Discovery in Self-Organizing Hierarchical Ad Hoc Wireless Networks and SOHAN Prototype

Sachin Ganu, Lalit Y. Raju

Advisors

D. Raychaudhuri

I. Seskar

Outline

Motivation

- Study of discovery mechanisms
 - Centralized and Distributed
- Beacon-Assisted Distributed Discovery Protocol (BEAD)
- Performance of discovery protocols
- Details of prototype implementation (SOHAN)
- Conclusions and Future Work

Existing Ad-hoc Networks

Protocol stack at each node

Topology is defined by the paths chosen by the routing protocol

- Proactively using table exchanges
- Reactively using on-demand routerequests

Motivation

- No discovery phase in traditional ad-hoc networks
- Routing protocol responsible for topology formation either using on-demand route requests (e.g. DSR) or proactive exchange of neighbor tables (e.g. DSDV)
 - For dense topologies, this could generate a lot of routing messages due to 'global' exchange of information
 - For multi-channel networks, routing information may need to be propagated across multiple channels
 - All nodes assumed to be homogenous and hence use the same routing decision (minimum delay, minimum energy etc)

Discovery

- Introduce discovery layer between MAC and Routing
 - Filters links made available to the routing protocol based on desired objective function – reduces routing overhead
 - Allows each node to apply a different objective depending on the role it plays
 - Supports multi-channel operation of network

Aim

- Need a distributed mechanism for neighbor discovery that
 - Allows topology control based on desired objective function at each node
 - Supports multi-channel operation
 - Reduces routing overhead

Approach

- Study topologies established by centralized routing strategies for motivating distributed heuristics
- Design a distributed discovery algorithm whose performance is comparable to the centralized strategy
- Study the benefits of the distributed approach in terms of routing overhead compared to a network without discovery

3-Tier Hierarchical Architecture

Centralized Discovery Study

- Baseline reference to motivate distributed heuristics and also for comparing performances
- Three basic topologies: minimum energy, minimum delay and maximum throughput
- Using linear programming in MATLAB, study effects of delay and throughput constraints on minimum energy objective function

Centralized Study

Equivalent to standard shortest-path routing protocols

Minimum Energy with Delay Constraint

Delay constraint = 3 hops

Delay constraint = 2 hops

Objective: Minimize energy to AP subject to delay constraint of 'n' hops

Minimum Energy with Throughput Constraint

Without throughput constraints

With throughput constraints

Distributed Discovery Algorithms

Previous centralized study is used as a baseline and is not suitable for actual deployment

Need a mechanism that matches the performance of centralized scheme and is distributed as well

Beacon-Assisted Distributed Discovery Protocol (BEAD)

- Three-way handshake to form associations
- Routing phase occurs *after* discovery is complete
- Route requests are forwarded only over links formed during discovery

Distributed Algorithms

- ME Transmit power minimization at MN layer and delay minimization at FN layer
 - Suggested by observations of centralized analysis
- MD Delay minimization at both MN and FN layers
 - Standard objective of routing algorithms

NS-2 Simulation Parameters

- Data Type CBR/UDP
- Packet Size 64 bytes
- Beacon Interval 100ms
- Missed beacons permitted 5
- Rescan timer (Number of Beacon Intervals) 50
- Routing protocol AODV
- MAC Protocol 802.11
- Maximum data rate -1Mbps
- 1000x1000m area unless otherwise mentioned

Comparison with Centralized Study

Algorithm Used for comparison: ME

(minimize energy consumption at MN's, minimize delays at FN's.)

