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and approved by

New Brunswick, New Jersey

May, 2004



c© 2004

Jianghong Luo

ALL RIGHTS RESERVED



ABSTRACT OF THE DISSERTATION

Service Outage Based Adaptive Transmission in Fading

Channels

by Jianghong Luo

Dissertation Director: Prof. Roy Yates, Prof. Predrag Spasojević

The service outage based allocation problem explores variable rate transmission schemes

and combines the concepts of ergodic capacity and outage capacity for fading channels.

The ergodic capacity determines the maximum achievable rate for non real-time appli-

cations, and the outage capacity is developed for constant rate real-time applications.

Neither is completely appropriate for variable rate multimedia applications for next

generation wireless networks. In this context, the service outage based allocation prob-

lem is proposed. A service outage occurs when the instantaneous transmission rate is

smaller than a basic rate specified by an application. The service outage allocation

problem is to find the optimum power allocation that maximizes the average rate sub-

ject to a service outage probability constraint and an average power constraint. The

optimum power allocation is derived for a single flat fading channel, and is general-

ized to M parallel fading channels. Two near optimum schemes are also derived for

a small outage probability. The minimum outage based near optimum scheme signifi-

cantly reduces the computational complexity. The allocation problem with respect to

the energy efficiency is also examined for M = 1 fading channel. In the application of

the transmission of mixed real-time and non real-time services in fading channels, the

ii



optimum service outage based allocation can be implemented using an adaptive chan-

nel partition approach. The optimum fixed channel partition scheme is derived and

compared to the adaptive scheme. In addition, a suboptimum fixed partition scheme

called proportional average power partition is studied and observed to be close to the

optimum fixed partition scheme in the Rayleigh fading channel.

We also study the performance of variable-rate turbo bit-interleaved coded modu-

lation (Turbo-BICM) with random puncturing. A union-Bhattacharyya rate threshold

for the Turbo-BICM based on a reliable channel region for turbo codes transmitted

over parallel-channel is derived. A closed form approximation of this rate threshold is

determined for an AWGN channel. This rate threshold is shown to predict the Turbo-

BICM iterative decoding performance very well. Adaptation of Turbo-BICM in a slow

fading channel is studied. The optimum power and modulation allocations are de-

scribed. A dual problem solution which achieves a rate close to the optimum solution

with significantly reduced computational complexity is described. Two simple schemes:

water-filling with optimum modulation and equal power allocation with optimum mod-

ulation are also presented and shown to achieve a good performance. Proposed adaptive

schemes are shown to achieve a rate within 2−3 db of the ergodic capacity of a Rayleigh

fading channel.
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Chapter 1

introduction

1.1 Background and Motivation

Wireless communication channels vary with time due to multipath, user mobility, and

changes in the environment. Channel variations are characterized by two types of fad-

ing: large-scale pathloss and shadow fading, and small-scale multipath fading [73]. The

large-scale path loss and shadowing specify signal attenuation as a function of distance,

which is affected by prominent terrain contours (buildings, hills, forests, etc.). They

describe the mean signal attenuation as a function of distance in the form of nth-power

law as well as the statistical variation about the mean. Small-scale fading refers to the

dramatic changes in signal amplitude due to the small changes of distance (as small as

a half-wavelength) in the space. Small-scale fading can be flat or frequency-selective,

depending on the transmission bandwidth of the radio relative to the coherence band-

width of the channel [73].

Wireless communication systems are characterized by limited resources such as spec-

trum and battery energy. Efficient use of limited resources in the wireless channel is of

significant interest. For a time varying channel, adaptive transmission is one approach

to achieve this goal. In the case of nonadaptive transmission, a fixed link margin is

required to maintain acceptable performance when the channel quality is poor. Thus,

nonadaptive systems are effectively designed for the worst case channel conditions, re-

sulting in an insufficient utilization of the full channel capacity. In contrast, adaptive

transmission systems dynamically allocate according to channel conditions one or more

of the following: power, modulation and coding scheme, spreading gain (in a spread

spectrum system), packet length, and bandwidth occupancy [71]. Adaptation can take

advantage of favorable channel conditions, and, thus, allow for a more efficient usage
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of energy and spectrum. Adaptive transmissions have been employed in EDGE [33],

GPRS [31], and HDR [4], and are proposed as standards for next generation cellular

systems. A survey of adaptation techniques for various wireless systems can be found

in [65].

Wireless communication systems are expected to provide a wide variety of services,

including voice, video, and data. The system performance criterion is usually applica-

tion specific, therefore, different classes of applications will result in different adaptive

transmission schemes. Most of the services provided by wireless systems can be divided

into four different QoS classes based on their ability to tolerate delay and some other

requirements [47]. These classes are as follows:

• Conversational class - for voice traffic

• Streaming class - for audio and video traffic

• Interactive class - for web browsing and database access traffic

• Background class - for best effort traffic

In order to meet or exceed the QoS requirements of these applications in a time vary-

ing wireless environment, adaptive transmission and resource allocation schemes can

be employed. Indeed, limited adaptation has already been adopted in the second-

generation CDMA systems for an acceptable voice quality. In IS-95 terminals, trans-

mitted power is adjusted to achieve a fixed target Eb/N0 level at the base station [78].

In the third-generation wireless networks such as Universal Mobile Telecommunications

System (UMTS), adaptive mechanisms are employed at the air interface, radio access

network, and core network levels to provide a required quality of service [30].

So far, we can see two important objectives: efficient spectrum and battery energy

utilization, and maintenance of the QoS requirements of applications. Two approaches

have been taken in the literature to study adaptive schemes for accomplishing these

objectives. In several papers, for example [11, 23, 72], a queuing model was set up and

adaptive schemes based on channel states, buffer state, and packet arrival statistics

were studied. The analytical development in this direction requires combining queuing
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theory and information theory; the initial investigation in [77] formulated problems

that remain open. Another approach is to apply information theory while using simple

parameters to characterize the QoS requirements. The delay limited capacity and

capacity versus outage are examples of this approach [18, 42]. In this work we follow

the second approach.

In order to differentiate real-time from non real-time service, three capacity measures

have been defined in the literature: ergodic capacity [38], delay limited capacity [42], and

capacity versus outage probability [18, 68]. A comprehensive survey of these concepts

can be found in [13]. The ergodic capacity [38] was developed for non real-time data

services. It determines the maximum achievable rate averaged over all fading states.

The corresponding optimum power allocation is the well known water filling allocation

[24, 34]. The ergodic capacity is not necessarily relevant for constant-rate real-time

applications, since the ergodic time needed to average out all fading states is usually

much longer than the delay constraint of these applications. Delay limited capacity [42]

and the capacity versus outage probability [18,68] were developed for constant-rate real-

time applications. They determine the highest achievable rate or ε-rate [82] within an

application defined delay time interval. Some of the results regarding to these capacity

notions are summarized below.

• Ergodic capacity. Ergodic capacity was first derived by Goldsmith [38]. In [38],

multiple codebooks with adaptive rate and adaptive power are used, and the re-

sulting maximum achievable time average rate is the ergodic capacity. Ergodic

capacity can also be achieved by using a single constant rate codebook in con-

junction with adaptive power control [13, 18]. Ergodic capacity for multi-access

fading channels is examined in [79] and for broadcast fading channels in [51].

• Delay limited capacity. Delay limited capacity was introduced by Hanly and

Tse [42]. In [42], the instantaneous mutual information is kept constant over

all states of the fading process. This maximum achievable instantaneous mutual

information is called the delay limited capacity. In a single user flat fading channel,

the corresponding optimum power allocation policy is channel inversion.
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• Capacity versus outage probability. The concept of capacity versus outage

probability was introduced by Ozarow, Shamai, and Wyner for block interference

fading channels [68]. An information outage occurs if the instantaneous mutual

information is less than a target transmission code rate. The capacity-versus-

outage performance is determined by the information outage probability for a

given rate. In [18], Caire, Taricco, and Biglieri identify the optimum power allo-

cation scheme which minimizes the information outage probability for M parallel

block fading channels. In [18], the zero-outage capacity is defined as the delay

limited capacity using the terminology of [42]. In [66], Negi and Cioffi introduced

an optimum causal power adaptation strategy for fading blocks separated in time.

In [50], Li and Goldsmith derived the optimum power allocation which minimizes

the outage probability for fading multiple access channels. The capacity versus

outage probability for the broadcast fading channel can be found in [52].

