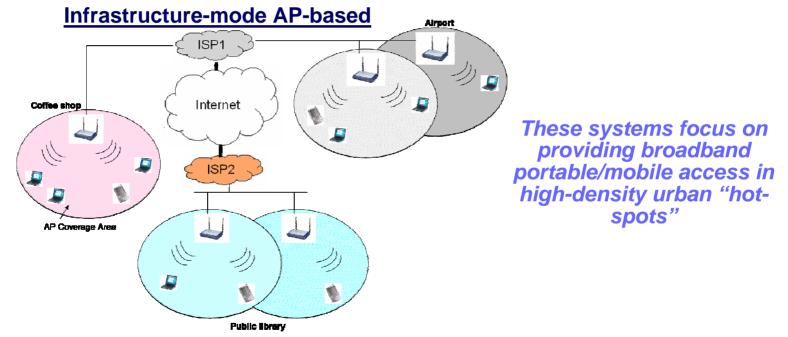
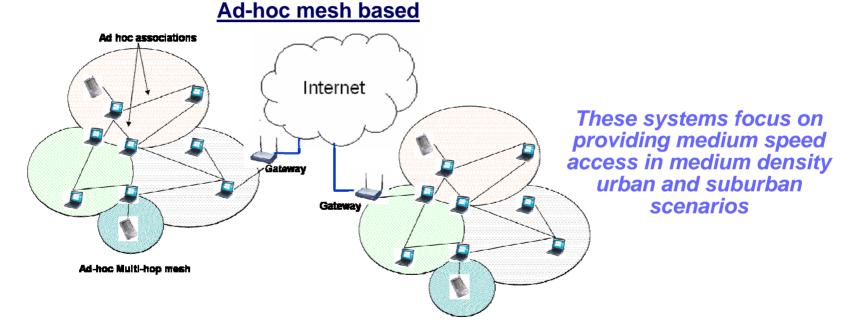
Integrating Short-Range Radio Technologies Into Next-Generation Wireless Networks


Sachin Ganu Dr. Dipankar Raychaudhuri

Rutgers, The State University of New Jersey

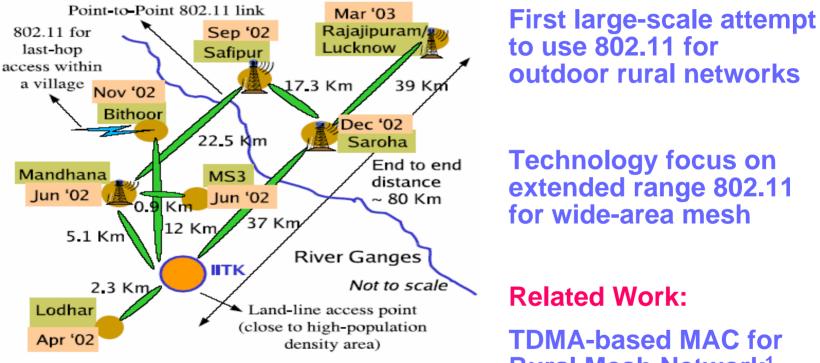
Metropolitan-area wireless access based on 802.11: WLAN Hot Spots

Examples: Taiwan's CyberCity Project, various commercial deployments



- Architecture limited by the need for large numbers of access points
- Relatively high capital costs and wired backhaul link costs
- Single radio access hop tends to assure good performance

Metropolitan-area wireless access based on 802.11: Mesh Community Networks


Examples: LocustWorld, CuWiN (Champaign-Urbana Community Wireless Network)

- Reduces the need for wired APs via ad-hoc wireless mesh infrastructure
- Multi-hop links reduced throughput per node, variable delays
- Potentially lower capital and operating costs relative to WLAN hot-spots

Rural & metro wireless access based on **802.11: Digital Gangetic Plains Project**

From "Turning 802.11 Inside Out", Praveen Bhagwat, et al. HotNets - II, Cambridge, MA, USA, Nov 2003