Energy consumption

Delay

Effects on Routing Overhead

Routing overhead vs. number of nodes

Routing overhead vs. mobility

The discovery protocol significantly reduces routing overhead

Prototype details

PLATFORM

Access Point

US Robotics 2450 AP AMD Elan SC400 processor 1 MB Flash, 4 MB RAM Prism-2 based PCMCIA card

Forwarding node

Compulab 586 CORE

AMD Elan SC520 CPU

2 MB NOR flash + 64 MB NAND Flash on board

Dual PCMCIA slots

<u>Sensors</u>

Intrinsyc Cerfcube Intel PXA 250 (XScale processor) CF-based wireless support

802.11b ad-hoc mode

TAB Spring 2004

Prototype Components

- Initial bootstrapping (channel allocation and transmit power levels using scripts)
- Discovery (BEAD) Implementation
- Distance-vector based routing protocol
- Data transfer from MN's to AP's upon association

BEAD Implementation

Routing Protocol

MN simply sends data to parent (no routing involvement)

FN periodically exchanges routing table with associated neighbors

Neighbor table forms basis for initial routing table entries and updates

AP periodically broadcasts neighbors tables

Routing table at an FN/AP

WIRELESS INFORMATION NETWORK LABORATORY

Initial Benchmarking Results

WIRELESS INFORMATION NETWORK LABORATORY

IAB Spring 2004

Future Work

- Study inter-layer interactions between MAC, discovery and routing protocols
- Look into tradeoff between robustness and sparseness of topology
- Using the ORBIT platform, perform experiments with a larger number of nodes to study the effects of scale on the proposed architecture

Minimum Energy with Delay Constraint

Objective function:

$$\min\sum_{i=1}^N\sum_{j=1}^N P_{ij}X_{ij}$$

Flow Conservation:

$$\sum_{i=1}^{N} X_{ij} - \sum_{i=1}^{N} X_{ji} = 0 \forall j, j \in \Omega$$
$$\sum_{i=1}^{N} X_{i1} - \sum_{i=1}^{N} X_{1i} = 1$$
$$\sum_{i=1}^{N} X_{ji} - \sum_{i=1}^{N} X_{ij} = 1, \forall j \in \Psi$$

Delay Constraint:

$$\sum_{i=1}^{N}\sum_{j=1}^{N}X_{ij} \leq D$$

Limit on all flows:

 $X_{ii} \geq 0$

N is the number of nodes in the system

P_{ij} represents the power consumed per bit over the link between node i and node j

 $(P_{ij} = P_{t(i \rightarrow j)} * Maximum Data Rate^{-1})$

Pt represents the transmit power cost along a link

 X_{ij} represents the flow over the link between node i and node j and is either 0 or 1

 Ω represents the set of forwarding nodes and access points in the system

I is the Internet represented by a single node acting as the destination for all sensor traffic

 $\boldsymbol{\Psi}$ is the set of all sensors in the system

D is the maximum permissible end to end delay 2004

Minimum Energy with Throughput Constraint

$$\min\sum_{i=1}^N\sum_{j=1}^N P_{ij}x_{ij}$$

Flow Conservation:

$$\sum_{i=1}^{N} x_{ij} - \sum_{i=1}^{N} x_{ji} = 0 \forall j, j \in \Omega$$
$$\sum_{i=1}^{N} x_{i1} - \sum_{i=1}^{N} x_{1i} = \sum_{s \in \Psi} T_{s1}$$
$$\sum_{i=1}^{N} x_{ji} - \sum_{i=1}^{N} x_{ij} = T_{j1}, \forall j \in \Psi$$

Limit on all flows:

 $x_{ij} \leq 0$

Wireless medium sharing:

Flows through arcs incident at a node sum up to the maximum available data rate

N is the number of nodes in the system

P_{ij} represents the power consumed per bit over the link between node i and node j

 $(P_{ij} = P_{t(i \rightarrow j)} * Maximum Data Rate^{-1})$

Pt represents the transmit power cost along a link

 x_{ij} represents the flow over the link between node i and node j

 $\boldsymbol{\Omega}$ represents the set of forwarding nodes and access points in the system

I is the Internet represented by a single node acting as the destination for all sensor traffic

 Ψ is the set of all sensors in the system

 $T_{ij} \mbox{ is the traffic destined from node i to node j; the traffic is CBR <math display="inline">% \left({{{\bf{CBR}}} \right)_{ij} } \right)$