1.2 Service Outage Based Allocation Problem

We notice that for some variable-rate real-time applications, neither the ergodic capacity

nor the outage capacity is appropriate. For example, for applications with simultaneous

voice and data transmissions, as soon as a basic rate ro for the voice service has been

guaranteed, any excess rate can be used to transmit data in a best effort fashion. For

some video or audio applications, the source rate can be adapted according to the

fading channel conditions to provide multiple quality of service levels. Typically, a

nonzero basic rate ro is required to achieve a minimum acceptable service quality. For

these applications, maximizing the long term average rate while meeting a basic rate

requirement for the instantaneous rate allocation is a desirable property. However,

neither the ergodic capacity nor the outage capacity can achieve this goal, since the

ergodic capacity offers no guarantee on the instantaneous rate while the outage capacity

achieves a low long term average rate. Therefore, in this paper we combine the notion of

ergodic capacity and outage capacity, and formulate the service outage based allocation

problem, which maximizes the long term average rate subject to basic rate and average

power constraints.
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In a Rayleigh fading channel, infinite average power is needed to achieve any nonzero

rate at all times. Hence, we impose the basic service rate requirement in a probabilistic

way to obviate a need for infinite average power. The service is said to be in an

outage when the instantaneous rate is smaller than the basic service rate ro. A service

outage constraint dictates that the probability of a service outage be less than ε, a

parameter indicating the outage tolerance of the application. Unlike the information

outage in the capacity versus outage problem [18, 66], the bits transmitted during the

service outage may still be valuable in that they will be transmitted reliably and will

contribute to the average rate. The service outage based allocation problem is to find

the optimum power allocation that maximizes the average rate subject to the service

outage probability constraint and the average power constraint.

Although the service outage based allocation problem has been motivated by variable-

rate real-time applications, it also characterizes coverage versus capacity tradeoffs in cel-

lular systems. Mobility in cellular systems results in channel variations due to changes

in distance attenuation. An important objective of a cellular system is to provide a

basic service rate over as much of the service area as possible. In this case, the service

outage constraint characterizes the spatial coverage requirement of the system. In the

allocation problem of this work, the objective is then to maximize the average rate over

all geographic locations subject to meeting the service outage constraint.

Similar to the service outage concept, a minimum rate requirement has recently

been stressed for the fading broadcast channel in [45, 46]. In [46], the minimum rate

requirement is imposed on each channel state. In [45] the minimum rate with outage

is further discussed. The minimum rate problem with outage for a single user channel

in [45] is the same as our service outage problem in [58, 59].

1.3 Thesis Outline

In this work, we assume that perfect channel state information is available at both

transmitter and receiver and that the fading process is ergodic within the whole com-

munication session. Furthermore, we assume that the channel is slowly fading relative
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to the codeword length; that is, the channel state is constant during the transmission

of a codeword.

The thesis is organized as follows. In Chapter 2, we study the service outage

based allocation problem in a single flat fading channel model. Numerical results for

a Rayleigh fading channel are given. The coverage versus capacity tradeoffs in cellular

systems are also examined for a geographic attenuation due to path loss. In Chapter

3, energy efficiency under a service outage constraint are examined for a single flat

fading channel model. In Chapter 4, we generalize the service outage approach to an

M -parallel fading channel model. In Chapter 5, we apply the service outage approach

to applications with simultaneous data and voice transmissions. In Chapter 6, we study

variable rate turbo bit-interleaved code modulation.
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Chapter 2

Service Outage Based Capacity in a Single Flat Fading

Channel

In this chapter, the service outage based allocation problem is studied in a single flat

fading channel model. In Section 2.1, the system model and the optimization problem

are presented. In Section 2.2, the optimum allocation policy is derived for continuous

channel distribution. In Section 2.3, a supporting theorem for the optimum allocation

policy is proved. Further discussion of the optimum solution is presented in Section

2.4. In this chapter, we only consider a continuous channel distribution. The alloca-

tion problem for the discrete channel distribution in the class of deterministic schemes

requires to determine for each channel state whether it is in outage or not, and can be

formulated as a mixed integer programming problem, which in general does not have a

closed form solution. However, it will be studied in the class of probabilistic schemes

in Chapter 4 for the more general M -parallel fading channel model.

2.1 Channel Model and Allocation Problem

In this work, we employ the block flat fading Gaussian channel (BF-AWGN) model [68].

In the BF-AWGN channel, a block of N symbols experiences the same channel state,

which is constant over the whole block, but may vary from block to block. The value

of N is related to the product of the coherence time and the coherence bandwidth of

the wireless channel. We make the following assumptions:

• The channel state information is known perfectly at both transmitter and receiver.

Within each block we have the time-invariant Gaussian channel

y =
√

hx + n. (2.1)
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Here x is the channel input, y is the channel output, n is white Gaussian noise

with variance σ2, and h is the channel state.

• One codeword spans one fading block and the block size N is sufficiently large for

reliable communication.

This assumption is reasonable as long as the product of the coherence bandwidth

and the block duration is large enough. Since each codeword spans only one

block, the decoding delay is fixed and independent of the correlation structure of

the fading process.

• The fading process is ergodic over the time scale of the application.

In this work, our objective is to maximize the average rate while meeting the

service outage constraint. Under this assumption, the time average rate is equal

to the expected rate. Depending on the system and application, there can be

great variation in the time scale over which this average would be achieved. In

the context of Rayleigh fading, we may observe the time average over a large

number of fade durations within a single communication session. In the context

of cellular coverage, the average rate would characterize performance over multiple

communication sessions in a large number of geographic locations.

Let f(h) denote the probability density function of the channel state h and F (h) denote

the corresponding cumulative distribution function. Here, we only consider the case

where h is a continuous random variable. Let p(h) denote the power allocation for a

channel state h and r[hp(h)] denote the capacity of a Gaussian channel with received

power hp(h), where

r[p] = log
(

1 +
p

σ2

)

. (2.2)

In the thesis, for the convenience of derivation (and without loss of generality), we drop

the usual factor 1/(2 log(2)) in the capacity expression 2.2. We take into account this

factor in all the simulation results and the unit for the rate is bits/symbol. The assigned

code rate for a channel state h is always equal to the capacity of the Gaussian channel

r[hp(h)] with received power hp(h). Under a service outage constraint, we allow for the
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transmission code rate to be only occasionally (with a probability less than or equal

to ε) below an application specified rate ro. Therefore, given the average power Pav,

the basic service rate ro, and the allowable service outage probability ε, we wish to

maximize the expected code rate, as follows:

R∗ =max
p(h)

Eh {r[hp(h)]} (2.3)

subject to: Eh {p(h)} ≤ Pav (2.3a)

p(h) ≥ 0 (2.3b)

Pr{r[hp(h)] < ro} ≤ ε . (2.3c)

In the absence of the service outage constraint (2.3c), R∗ would be the ergodic capacity

for the fading channel, and the well known water filling allocation [24,34] would be the

corresponding optimum power assignment.

2.2 Optimum Power and Rate Allocation

In this section, we derive an optimum power allocation p∗(h) for problem (2.3). The

difficulty in deriving p∗(h) is primarily due to the probabilistic constraint (2.3c). Since

the probabilistic constraint is not a continuous function of p(h), many well known

optimization theorems, such as Kuhn-Tucker conditions, can not be applied directly.

Our approach first solves an optimization problem with a basic rate requirement on an

arbitrary set Ha. Next, we show that for the optimum power allocation scheme the

service outage must occur in bad channel states below a certain threshold. Finally,

we show that an optimum power allocation can be derived based on the optimization

problem with a particular Ha.

Given a basic service rate ro and an arbitrary power policy p(h), the corresponding

service set is defined as Hs(p(h)) = {h|r[hp(h)] ≥ ro}, and its complement is the outage

set Ho(p(h)) = {h|r[hp(h)] < ro}. In the following optimization problem, we require
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that the service set contains an arbitrary set Ha.

R∗(Ha) =max
p(h)

Eh {r[hp(h)]} (2.4)

subject to: Eh {p(h)} ≤ Pav (2.4a)

p(h) ≥ 0 (2.4b)

r[hp(h)] ≥ ro h ∈ Ha. (2.4c)

Clearly, constraint (2.4c) implies that Ha is a subset of all service sets corresponding

to feasible policies for problem (2.4). Let p∗(h,Ha) denote an optimum solution to

problem (2.4). Therefore, p∗(h,Ha) achieves the highest average rate among all the

schemes whose service set contains Ha.

Problem (2.4) does not necessarily have a solution for a given (Pav , ro,Ha). Con-

straint (2.4c) implies that a feasible allocation p(h) must satisfy

p(h) ≥ σ2(ero − 1)

h
h ∈ Ha. (2.5)

This implies that the minimum average power needed to meet the constraint (2.4c) for

a given (ro,Ha) is

Pmin(ro,Ha) =

∫

Ha

σ2(ero − 1)

h
f(h) dh. (2.6)

Consequently, problem (2.4) has a solution only if Pav ≥ Pmin(ro,Ha). When Pav =

Pmin(ro,Ha) the corresponding power allocation is

p∗(h,Ha) =











σ2(ero − 1)

h
h ∈ Ha

0 otherwise
(2.7)

When Pav > Pmin(ro,Ha) the corresponding power allocation is given by the following

theorem. We use the notation (x)+ = max(x, 0).