Rural Mesh Network¹

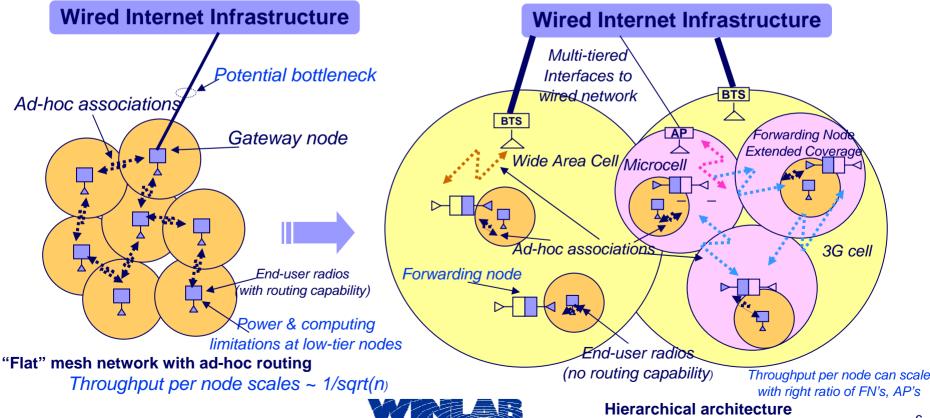
¹ "Revisiting MAC Design for an 802.11-based Mesh Network", Bhaskaran Raman and Kameswari Chebrolu, Third Workshop on Hot Topics in Networks (HotNets-III), 15-16 Nov 2004, San Diego, CA, USA

Objective of this talk

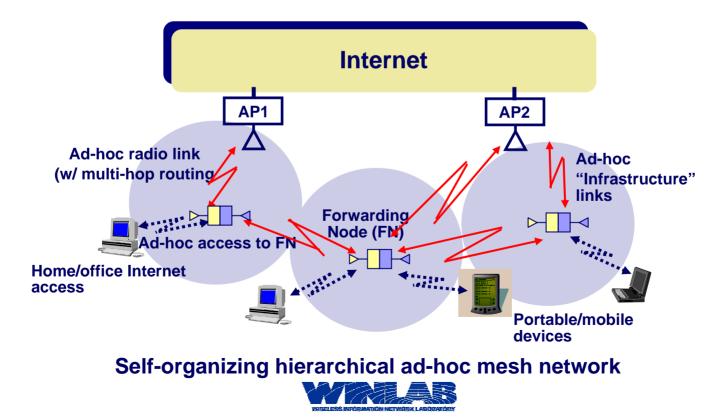
Further investigation of the feasibility of mesh network technologies for metro area applications:

 WINLAB's Self-Organizing Hierarchical Network (SOHAN) with improved capacity/performance

 System capacity & cost evaluation for example medium density metro area


 Prototype validation of mesh network protocols and emulated system performance using ORBIT testbed

