0.essid = "helloworld"
node.net.w0.ip = "%192.168.%x.%y"

}



Script..
# Now, start the application
whenAllInstalled() {

allNodes.startApplications

#Set packet size to 1024 bytes 
# and packet rate to 3000 Kbps
NodeSet['sender'].send(:STDIN, 'proc/otg', 'size 1024')
NodeSet['sender'].send(:STDIN, 'proc/otg', 'rate 3000')

# Run the experiment for 60 seconds
wait 60

# Stop the applications
allNodes.stopApplications
Experiment.done

}



View Results (during exp.)

Cross layer effects! Throughput, RSSI vs time



www.orbit-lab.org
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