Theorem 1 When Pav > Pmin(ro,Ha) the optimum solution for problem (2.4) is:

p∗(h,Ha) =















σ2(ero − 1)

h
h ∈ Ha ∩ {h ≤ h0e

ro}

σ2

[

1

h0
− 1

h

]+

otherwise
, (2.8)

where h0 is the solution of Eh {p∗(h,Ha)} = Pav.
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Theorem 1 follows from standard variational arguments [22] and Kuhn-Tucker condi-

tions [3]. Note that when Pav = Pmin(ro,Ha) the resulting power allocation (2.7) can be

viewed as a limiting case of expression (2.8) as h0 → ∞. The power allocation p∗(h,Ha)

is a combination of channel inversion and water filling allocations. To obtain a high

average rate, we would like to allocate power in the form of the water filling allocation,

while to meet the service constraint (2.4c), we must allocate power no less than the

channel inversion allocation within the set Ha. The solution p∗(h,Ha) balances these

two factors.

Given the distribution F (h) on channel states, we define hε such that F (hε) = ε.

Note that hε is well defined if h is a continuous random variable. The threshold hε par-

titions the channels into a set Hε = {h ≥ hε} of good channels and the complementary

set Hε = {h < hε} of bad channels. Since an efficient policy ought to meet the service

constraint on the good channel states, it seems likely that Hε should be a subset of the

service set of an optimum policy. In the following, we show that problem (2.4) with

Ha = Hε generates an optimum solution of problem (2.3) p∗(h) = p∗(h,Hε). In order

to prove this, we need to define the partial ordering ≺ and a number of preliminary

results.

Definition 1 H1 ≺ H2 if h1 < h2 for all h1 ∈ H1 and h2 ∈ H2.

Theorem 2 Problem (2.3) has an optimal solution p∗(h) with outage set Ho(p
∗(h))

and service set Hs(p
∗(h)) satisfying Ho(p

∗(h)) ≺ Hs(p
∗(h)).

Proof of Theorem 2 involves a somewhat complicated two-step construction and is

deferred to Section 2.3. Using Theorem 2 and the fact that Pr{Hs(p
∗(h))} ≥ 1 − ε by

constraint (2.3c), it is easy to show the following corollary.

Corollary 1 Problem (2.3) has an optimal solution p∗(h) such that Hε ⊆ Hs(p
∗(h)).

Now we can prove p∗(h) = p∗(h,Hε) by showing that R∗ = R∗(Hε). With Ha = Hε

in the outage constraint (2.4c), the service set of p∗(h,Hε) must contain Hε. Thus

p∗(h,Hε) satisfies the outage constraint (2.3c) and is a feasible power allocation scheme

for problem (2.3), implying R∗(Hε) ≤ R∗. On the other hand, Corollary 1 implies that
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problem (2.3) has an optimal solution p∗(h) achieving an average rate of R∗ that satisfies

constraint (2.4c) with Ha = Hε. Thus, p∗(h) is a feasible power allocation scheme for

problem (2.4) and R∗ ≤ R∗(Hε). Therefore, R∗ = R∗(Hε). In conclusion, an optimum

solution is p∗(h) = p∗(h,Hε) and the following conclusions apply to problem (2.3).

• Problem (2.3) is feasible only if (Pav, ro, ε) satisfies

Pav ≥ Pmin(ro,Hε) =

∫ ∞

hε

σ2(ero − 1)

h
f(h) dh, (2.9)

• When Pav = Pmin(ro,Hε) we have

p∗(h) =











σ2(ero − 1)

h
h ≥ hε

0 h < hε

. (2.10)

• When Pav > Pmin(ro,Hε), we can apply Theorem 1 with Ha = Hε yielding an

optimum solution to problem (2.3) of the form

p∗(h) =















σ2(ero − 1)

h
h ∈ {h ≥ hε} ∩ {h < h∗

0e
ro}

σ2

[

1

h∗
0

− 1

h

]+

otherwise
, (2.11)

where h∗
0 is the solution of Eh {p∗(h)} = Pav. As Pav approaches Pmin(ro,Hε),

h∗
0 → ∞ and the power allocation (2.11) will reduce to the allocation (2.10).

2.3 Optimum Service Sets

In this section, we will prove Theorem 2, which implies that we can find an optimal

solution whose service set Hs(p
∗(h)) includes the good channel states Hε.

Before the proof of Theorem 2, let us first examine the following discrete channel

distribution case with equal probability. This simple example can provide some intuition

behind Theorem 2. Let h1 and h2 be two channel states with equal probability. WIthout

loss of generality, we assume h1 < h2. Let r1 and r2 be two rates assigned to h1 and h2

respectively. Then the power for the two channel states are er1−1
h1

and er2−1
h2

respectively.

If r1 > r2, it is easy to show that

er1 − 1

h1
+

er2 − 1

h2
>

er2 − 1

h1
+

er1 − 1

h2
. (2.12)
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Therefore, if we switch the rates for h1 and h2, the average power is reduced, while

the average rate and the outage probability remain the same. This implies that in

the optimum scheme the rate function should be a non-decreasing function of channel

states.

Although it is easy to prove Theorem 2 in the case of discrete channel distribution

with equal probability, the switching approach used in the above example is hard to ex-

tend to continuous channel distribution and discrete channel distribution with unequal

probability. Thus, in this section, we adopt a different approach. Our approach will be

to show that given an arbitrary feasible power allocation scheme p̂(h), we can always

construct a better scheme p′′(h) which satisfies Ho(p
′′(h)) ≺ Hs(p

′′(h)). This implies

that there is an optimum power allocation scheme p∗(h) with Ho(p
∗(h)) ≺ Hs(p

∗(h)).

Let Ĥs denote the service set and R̂ the average rate for the policy p̂(h). Feasibility

of p̂(h) implies Eh {p̂(h)} ≤ Pav and Pr{Ĥs} ≥ 1 − ε. We use a two-step construction.

First, we construct p′(h) from p̂(h) by setting Ha = Ĥs in problem (2.4), yielding the

solution

p′(h) = p∗(h, Ĥs) =















σ2(ero − 1)

h
h ∈ Ĥs ∩ {h < h′

0e
ro}

σ2

[

1

h′
0

− 1

h

]+

otherwise
, (2.13)

where h′
0 is the solution of Eh{p∗(h, Ĥs)} = Pav. Here in the case of Pav = Pmin(ro, Ĥs),

p′(h) can be expressed by (2.13) as h′
0 → ∞. Clearly, p′(h) is feasible and achieves a

higher average rate than p̂(h). Second, we construct p′′(h) by decomposing p′(h) into

a water filling component and a residual power component. Given h′
0, we define the

following functions over the whole channel state space:

pwf(h) = σ2

[

1

h′
0

− 1

h

]+

0 ≤ h ≤ ∞ (2.14)

p′res(h) =

(

σ2(ero − 1)

h
− pwf(h)

)+

0 ≤ h ≤ ∞. (2.15)

The function pwf(h) is a water filling allocation over the whole channel space. The

function p′res(h) is the nonnegative difference of channel inversion and water filling

allocations. Note that p′res(h) depends only on the water filling cutoff h′
0 and ro.
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From (2.13), we observe that water filling alone meets the service condition R(hp(h)) ≥

ro over the set of channel states

H′
wf =

{

h|h ≥ h′
0e

ro
}

(2.16)

In particular, p′res(h) = 0 for h ∈ H′
wf while residual power p′res(h) > 0 is needed to

meet the service condition over the channel inversion set

H′
inv = Ĥs\H′

wf . (2.17)

Thus, p′(h) can be rewritten in the form

p′(h) = pwf(h) + 1 (h ∈ H′
inv)p

′
res(h) (2.18)

where 1 (x) denotes the indicator function such that 1 (x) = 1 when x is true, and 0

otherwise. Here, we call 1 (h ∈ H′
inv)p

′
res(h) the residual power allocation for p′(h). As

shown in Figure 2.1, p′(h) can be viewed as a two-layer allocation: the first layer is the

water filling allocation over the whole channel space and the second layer is the residual

power allocation over H′
inv.

Based on p′(h), we construct p′′(h) by preserving the first layer water filling allo-

cation and redistributing the residual power. Intuitively, the best allocation scheme

for the residual power is to allocate it to the good channel states. Since p′
res(h) is

strictly positive within 0 ≤ h < h′
0e

ro , we will allocate the residual power over the

interval [h′
b, h′

0e
ro ] where h′

b is chosen to consume the total residual power. As shown

in Figure 2.1, we have

p′′(h) = pwf(h) + 1 (h ∈ H′′
inv)p

′
res(h) (2.19)

where

H′′
inv =

{

h′
b ≤ h < h′

0e
ro
}

, (2.20)

and h′
b is the solution to

∫

H′′
inv

p′res(h)f(h) dh =

∫

H′
inv

p′res(h)f(h) dh. (2.21)

Note that (2.18), (2.19), and (2.21) imply that p′′(h) has the same total power as p′(h).