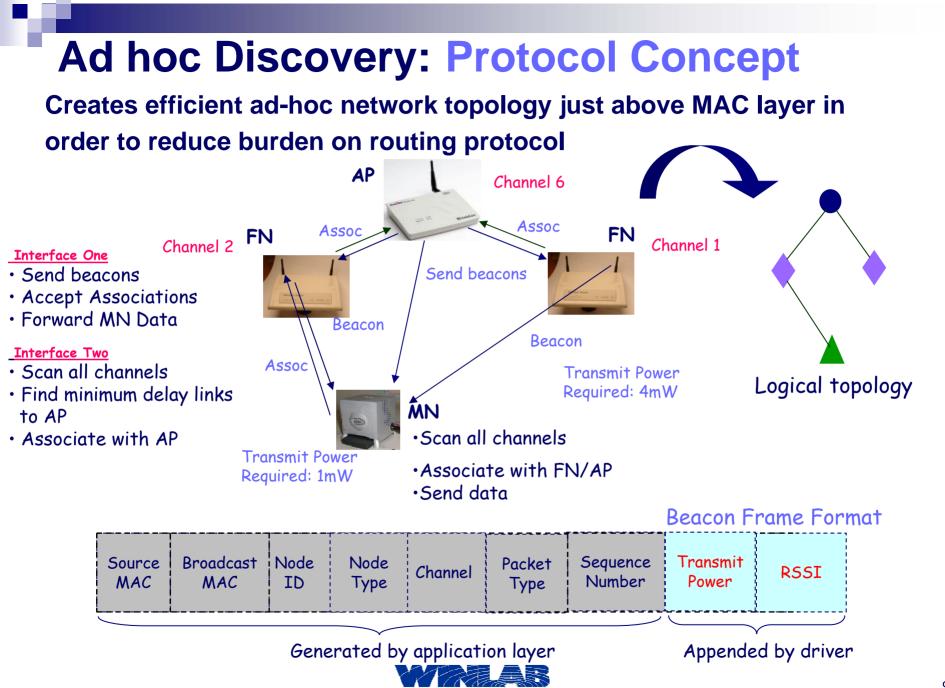
Mesh Architecture: Flat vs. Hierarchical


Hierarchical structure is essential, and helps to achieve

- Scalability, i.e. improved max throughput and delay/QoS
- Effective integration with 3G/4G, WLAN and Internet
- Improved coverage & power consumption at subscriber radios

SOHAN Architecture: Components

Tier 1: Low-tier subscriber nodes (MN) *Tier 2*: Forwarding nodes (FN) with multiple radio interfaces (can operate on different frequencies) *Tier 3*: Wired Access Points (AP)



SOHAN Architecture: Protocols

- Bootstrapping Mechanism
 - Configuration in terms of channel assignments and initial transmit power level settings
- Discovery Mechanism
 - Filters links made available to the routing protocol based on desired objective function – reduces routing overhead
 - Supports heterogeneity Each node can apply a different objective in choosing its neighbors depending on its capabilities
 - Supports multi-channel operation of network
- Routing Mechanism
 - Uses the "logical" topology information presented by the discovery mechanism to create and maintain local "neighbor tables"
 - Only FNs and APs participate in routing

ROUTING				
	DISCOVERY			
MAC				
	РНҮ			

Integrated Discovery and Routing

Routing Mechanism integrated with discovery protocol

- DSDV-like distance vector based
- Uses information collected during periodic discovery phase in order to find neighbors
- Maintains local neighbor tables at each node
- Neighbor tables exchanged periodically between FN's and AP's
- MNs do not participate in routing hence energy savings

Neighbor table at an FN

Anagement Console								
<u>F</u> ile <u>C</u> onsole								
MobNets	Торо	ology Node Informatio	n Neighb	or Table				
💁 🗖 Access point	S.No.	MAC	Node ID	Node Type	Refresh Timer	Channel to next Hop	Cost to destination	
🖗 🗂 Forwarding Node	1	00:07:50:ca:df:d5	102	514	2	4	1	00:07
- 102	2	00:06:25:0b:cf:cc	11	771	2	2	1	00:06
0 101	3	00:06:25:0b:c2:b1	203	257	3	6	1	00:06
		1						
🗢 🗂 Sensor Node								

SOHAN Prototype

PLATFORM

Access Point

US Robotics 2450 AP AMD Elan SC400 processor 1 MB Flash, 4 MB RAM Prism-2 based PCMCIA card

Forwarding node

Compulab 586 CORE

AMD Elan SC520 CPU

2 MB NOR flash + 64 MB NAND Flash on board

Dual PCMCIA slots

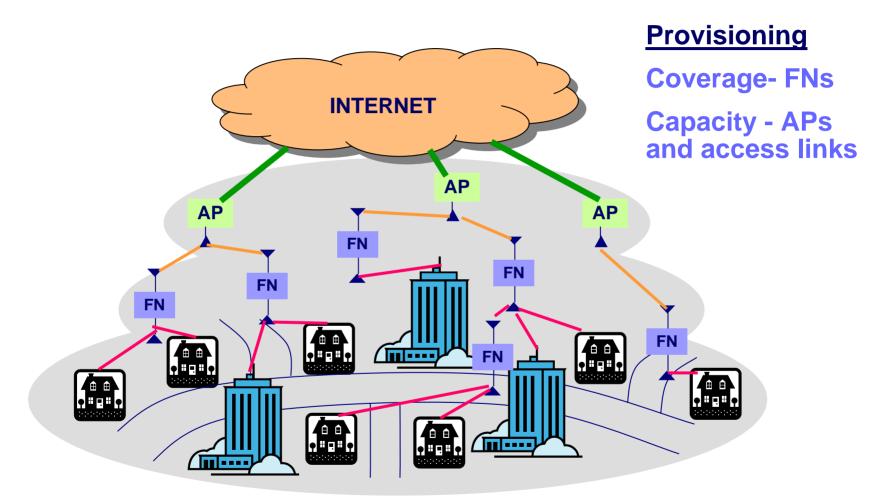
Mobile Nodes

Intrinsyc Cerfcube Intel PXA 250 (XScale processor)

CF-based wireless support

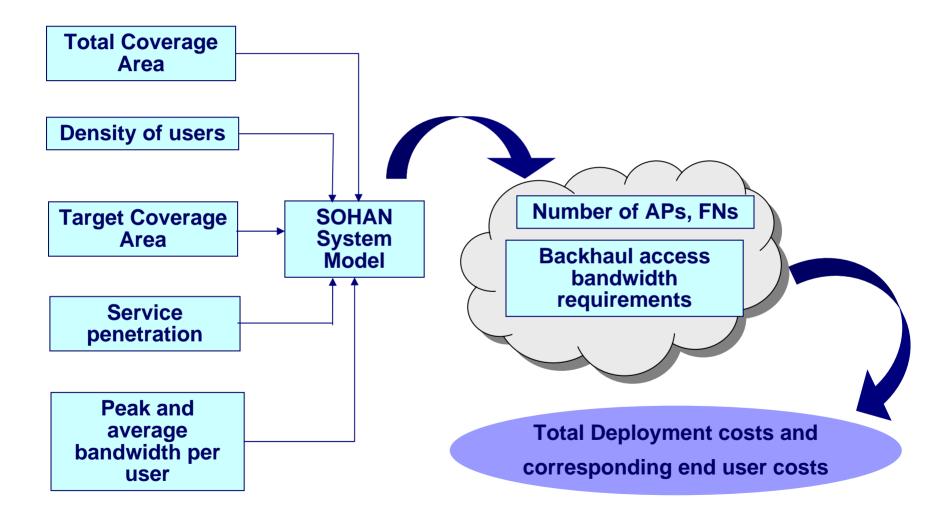
	_	_
	C	D
	Č	3
	Č	5
	È	1
	Ċ	D
	0	2
		L

IP	Ad-hoc routing	
Ethernet MAC	Discovery	
	802.11 MAC	
Ethernet PHY	802.11 PHY	


Ad-hoc routing				
Discovery				
802.11 MAC		802.1	1 MAC	
802.11 PHY		802.1	1 PHY	