Let R′ and R′′ denote the average rates for p′(h) and p′′(h), respectively. The

following lemma gives us the properties of p′′(h).
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R(hp(h))^

r0

h
service set

p (h)

h0 hh 20

2r0

residual power water filling power

h0 hh 20

2r0

residual power water filling powerp (h)

Figure 2.1: (a) Rate allocation R(hp̂(h)) for policy p̂(h), (b) the improved policy p ′(h)
given by (2.18) with water filling pwf(h) and residual power 1 (h ∈ H′

inv)p
′
res(h), (c) the

new policy p′′(h) given by (2.19) with water filling pwf(h) and residual power 1 (h ∈
H′′

inv)p
′
res(h).

Lemma 1 The power scheme p′′(h) has the following properties:

(a) Eh {p′′(h)} = Eh {p′(h)} = Pav

(b) Ho(p
′′(h)) ≺ Hs(p

′′(h))

(c) R′′ ≥ R′

(d) Pr{Hs(p
′′(h))} ≥ Pr{Hs(p

′(h))}.

Proof of Lemma 1 is given in Appendix 3.A. At this point, it may be instructive to

review our proof:

1. Start with arbitrary p̂(h) with average rate R̂ and service set Ĥs.

2. Set Ha = Ĥs and solve (2.4) yielding p′(h) with rate R′ ≥ R̂ and service set

Hs(p
′(h)) containing Ĥs. Thus p′(h) is a better power allocation scheme than
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Figure 2.2: For optimum solution types I-IV, power policies are given on the left and
corresponding rate allocation are on the right.

p̂(h) for problem (2.3).

3. Decompose p′(h) into water filling pwf(h) and residual power components 1 (h ∈

H′
inv)p

′
res(h).

4. Fix the water filling component pwf(h) and reallocate the residual power to gen-

erate p′′(h). The power policy p′′(h) satisfies Pr{Hs(p
′′(h))} ≥ Pr{Hs(p

′(h))} and

R′′ ≥ R′. Hence, p′′(h) is a better power allocation scheme than p′(h) for problem

(2.3).

We can conclude that from any feasible p̂(h) we can obtain a better power allocation

p′′(h) in which Ho(p
′′(h)) ≺ Hs(p

′′(h)) holds. This implies that problem (2.3) has an

optimum solution p∗(h) satisfying Ho(p
∗(h)) ≺ Hs(p

∗(h)).

2.4 Properties of the Optimum Policy

In Section 2.2, we derived the optimum allocation scheme for problem (2.3). In this

section, we will discuss this optimum solution, and show how problem (2.3) in this

paper is related to the capacity versus outage probability problem.



17

The optimum power allocation scheme (2.11) includes a combination of channel in-

version and water filling. For a given probability distribution f(h), the optimum solu-

tion belongs to one of the following possible types depending on the value of (Pav, ro, ε):
1

I When Pav = Pmin(ro,Hε), p∗(h) includes no transmission for h < hε and channel

inversion for h ≥ hε.

II When Pav > Pmin(ro,Hε) but hε ≤ h∗
0, p∗(h) includes no transmission for h < hε,

channel inversion for hε ≤ h < h∗
0e

ro , and water filling for h ≥ h∗
0e

ro .

III When Pav is sufficiently high such that hεe
−ro < h∗

0 < hε, p∗(h) includes no

transmission for h < h∗
0, water filling for h∗

0 ≤ h < hε, channel inversion for

hε ≤ h < h∗
0e

ro , and water filling for h ≥ h∗
0e

ro .

IV When Pav is high enough for h∗
0 ≤ hεe

−ro , p∗(h) is just the water filling allocation.

These four types of power allocation schemes as well as the corresponding rate

allocations are depicted in Figure 2.2. For solution types I, II, and III, the optimum

service set is Hs(p
∗(h)) = Hε and the resulting outage probability is ε, while for type

IV solution Hε ⊆ Hs(p
∗(h)) and the resulting outage probability is less than ε. The

Type I solution is the on-off channel inversion allocation. In this case, we have just

enough average power to satisfy the service outage constraint. When we have extra

power beyond Pmin(ro,Hε), we can allocate the power in a more efficient way to obtain

a higher average rate and, at the same time, to meet the service outage constraint.

When Pav is sufficiently high for the water filling allocation to satisfy the service outage

constraint, then it must also be the optimum solution for problem (2.3). Thus, for a

given pair (ro, ε), the optimum power allocation scheme gradually changes from the

on-off channel inversion allocation to the water filling allocation as Pav increases.

Now we examine the connection of the service outage problem with the outage

capacity in [18] and the ergodic capacity in [38]. The outage capacity Cε(Pav) in [18]

specifies the maximum supportable rate for a given average power Pav with outage

1In the case of ro = 0 or ε = 1, the solution types II and III will degenerate into solution type IV,
which is the pure water filling allocation.
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Figure 2.3: Comparison of service outage approach with other capacity notions in the
Rayleigh fading channel, for a fixed ε = 0.01.

probability ε, which implies that the basic service rate in this work must satisfy ro ≤

Cε(Pav). It is easy to see that the above condition is equivalent to the feasibility

condition (2.9), that is, Pav ≥ Pmin(ro,Hε). Furthermore, we can see that the resulting

average rate R∗ changes from Cε(Pav)(1 − ε) to the ergodic capacity with increasing

Pav for a given (ro, ε). In Fig 2.3, the expected rate achieved by the service outage

approach is plotted against the ergodic capacity and the outage capacity in Rayleigh

fading channel with normalized mean for channel gain and normalized noise variance.

As we can see, for a given outage probability ε = 0.01, the outage capacity has nearly a

5 dB loss in average power compared to the ergodic capacity for a given rate. Between

the outage capacity and the ergodic capacity, a number of service outage approaches

with different basic rates exist. The outage probability for different r0 achieved by

the water filling allocation is also plotted against the service outage approach with a

given ε = 0.01 in Fig 2.4. It can be observed that, for a range of Pav, the service

outage approach achieves a rate very close to the ergodic capacity, and at the same

time significantly reduces the outage probability. Hence, the service outage approach

strikes good balance between average rate and outage probability.
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2.5 Coverage versus Capacity Tradeoff in Cellular System

As we said before, problem (2.3) can also characterize the coverage versus capacity

tradeoffs in cellular systems. In this case, the objective is to maximize the average rate

over all geographic locations subject to the spatial coverage requirement of the system.

Now we apply our service outage concept to the cellular system and demonstrate the

coverage versus capacity tradeoff.

We assume a cellular system where the cochannel interference is significantly miti-

gated through cell isolation, sectorization, and smart antennas. We only consider large

scale geographic fading due to path loss. In this case, problem (2.3) can characterize

the long term single user performance in a cellular system. It can be assumed that,

over a long time period, one user travels around the cellular system and experiences

an ergodic geographic attenuation process. Usually, the user expects to get at least a

basic service rate ro almost everywhere (coverage requirement), and at the same time

he would like to be provided a high average rate. The results will be somewhat opti-

mistic in that co-channel interference will further degrade the channel, especially, for

users near the edge of the cell. Using a simple path loss model [49,73], the channel gain
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Figure 2.5: Average rate versus average power

h is a function of distance d to the base station as h(d) = A
(

d0
d

)β
for d0 ≤ d ≤ dmax.

Here A is a constant parameter, dmax is the radius of the cell, and d0 is some close-in

reference distance beyond which the path loss model holds. In this paper, we choose

the path loss exponent β = 4, the cell radius dmax = 1 km, and d0 = 100 m, and only

concentrate on the area from d0 to dmax. We also choose A = 1/Ed[(d0/d)β ] so that

h(d) is normalized as E[h(d)] = 1. Since the mobile station is uniformly distributed

within the cell, the pdf of the distance d is

fD(d) =
2d

d2
max − d2

0

d0 ≤ d ≤ dmax. (2.22)

Since h(d) is a one to one mapping from distance d to channel gain h, we will present

our results in terms of distance d instead of channel gain h.

The average rate versus the average power is plotted in Figure 2.5 with r0 =

0.3 bits/symbol. Four curves are included in this figure depicting the cases of an ergodic

capacity, ε = 0.5, ε = 0.05, and a full coverage ε = 0. The average rate versus the outage

probability is plotted in Figure 2.5 with r0 = 0.3 bits/symbol and Pav = 12.39 dB for
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the coverage versus capacity tradeoff. From these two figures, we can see that the av-

erage rate increases rapidly with the average power and the outage probability. Similar

to Figure 2.5, a small increase in the average power above Pmin(ro, hε) results in a large

increase of the average rate. For a given (ro, Pav) we can also get a much higher average

rate with a small sacrifice in coverage. Figure 2.5 gives the optimum rate allocation for

full coverage, ε = 0, as well as ε = 0.05 and ε = 0.5. With r0 = 0.3 bits/symbol and

Pav = 12.39 dB, if we provide full coverage in the cell, we get 0.3 bits/symbol everywhere

and the average rate is 0.3 bits/symbol. If we allow an ε = 0.05 outage probability, the

average rate is 0.65 bits/symbol. The ergodic capacity of 0.86 bits/symbol is achieved

when ε = 0.5.