FN

Application				
Discovery				
802.11 MAC				
802.11 PHY				



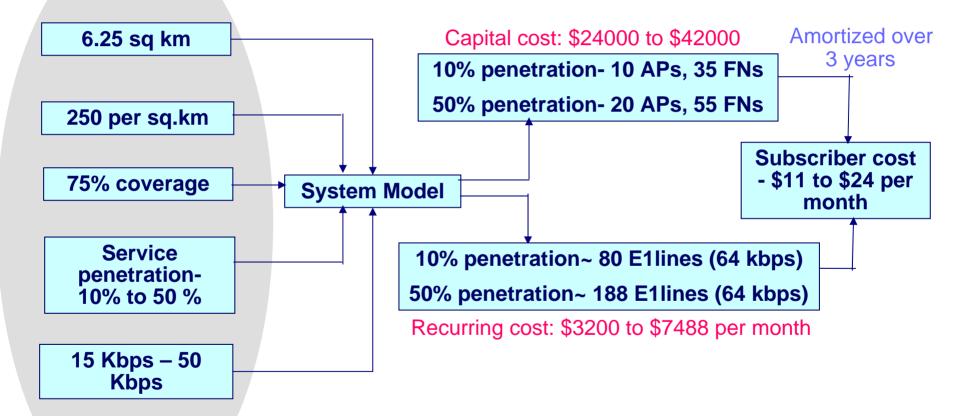
Model for Urban Deployment

Model for Urban Deployment

Parameters

Coverage area	$2.5 \text{ km} \times 2.5 \text{ km} = 6.25 \text{ sq km}.$
Typical outdoor coverage 802.11b/g FN/AP	~250 meters
User Density per sq km ¹	250
Service penetration	10 - 50 %
Desired coverage	~75%
Average/peak bandwidth per user ²	15 Kbps, 50 Kbps
Average number of users in the system = Density of population × Coverage Area × Service Penetration	250×6.25×0.1 ~ 156 (10% penetration) 250×6.25×0.5 ~ 780 (50% penetration)
Average system bandwidth required	156×15 Kbps = 2.34 Mbps (10% penetration) 780× 15Kbps = 11.7 Mbps (50% penetration)
Peak system bandwidth requirement	156 × 50 Kbps = 7.8 Mbps (10% penetration) 780 × 50 Kbps = 39 Mbps (50% penetration)

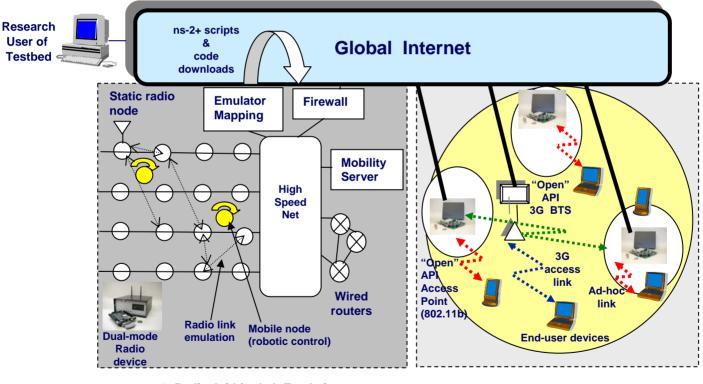
¹ Based on reports from Census 2001, <u>http://www.mapsofindia.com/census2001/populationdensity.htm</u> ² A. Balachandran, G. Voelker, P. Bahl, and V. Rangan, "Characterizing User Behavior and Network Performance in a Public Wireless LAN", *ACM SIGMETRICS'02*, Marina Del Rey, June 2002


System Model

- Coverage area with n uniformly distributed users (n = 156 or 780 corresponding to 10% to 50% service penetration)
- Introduce FNs uniformly until 75% of the users are in range of at least one FN and the average number of users per FN is ~ 10-12
- Introduce m AP's where m~ k*sqrt(#FN)
- Provision enough access links to support user traffic requirements
 - B. Liu, Z. Liu, and D. Towsley, "On the capacity of hybrid wireless networks," IEEE INFOCOM 2003, March 2003
 - Suli Zhao, Ivan Seskar, and Dipankar Raychaudhuri, "Performance and Scalability of Self-Organizing Hierarchical Ad Hoc Wireless Networks", *Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2004)*, March 2004

System Model: Summary

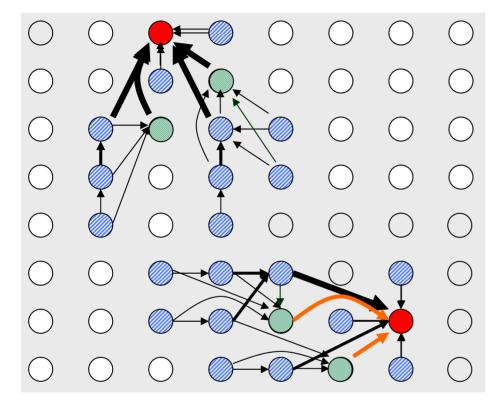
The backhaul costs constitutes a substantial portion of the total deployment costs !



Leasing Costs are based on "Consultation Paper on Revision of Ceiling Tariff for Domestic Leased Circuits", http://www.trai.gov.in/cpaper22.htm

Experimental Evaluation on ORBIT Testbed

- NSF program ("NRT") aimed at establishing a number of open-access network research testbeds, both wired and wireless
- WINLAB (along with Columbia, Princeton and industry partners) currently developing an open-architecture wireless testbed with focus on 4G protocols

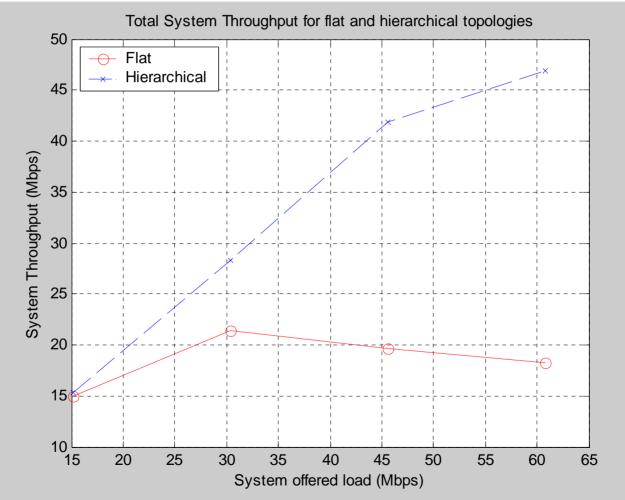


1. Radio Grid for Lab Emulation

2. Field Trial Network

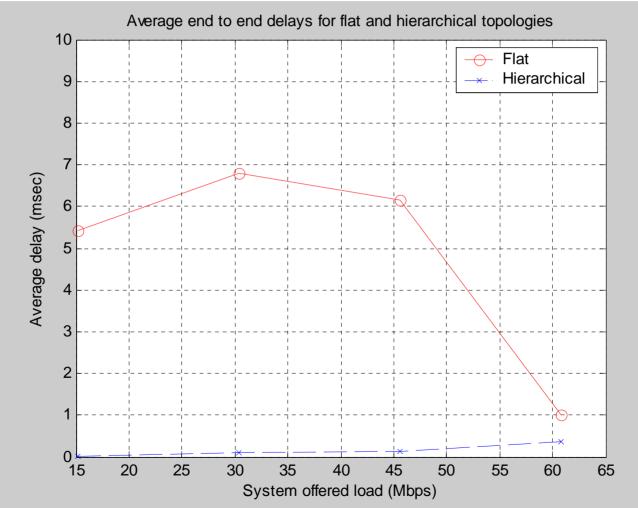
Experimental evaluation

Scaled area considered (0.9 sq. km, 20 users, 4 FNs, 2 APs

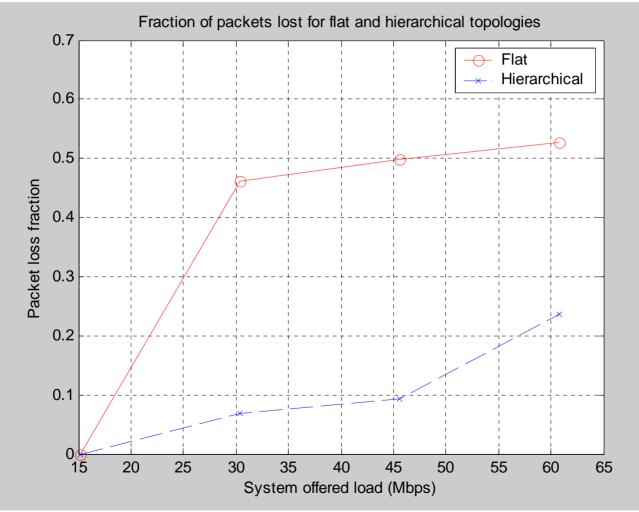

Experiment parameters

Packet size	1024 bytes
Offered load per user	750Kbps, 1.5 Mbps, 2.25 Mbps, 3Mbps
Total offered load	15 Mbps, 30 Mbps, 45 Mbps, 60 Mbps
MAC	802.11a (Atheros chipset)
Flat topology	AP1 on channel 40 (5.2 Ghz) AP2 on channel 56 (5.28 Ghz)
Hierarchical topology	AP1-FN1,2 channel 40 (5.2 Ghz) FN1,2-MN channel 64 (5.32 Ghz) AP2-FN3,4 channel 56 (5.28 Ghz) FN3,4-MN channel 48 (5.24 Ghz)

System Performance on ORBIT