2.A Proof of Theorem 1

When Pav ≥ Pmin(ro,Ha), problem (2.4) is feasible and can be, equivalently, translated

into the following problem:

max
p(h)

Eh {r[hp(h)]} (2.23)

subject to Eh {p(h)} = Pav (2.23a)

p(h) ≥ 0 (2.23b)

p(h) ≥ σ2(ero − 1)

h
h ∈ Ha. (2.23b)

This is a standard variational optimization problem [22]. Using a Lagrange multiplier

h0
σ2 , we define

g(p(h), h, h0) =

[

r[hp(h)] − h0

σ2
p(h)

]

f(h). (2.24)

For nonboundary points h ∈ H, where

H =

{

h ∈ Ha|p∗(h,Ha) >
σ2(ero − 1)

h

}

∪ {h /∈ Ha|p∗(h,Ha) > 0} , (2.25)

the optimum solution p∗(h,Ha) must satisfy

dg(p∗(h,Ha), h, h0)

dp∗(h,Ha)
= 0. (2.26)

This implies that for h ∈ H,

p∗(h,Ha) = σ2

(

1

h0
− 1

h

)

. (2.27)
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For boundary points, the optimum solution must satisfy the Kuhn-Tucker conditions [3]:

dg(p∗(h,Ha), h, h0)

dp∗(h,Ha)
≤ 0. (2.28)

We then obtain

p∗(h,Ha) =











σ2(ero − 1)

h
h ≤ h0e

ro and h ∈ Ha

0 h ≤ h0 and h /∈ Ha

(2.29)

Combining (2.27) and (2.29), we obtain the solution given in Theorem 1.

2.B Proof of Lemma 1

2.B.1 Propositions

Power schemes p′(h) and p′′(h) differ in the allocation of the residual power. In order

to show p′′(h) allocates the residual power in a better way than p′(h), we define the

following power efficiency function for p′res(h) over its strictly positive space.

Definition 2 The power efficiency function η(h) for p′
res(h) is

η(h) =
ro − r[hpwf(h)]

p′res(h)
0 ≤ h < h′

0e
ro . (2.30)

The power efficiency function indicates the rate increment corresponding to a unit power

assigned from p′res(h). We have the following property for η(h).

Proposition 1 The power efficiency function η(h) is a strictly increasing function of

h over the interval 0 ≤ h < h′
0e

ro .

Proof: Proposition 1 We consider the cases h ≤ h′
0 and h ≥ h′

0 separately. For

h ≤ h′
0, we have pwf(h) = 0 and

η(h) =
hro

σ2(ero − 1)
, (2.31)

which is an increasing function of h.

For h ≥ h′
0, (2.14), (2.15), and (2.30) imply

η(h) =
ro − log(h/h′

0)

σ2
(

ero

h − 1
h′
0

) (2.32)
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We define u(h) = ro − log(h/h′
0), so that η(h) = η̂(u(h)) where

η̂(u) =
h′

0

σ2

u

eu − 1
(2.33)

It is straightforward to verify that η̂(u) is a strictly decreasing function of u for u ≥ 0.

Since u(h) is a strictly decreasing function of h and u(h) ≥ 0 when h ≤ h′
0e

ro , it follows

that η(h) is an increasing function of h for h′
0 ≤ h ≤ h′

0e
ro . 2

We also employ the following proposition for the proof of Lemma 1.

Proposition 2 For disjoint sets Ψ′ and Ψ′′, let f(x) be an arbitrary function such that

f(x′′) ≥ f(x′) for all x′′ ∈ Ψ′′ and x′ ∈ Ψ′. For any nonnegative function g(x) satisfying
∫

Ψ′′ g(x)dx =
∫

Ψ′ g(x)dx, we have
∫

Ψ′′ f(x)g(x)dx ≥
∫

Ψ′ f(x)g(x)dx.

2.B.2 Proof of Lemma 1

With these preliminaries, we now verify the claims of Lemma 1.

(a) Equations (2.18), (2.19), and (2.21) imply Eh {p′′(h)} = Eh {p′(h)} = Pav.

(b) From equations (2.19) and (2.20), the service and outage sets of p′′(h) are Hs(p
′′(h)) =

{h|h ≥ h′
b} and Ho(p

′′(h)) = {h|h < h′
b} respectively. Therefore, Ho(p

′′(h)) ≺

Hs(p
′′(h)).

(c) Let Ψ = H′
inv ∩H′′

inv so that Ψ′ = H′
inv\Ψ and Ψ′′ = H′′

inv\Ψ are two disjoint sets

and nonempty when p′′(h) 6= p′(h). The average rate of p′(h) can be expressed as

R′ =

∫ ∞

0
r[hpwf(h)]f(h) dh +

∫

H′
inv

(ro − r[hpwf(h)])f(h) dh (2.34)

The rate contribution of the water filling component is

Rwf =

∫ ∞

0
r[hpwf(h)]f(h) dh (2.35)

Since H′
inv = Ψ∪Ψ′, Definition 2 for the efficiency function η(h) allows us to write

R′ = Rwf +

∫

H′
inv

η(h)p′res(h)f(h) dh (2.36)

= Rwf +

∫

Ψ
η(h)p′res(h)f(h) dh +

∫

Ψ′

η(h)p′res(h)f(h) dh (2.37)
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Similarly, H′′
inv = Ψ ∪ Ψ′′, so the average rate for p′′(h) can be expressed as

R′′ = Rwf +

∫

Ψ
η(h)p′res(h)f(h) dh +

∫

Ψ′′

η(h)p′res(h)f(h) dh (2.38)

Thus,

R′′ − R′ =

∫

Ψ′′

η(h)p′res(h)f(h) dh −
∫

Ψ′

η(h)p′res(h)f(h) dh. (2.39)

Note that the construction of H′′
inv implies Ψ′ ≺ Ψ′′. That is, h′ ≤ h′′ for any

h′ ∈ Ψ′ and h′′ ∈ Ψ′′. By Proposition 1, η(h) is a strictly increasing function of h

for 0 ≤ h < h′
0e

ro . Thus, η(h′′) ≥ η(h′). Furthermore, equation (2.21) implies

∫

Ψ′′

p′res(h)f(h) dh =

∫

Ψ′

p′res(h)f(h) dh. (2.40)

Therefore, the conditions of Proposition 2 are satisfied and we have R ′′ ≥ R′.

(d) From equations (2.13), (2.17), (2.19) and (2.20), the service sets Hs(p
′(h)) and

Hs(p
′′(h)) are disjoint unions given by

Hs(p
′(h)) = H′

wf ∪H′
inv = H′

wf ∪ Ψ ∪ Ψ′ (2.41)

Hs(p
′′(h)) = H′

wf ∪H′′
inv = H′

wf ∪ Ψ ∪ Ψ′′ (2.42)

This implies

Pr{Hs(p
′′(h))} − Pr{Hs(p

′(h))} (2.43)

= Pr{Ψ′′} − Pr{Ψ′} (2.44)

=

∫

Ψ′′

1

p′res(h)
p′res(h)f(h) dh −

∫

Ψ′

1

p′res(h)
p′res(h)f(h) dh (2.45)

From equations (2.14) and (2.15), we observe that 1/p′
res(h) is a increasing func-

tion of h. Since Ψ′ ≺ Ψ′′, Proposition 2 implies Pr{Hs(p
′′(h))} ≥ Pr{Hs(p

′(h))}.
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Chapter 3

Energy Efficient Allocation in a Flat Fading Channel

In Chapter 2 the service outage based achievable rate was derived. The service outage

based achievable rate in bits/symbol represents the spectral efficiency since the symbol

rate is determined by the bandwidth. In this chapter, we study the service outage

based allocation from an energy efficiency point of view. Since higher average rate can

be achieved at the expense of higher average power, the objectives of high average rate

and low power consumption are contradictory. We will use an energy efficiency measure

to balance these two objectives. A good measure for the energy efficiency is the ratio

of average rate and average power in bits per Joule. This energy efficiency measure is

an example of capacity per unit cost [83] and can be found in, for example, [20, 89].

The goal is to identify the power allocation that maximizes the energy efficiency under

a service outage constraint. We show that the optimum power allocation assigns the

most energy efficient average power in a most spectrally efficient manner [63].

3.1 Allocation Problem

We employ the same block flat fading channel model as in Chapter 2. For convenience

of derivation, the noise variance σ2 is normalized to unity in this chapter. Then we

have

r[hp(h)] = log(1 + hp(h)) . (3.1)

We can see that the expected rate Eh {r[hp(h)]} represents the average number of

information bits carried by each transmission symbol in bits/symbol, and the expected

power Eh {p(h)} represents the average energy consumed by each transmission symbol.

Therefore, for a given power policy p(h), its energy efficiency in bits/Joule is just the

ratio of expected rate and the expected power, as Eh {r[hp(h)]} /Eh {p(h)}.
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Given the basic service rate ro and the allowable service outage probability ε, we

wish to maximize the following energy efficiency measure:

η∗ = max
p(h)

Eh {r[hp(h)]}
Eh {p(h)} (3.2)

subject to Pr{r[hp(h)] < ro} ≤ ε (3.2a)

p(h) ≥ 0 . (3.2b)

The energy efficiency problem (3.2) can be solved by the following two optimization

steps.

(I) For a given average power Pav, find the power allocation scheme that maximizes

the expected rate under the service outage constraint. This is the allocation

problem studied in chapter 2. The resulting average rate is denoted as R(Pav).

In this chapter, we use Pmin to denote the minimum average power when the

allocation problem is feasible, and p(h, h0) to denote the corresponding optimum

power allocation. When Pav ≥ Pmin, as shown in Chapter 2, we have

p(h, h0) =















(ero − 1)

h
h ∈ {h ≥ hε} ∩ {h < h0e

ro}
[

1

h0
− 1

h

]+

otherwise
, (3.3)

where the water filling cutoff h0 is the solution to Eh {p(h, h0)} = Pav.

(II) Find the most energy efficient average power P ∗
av as follows:

η∗ = max
Pav

R(Pav)

Pav
. (3.4)

3.2 The Most Energy Efficient Average Power P
∗
av

In this section we determine the optimum average power P ∗
av.

For simplicity, we define P (h0) as the function mapping from h0 to the corresponding

average power Pav, that is P (h0) = Eh {p(h, h0)}. Let us define the maximum channel

state with nonzero probability as hm = sup{h : f(h) 6= 0}. In a Rayleigh channel model,

we have hm = ∞. The P (h0) is a strictly decreasing function of h0 when h0 ≤ hm, and
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P (h0) = Pmin when h0 ≥ hm. Therefore, we can define an inverse function mapping

h0(Pav) as follows:

h0(Pav) =







P−1(Pav) Pav > Pmin

hm Pav = Pmin

. (3.5)

Let η(Pav) denote the achievable energy efficiency at Pav, as follows:

η(Pav) =
R(Pav)

Pav
. (3.6)

In this section we determine the optimum P ∗
av that maximizes η(Pav). We show that P ∗

av

is either a stationary point of η(Pav) or an end point of the interval. The computation

of P ∗
av is based on a line search technique that first finds the corresponding h∗

0.

The derivative of η(Pav) can be expressed as follows:

η′(Pav) =
1

Pav
[R′(Pav) − R(Pav)

Pav
] Pav ≥ Pmin . (3.7)

In (3.7), R(Pav) is an implicit function of Pav. Its first derivative is given in the

following lemma.

Lemma 2 R(Pav) is a concave increasing function of Pav and its first derivative R′(Pav) =

h0(Pav) for all Pav ≥ Pmin.

Lemma 2 follows from the sensitivity theorem in constrained convex optimization prob-

lems [12]. In Chapter 2, it has been shown that the service outage based allocation prob-

lem is equivalent to a problem with deterministic constraints. This new problem has a

concave objective function over a convex set. The h0(Pav) is the Lagrange multiplier

associated with the average power Pav constraint in the equivalent problem. Lagrange

multiplier in constrained convex optimization problems determines the derivative of the

optimum objective with respect to the constraint parameter. Therefore, the water fill-

ing cutoff h0(Pav) is a measure of the sensitivity of R(Pav) with respect to the average

power Pav.

Although function η(Pav) is not concave in Pav, it can be shown that η(Pav) is

unimodal in the interval [Pmin,∞) using the following Lemma 3. Let P̂av denote the

solution to R′(Pav) − R(Pav)/Pav = 0, then P̂av is a stationary point for η′(Pav) if it

exists.
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Lemma 3 η′(Pav) has the following properties:

(a) when η′(Pmin) > 0, P̂av exists and is unique.

(b) when η′(Pmin) > 0, η′(Pav) > 0 for Pav < P̂av and η′(Pav) < 0 for Pav > P̂av.

(c) when η′(Pmin) < 0, η′(Pav) < 0 for Pav ≥ Pmin.

From Lemma 3, we can see that η(Pav) is unimodal in the interval [Pmin,∞). When

η′(Pmin) > 0, η(Pav) achieves it maximum at its stationary point, that is, P ∗
av = P̂av.

When η′(Pmin) < 0, η(Pav) achieves its maximum at P ∗
av = Pmin. These two qualita-

tively different cases are illustrated in Fig 3.1(a) and Fig 3.1(b), respectively. Combining

above results and replacing R′(Pav) with h0(Pav), we obtain the following theorem.

Theorem 3 When η′(Pmin) > 0, P ∗
av is the solution to η(Pav) = h0(Pav). Otherwise,

P ∗
av = Pmin.

Note that both h0(Pav) and R(Pav) are implicit functions of Pav, nevertheless, they

can be explicitly expressed in terms of p(h, h0). Therefore, in order to calculate P ∗
av for

the case of η′(Pmin) > 0, we first find the optimum h∗
0 and then compute P ∗

av by using

the explicit function mapping P (h∗
0). The optimum h∗

0 is the solution of the following

equation:

Eh {r[hp(h, h0)]}
Eh {p(h, h0)}

− h0 = 0, 0 < h0 ≤ hm , (3.8)

and can be obtained using a line search method.

3.3 Discussion

Before we discuss the energy efficiency under the service outage constraint for flat fading

channels, we first examine the energy efficiency for AWGN channels and that for flat

fading channels without the service outage constraint. Several numerical results given

at the end of this section illustrate the analysis given in this work as applied to a

Rayleigh fading channel.

The energy efficiency versus the spectral efficiency in AWGN channels is studied

in [70]. Since maximizing energy efficiency in bits/Joule is equivalent to minimizing the
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Figure 3.1: Optimum average rate and the corresponding efficiency
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Figure 3.2: Eb versus average power in Rayleigh fading channel

bit energy Eb in Joule/bit, Eb/N0 is used as the energy efficiency measure in [70]. Eb/N0

approaches its lower limit when the spectral efficiency approaches zero. In this case,

the corresponding average power goes to zero for finite bandwidth systems. Therefore,

in AWGN channels the energy efficiency and spectral efficiency are two competing

objectives. To achieve a high energy efficiency, the system should operate at a low

average power, resulting in a low spectral efficiency.

The energy efficiency for the ergodic capacity problem in flat fading channels can

be regarded as a special case of problem (3.2) with ε = 1 or ro = 0. In this case,

the corresponding optimum power allocation is always the water filling allocation for

any Pav ≥ 0. It can be shown that the energy efficiency η(Pav) decreases with Pav

and achieves its maximum value at Pmin = 0. In the same manner as for the AWGN

channel, a high energy efficiency for fading channels without a service outage constraint

requires a low average power and results in a low average rate, hence, a low spectral

efficiency.

For flat fading channels with a service outage constraint, the optimum average power

is not necessarily the minimum required average power Pmin. The reason is as follows:
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on the left and corresponding rate allocation is on the right

under the service outage constraint the optimum power allocation is a combination

of channel inversion and water filling allocations. With an increase in average power,

the optimum power allocation includes a larger water filling component and a smaller

channel inversion component. Since the water filling allocation achieves the highest

average rate without the service outage constraint, it is more energy efficient than the

channel inversion allocation. On the other hand, the energy efficiency for pure water

filling allocation decreases with an increase in the average power. Therefore, the energy

efficiency may increase with Pav initially when the first factor is dominant, and then

decrease with Pav when the second factor is dominant. Relative to Pmin, the optimum

average power P ∗
av achieves both higher energy efficiency and higher spectral efficiency.

In the following, we apply the analysis given in this paper to Rayleigh fading chan-

nels. For the Rayleigh fading channel with normalized mean, we have

f(h) =







e−h h ≥ 0

0 otherwise
(3.9)

and, thus, h0(Pmin) = hm = ∞. For an active service outage constraint, that is, when

ro > 0 and ε < 1, we have Pmin > 0 and R(Pmin) = ro(1 − ε). Applying (3.7) and
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Pav(dB) R(Pav)(bits/symbol) Eb(Pav)(dB)

Pmin = 3.8668 0.2985 9.1173

P ∗
av = 5.7053 0.7663 6.8610

Table 3.1: Comparison of the spectral efficiency and the energy efficiency at P ∗
av with

that at Pmin for ro = 0.3 bits/symbol and ε = 0.005.

Pav(dB) R(Pav)(bits/symbol) Eb(Pav)(dB)

Pmin = 1.004 0.285 6.4559

P ∗
av = 2.6404 0.5758 5.0378

Table 3.2: Comparison of the spectral efficiency and the energy efficiency at P ∗
av with

that at Pmin for ro = 0.3 bits/symbol and ε = 0.05.

Lemma 2, it follows that

η′(Pmin) =
1

Pmin

(

R′(Pmin) −
R(Pmin)

Pmin

)

(3.10)

=
1

Pmin

(

h0(Pmin) −
ro(1 − ε)

Pmin

)

. (3.11)

Since h0(Pmin) = ∞, we have η′(Pmin) > 0. Consequently, the optimum P ∗
av > Pmin

and can be obtained as a solution to η(Pav) = h0(Pav).