System Throughput

System Performance on ORBIT


Average end-to-end delay

System Performance on ORBIT

Packet loss

Summary of results

	Hotspot	Hierarchical Mesh	802.16 ¹ (projected)
Number of APs (or basestations)	75	20	1
Number of FNs	0	55	0
Data Density (Mbps/sq. km)	~80	~50	~4
End user equipment cost	\$50	\$50	~\$300
(NIC or 802.16 roof mounted unit)			
Capital cost (APs, FNs, 802.16 base stations + associated eq.)	\$75K	\$42K	\$100K
Recurrent cost (access links)	\$12K p.m	\$7488 p.m.	\$10K
Monthly Subscription cost (amortized over a period of three years)	~\$20	~\$11	??

¹WiMax Forum

Concluding Remarks

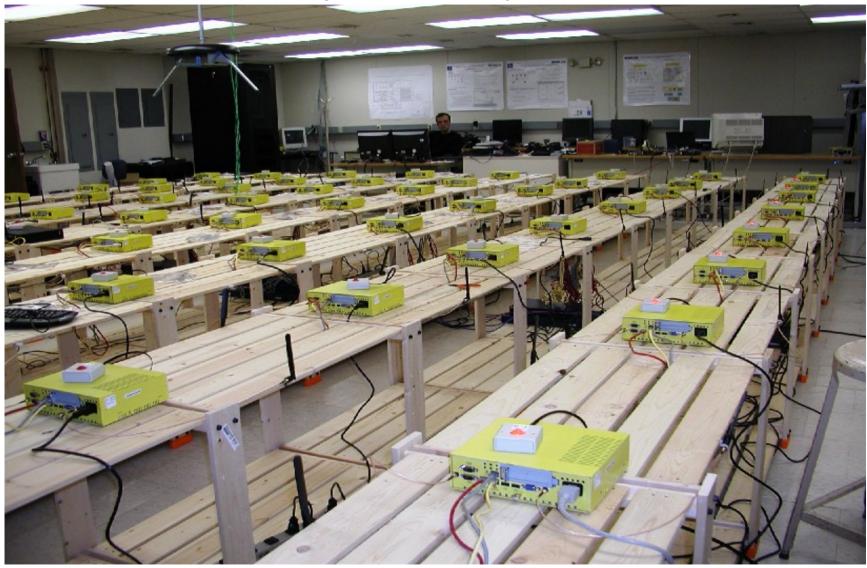
- Hierarchical mesh architecture provides significant capacity and QoS improvements over conventional flat mesh
- "SOHAN" system prototype developed and validated at WINLAB – candidate technology for metro-area mesh
- Results show that system can scale well and meet capacity/cost needs for medium-density urban scenario
- Achieves ~50 Mbps/ sq km at a cost of ~\$11-25 per subscriber per month, comparing quite favorably with alternatives such as 802.16 or hot-spot WLANs