In the preceding mathematical development, η(Pav) is used as a measure for the

energy efficiency. Now for the purpose of presenting numerical results, we will use its

reciprocal Eb(Pav) = 1/η(Pav) to represent the energy efficiency as in [70]. A low value

in Eb(Pav) indicates a high energy efficiency. Eb(Pav) in dB is plotted in Figure 3.2 for

Rayleigh fading channels. We consider the following three service outage probabilities

ε = 0.005, ε = 0.05, and ε = 1 for fixed basic service rate ro = 0.3 bits/symbol. In the

case of ε = 1 there is no service outage constraint and the ergodic capacity is achieved

for a given Pav. In this case, required Eb(Pav) increases with Pav and the highest power

efficiency is achieved at zero power. When ε = 0.005 or 0.05, the optimum average

power P ∗
av is no longer the corresponding minimum average power Pmin. We compare

the spectral efficiency (average rate) and the energy efficiency at P ∗
av with that at Pmin

in table 3.1 and 3.2. Observe that at the optimum average power both spectral efficiency

and energy efficiency are higher than at Pmin. Compared to that at Pmin, the average

rate at P ∗
av is almost doubled and the bit energy is about 1 − 3 dB less.
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The power and rate allocation for the optimum average power, ε = 0.05, and ro =

0.3 bits/symbol is plotted in Figure 3.3. We can see that the optimum energy efficient

power allocation is a combination of water filling and channel inversion.

3.A Proofs

In order to prove Lemma 3, we need the following definition and proposition. Define

function g(Pav) as follows:

g(Pav) = R′(Pav)Pav − R(Pav) Pav ≥ Pmin . (3.12)

Then from (3.7) we have η′(Pav) = g(Pav)/P 2
av. The following Proposition 3 gives the

properties of g(Pav).

Proposition 3 g(Pav) is

(a) a decreasing function of Pav.

(b) negative for any Pav when the corresponding p(h, h0) is a water filling allocation.

Proof: Proposition 3

(a) The first derivative of g(Pav) is

g′(Pav) = R′′(Pav)Pav + R′(Pav) − R′(Pav) = R′′(Pav)Pav . (3.13)

Since R(Pav) is a concave function by Lemma 2 we that R′′(Pav) < 0 and, conse-

quently, g′(Pav) < 0. Therefore, g(Pav) is a decreasing function of Pav.

(b) By Lemma 2, we have

g(Pav) = R′(Pav)Pav − R(Pav) = h0(Pav)Pav − R(Pav) . (3.14)

When p(h, h0) is a water filling allocation, we have

Pav = Eh {p(h, h0)} =

∫ ∞

h0

(
1

h0
− 1

h
)f(h)dh (3.15)

R(Pav) = Eh {r[hp(h, h0)]} =

∫ ∞

h0

log(
h

h0
)f(h)dh (3.16)

g(Pav) =

∫ ∞

h0

[

1 − h0

h
− log(

h

h0
)

]

f(h)dh . (3.17)
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Let q(x) = 1−1/x− log(x), then g(Pav) =
∫∞
h0

q(h/h0)f(h)dh. It is easy to verify

q(x)|x=1 = 0 and q′(x) < 0 for any x > 1. Therefore, q(h/h0) < 0 for any h > h0

and g(Pav) < 0.

2

We prove Lemma 3 as follows:

Proof:

(a) Since η′(Pav) = g(Pav)/P 2
av, η′(Pmin) > 0 indicates g(Pmin) > 0. By Proposition 3

property (b) we also have g(Pav) < 0 for any Pav ≥ P (hεe
−ro) since the corre-

sponding p(h, h0) is the water filling allocation. From Proposition 3 (a), g(Pav)

is a decreasing function of Pav, therefore, g(Pav) = 0 must exist a unique solution

when η′(Pmin) > 0. We can see that g(P̂av) = 0, hence P̂av exists and is unique

when η′(Pmin) > 0.

(b) When η′(Pmin) > 0, we have g(Pmin) > 0 and g(P̂av) = 0. Since g(Pav) decreases

with Pav and η′(Pav) = g(Pav)/P 2
av, we have η′(Pav) > 0 for Pav > P̂av and

η′(Pav) < 0 for Pav < P̂av.

(c) When η′(Pmin) < 0, we have g(Pmin) < 0. Since g(Pav) decreases with Pav and

η′(Pav) = g(Pav)/P 2
av, we have η′(Pav) < 0 for Pav > Pmin.

2
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Chapter 4

Service Outage Based Allocations in an M-Parallel Fading

Channel

In this chapter, we generalize the service outage based allocations to an M -parallel

flat fading channel model. In Section 4.1, the channel model and the service outage

based allocation problem are presented. The generalized Kuhn-Tucker conditions for

functional optimization problems are reviewed in Section 4.2. The optimum power

allocation is derived in Section 4.3. Two near optimum power allocation policies are

derived in Section 4.4. Numerical results are given in Section 4.5 and conclusions are

drawn in Section 4.6. All proofs in this paper are provided in Appendix A.

4.1 System Model and Allocation Problem

The M -parallel flat fading channel model can characterize a number of diversity sys-

tems, including an OFDM system with frequency selective fading and the multiple

antenna signal model when the perfect channel state information is available at trans-

mitter and singular value decomposition is employed. In an M -parallel flat fading

channel model, each fading block consists of M subchannels of the form

yi =
√

hixi + ni i = 1, 2, . . . ,M . (4.1)

For a subchannel i, xi is the channel input, yi is the channel output, and hi is the

channel state. The noise components n1, . . . , nM are independent Gaussian random

variables with normalized unit variance. It is assumed that the channel state vector

h = (h1, . . . , hM ) stays the same within one fading block but may vary from block

to block. For a typical slow fading environment, it is also assumed that block length

N → ∞ so that the information theoretic results can be applied. One codeword spans



37

M subchannels in one fading block and perfect channel state information is available

at both the transmitter and the receiver. The vector fading process is ergodic within

the communication session.

Throughout this paper, we use the following notation:

• For a vector of channel states h = (h1, . . . , hM ), the power allocation vector is

p(h) = (p1(h), . . . , pM (h)). Here pi(h), the power allocated to subchannel i,

depends on the current channel state vector h.

• Given a vector a of length M , we denote its arithmetic mean by 〈a〉 = M−1
∑M

i=1 ai.

• The maximum mutual information of an M -parallel Gaussian channel h with

power allocation p(h) is

r(h,p(h)) =
1

M

M
∑

i=1

log(1 + hipi(h)). (4.2)

To simplify the derivations, we use the natural logarithm and drop the usual

factor 1/2 in the Gaussian capacity expression. The rate unit is nats/subchannel.

• For a scalar x, [x]+ = max(x, 0). For a vector x = (x1, . . . , xM ), [x]+ =

([x1]
+, . . . , [xM ]+).

• The indicator function 1 (x) is equal to 1 if x is true and is equal to 0 otherwise.

• For two vectors a and b of length M , we write a ≥ b if ai ≥ bi for all i = 1, . . . ,M .

It can be seen that with perfect channel state information at the transmitter and re-

ceiver, the maximum achievable rate of a given power vector p(h) at fading block h is

given by (4.2). Thus, we only need to identify the optimum power allocation scheme.

Although we could formulate the allocation problem for M -parallel fading channels

in the class of deterministic schemes, as we did for M = 1 fading channel in [62], the

deterministic allocation problem turns out to be difficult to solve. For example, in

the case of discrete channel distribution, the allocation problem will become an integer

programming problem, which in general does not have a closed form solution. Moreover,

as shown in [18], the optimum allocation for the outage capacity is a probabilistic policy
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for discrete channel distribution, suggesting that deterministic schemes are likely to be

suboptimal. Therefore, this paper formulates the allocation problem using the more

general class of probabilistic schemes.

In a probabilistic scheme, multiple power vectors can be assigned to the same chan-

nel state vector with a conditional pdf fP|h(p|h), and each realization of the power

allocation is associated with a coding scheme. A service outage occurs when the code

rate is less than the basic rate ro specified by the application. Since multiple codes are

employed in a probabilistic manner, at each channel state we can have the situation

where some code rates are less than ro while others are greater or equal to ro. Thus,

at each channel state, a service outage occurs with some probability. In order to sim-

plify the derivation, we use P(h) to indicate a probabilistic power allocation scheme

with conditional PDF fP|h(p|h), while using p(h) to indicate a deterministic scheme.

Due to the assumptions of ergodicity and perfect channel state information, the power

allocation only depends on the current channel state vector. We use F (h) to represent

the cdf of channel state vector h.