Future Work, References

- Improve protocol performance using cross-layer (integrated PHY, MAC, routing) methods
- Conduct outdoor field trials on ORBIT testbed during 2005-06

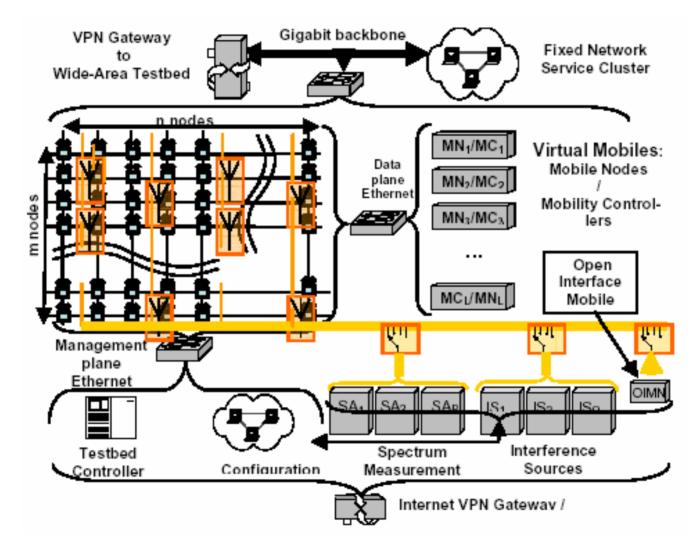
S. Ganu, L. Raju, B. Anepu, I. Seskar, D. Raychaudhuri, "Architecture and Prototyping of an 802.11-based Self-Organizing Hierarchical Ad-Hoc Wireless Network (SOHAN)", Proceedings of the International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2004), Barcelona, Sep 2004

L. Raju, S.Ganu, B. Anepu, I. Seskar and D. Raychaudhuri ,"BEacon Assisted Discovery Protocol (BEAD) for Self-Organizing Hierarchical Wireless Ad-Hoc Networks ", Proceedings of IEEE Global Telecommunications Conference (Globecom 2004), Dallas, Nov 2004


L. Raju, S.Ganu, B. Anepu, I. Seskar and D. Raychaudhuri "BOOST: A BOOtSTrapping Mechanism for Self-Organizing Hierarchical Wireless Ad hoc Networks", IEEE Sarnoff Symposium, Princeton, April 2004

S. Zhao, K. Tepe, I. Seskar and D. Raychaudhuri, "Routing protocols for self-organizing hierarchical ad-hoc wireless networks", *IEEE Sarnoff 2003 Symposium*, March 2003

S. Zhao, I. Seskar and D. Raychaudhuri, "Performance and Scalability of Self-Organizing Hierarchical Ad Hoc Wireless Networks", *Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2004),* Atlanta, GA



ORBIT Testbed (Jan 2005)

ORBIT: Radio Grid

Cost calculation

10% service penetration

Item	Unit Price	Total Price
10 Access Points	~\$1000	\$10000
35 FN	~\$400	\$14000
Total fixed costs	\$24000	

Item	Unit Price (per month)	Total Price
80 leased lines	(Rs 24000 p.a.)/(12 × 50)	\$3200 per
(64 Kbps each)	~\$40	month

Recurrent costs

50% service penetration

Item	Unit Price	Total Price
20 Access Points	~\$1000	\$20000
55 FN	~\$400	\$22000
Total fixed costs	\$42000	

Item	Unit Price (per month)	Total Price
188 leased lines (64 Kbps each)	(Rs 24000 p.a.)/(12 × 50) ~\$40	\$7488 per month
Recurrent costs		

Fixed costs

Fixed costs

Costs amortized over three years over number of subscribers

10% - (24000 + 36 × 3200) = \$139200 / 160 ~ \$24 per user per month

50% - (42000 + 36 × 7488) = \$311568 / 780 ~ \$11 per user per month