For a given probabilistic power allocation P(h), the average rate, average power,

and outage probability are given by

E [r(h,P(h))] =

∫ ∫

r(h,p)fP|h(p|h) dp dF (h) (4.3)

E [〈P(h)〉] =

∫ ∫

〈p〉fP|h(p|h) dp dF (h) (4.4)

Pr{r(h,P(h)) < ro} =

∫ ∫

1 (r(h,p) < ro)fP|h(p|h) dp dF (h) . (4.5)

The service outage based allocation problem is to identify the optimum conditional

PDF fP|h(p|h) as follows:

R∗ = max
fP|h(p|h)

E [r(h,P(h))] (4.6)

subject to E [〈P(h)〉] ≤ pav (4.6a)

Pr{r(h,P(h)) < ro} ≤ ε , (4.6b)

where the conditional PDF fP|h(p|h) is a set of functions for each h satisfying

∫

fP|h(p|h)dp = 1, fP|h(p|h) ≥ 0 for all h . (4.7)
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The resulting maximum average rate R∗ is called the service outage achievable rate.

This work can be extended to other rate expressions besides the Shannon capacity in

(4.2), which may depend on decoding error probability, and the set of modulation and

coding schemes in a practical system. Problem (4.6) may seem to be more complicated

than the corresponding deterministic allocation problem, but in fact it will be easier to

solve. In later sections, we will see that this problem can be simplified and solved using

generalized Kuhn-Tucker conditions [56].

4.2 Functional Optimization

In this section, we briefly review the Kuhn-Tucker conditions for functional optimiza-

tion, since in this work the optimization variables are functions instead of vectors in

an Euclidean space. Readers are referred to texts [43, 56] for comprehensive results

on optimization theory in a general vector space and [3] on optimization theory in an

Euclidean space.

Specifically, we are interested in the following type of functional optimization prob-

lem in a Lebesgue Lp space with measure m:

min
x(t)

∫

y1(t, x(t))dm(t) (4.8)

subject to

∫

y2(t, x(t))dm(t) ≤ 0 (4.8a)

∫

y3(t, x(t))dm(t) = 0 (4.8b)

y4(t, x(t)) ≤ 0 (4.8c)

a ≤ x(t) ≤ b (4.8d)

where functions x(t) and yi(t, x(t)) belong to the Lp space with measure m. The Lp

space consists of those real-valued measurable functions x for which
∫

|x(t)|pdm(t) is

finite [56,67]. It is shown that the Lagrange multiplier associated with constraint (4.8a)

and (4.8b) are scalers denoted as u and λ, while the Lagrange multiplier associated

with constraint (4.8c) is a function v(t) ∈ Lq where 1/p + 1/q = 1 [15, 56]. Usually, no

Lagrange multipliers are employed for simple constraints such as (4.8d), instead it is



40

absorbed in the Kuhn-Tucker conditions as shown below. Let

l(x(t), u, λ, v(t)) = y1(t, x(t)) + uy2(t, x(t)) + λy3(t, x(t)) + v(t)y4(t, x(t)) .

The Lagrangian of problem (4.8) is L(x(t), u, λ, v(t)) =
∫

l(x(t), u, λ, v(t))dm(t). The

variation of L(x(t), u, λ, v(t)) with respect to x(t) is equal to 0 iff the derivative of

l(x, u, λ, v(t)) with respect to x at x = x(t) is equal to zero. Thus, according to the

generalized Kuhn-Tucker necessary conditions theorem [56], if the optimum solution

x∗(t) is a regular point (constraint qualification), it must satisfy the following conditions:

dl(x, u, λ, v(t))

dx

∣

∣

∣

∣

x=x∗(t)

= 0 a < x∗(t) < b (4.9)

dl(x, u, λ, v(t))

dx

∣

∣

∣

∣

x=x∗(t)

≥ 0 x∗(t) = a (4.10)

dl(x, u, λ, v(t))

dx

∣

∣

∣

∣

x=x∗(t)

≤ 0 x∗(t) = b (4.11)

u

∫

y2(t, x
∗(t))dm(t) = 0 (4.12)

v(t)y4(t, x
∗(t)) = 0 (4.13)

u ≥ 0, v(t) ≥ 0 (4.14)

In addition, x∗(t) must also satisfy the constraints (4.8a), (4.8b), and (4.8c). Condition

(4.13) is obtained from the usual condition
∫

v(t)y4(t, x
∗(t))dm(t) = 0 by applying

y4(t, x(t)) ≤ 0 for all t and v(t) ≥ 0.

Furthermore, if y1(t, x(t)), y2(t, x(t)), and y4(t, x(t)) are convex functionals with

respect to x(t), and y3(t, x(t)) is a linear functional with respect to x(t), conditions

(4.9)-(4.14) and constraints (4.8a)-(4.8d) are sufficient for the global optimum solution

of (4.8).

A similar approach can be applied to the more general case where yi(t, x(t)) is

replaced by yi(t, x1(t), . . . , xn(t)). In this case, we just replace the derivation with

respect to x(t) in (4.9) with the partial derivatives with respect to xj(t) for all j =

1, . . . , n.
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4.3 The Optimum Service Outage Based Allocation

4.3.1 Allocations for an M-parallel Fading Channel

In this section, we introduce two deterministic power allocation schemes: the multi-

dimensional water-filling allocation pwf(h, h0) and the basic-rate power allocation pr0(h).

These two allocations will be used to characterize the optimum solution in later sections.

The multi-dimensional water-filling allocation is the optimum allocation achieving

the ergodic capacity in M -parallel fading channels as

pwf(h, h0) = arg max
p(h)

E [r(h,p(h))] (4.15)

subject to E [〈p(h)〉] ≤ pav (4.15a)

p(h) ≥ 0 . (4.15b)

Applying the generalized Kuhn-Tucker condition in vector spaces [56], we have pwf(h, h0) =

(pwf,1(h1, h0), . . . , pwf,M (hM , h0)), where

pwf,i(hi, h0) =

[

1

h0
− 1

hi

]+

i = 1, . . . ,M , (4.16)

and the water-filling cutoff h0 is the solution to E [〈pwf(h, h0)〉] = pav.

The basic-rate power allocation is the power allocation that requires the minimum

average power to maintain a basic rate at each channel state, as follows:

pr0(h) = arg min
p(h)

〈p(h)〉 (4.17)

subject to r(h,p(h)) = ro (4.17a)

p(h) ≥ 0 . (4.17b)

The solution to the above problem is given by Lemma 1 in [18], and is summarized

below. The basic-rate allocation is pr0(h) = (pr0,1(h), . . . , pr0,M (h)) with

pr0,i(h) =

[

λ(h) − 1

hi

]+

i = 1, . . . ,M . (4.18)

For a given h, the basic-rate allocation also allocates power in the form of water-filling

among subchannels, but λ(h) changes with h to ensure r(h,pr0(h)) = ro. Let π(i) be
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the permutation of index i such that hπ(1) ≥ hπ(2) ≥ . . . ≥ hπ(M). The λ(h) is given by

λ(h) =

(

eMro

∏µ
l=1 hπ(l)

)

1
µ

, (4.19)

where µ is the unique integer in {1, . . . ,M} such that λ(h) ≥ h−1
π(l) for l ≤ µ and

λ(h) < h−1
π(l) for l > µ [18]. Parameter µ indicates number of sub-channels with non zero

power allocation at h. When M = 1 the basic-rate allocation pr0(h) becomes channel

inversion, and when M → ∞ it converges to the water-filling allocation pwf(h, h0) [18].

Based on the observation that for a given h both pwf(h, h0) and pr0(h) are in the

form of ‘water-filling’ but with different water levels, we have the following proposition.

Proposition 4 We have

(a) r(h,pwf(h, h0)) ≥ ro

iff⇐⇒ h−1
0 ≥ λ(h)

iff⇐⇒ pwf(h, h0) ≥ pr0(h) .

(b) For any h, either pwf(h, h0) ≥ pr0(h) or pwf(h, h0) ≤ pr0(h) holds.

An example of pr0(h) for M = 2 fading channel is given below.

1. When h1/h2 > e2ro , we have

P1,r0 = (e2ro − 1)/h1 P2,ro = 0 .

2. When e2ro ≥ h1/h2 ≥ e−2ro , we have

P1,r0 =

√

e2ro

h1h2
− 1

h1
P2,r0 =

√

e2ro

h1h2
− 1

h2
.

3. When e−2ro > h1/h2, we have

P1,ro = 0 P2,r0 = (e2ro − 1)/h2 .

4.3.2 Feasibility and Outage Capacity

The feasibility of problem (4.6) is directly related to outage capacity in [18]. Let

rate Cε(pav) be the outage capacity for a given pav. The Cε(pav) is the maximum

instantaneous rate which can be transmitted with an outage probability ε. Thus, for a
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given pav and ε, Problem (4.6) is feasible iff ro ≤ Cε(pav). For convenience of subsequent

derivations, the feasibility condition is expressed in the following equivalent form

pav ≥ Pmin(ro, ε) , (4.20)

where the Pmin(ro, ε) is the minimum average power needed to support ro with an

outage probability ε. When pav = Pmin(ro, ε), we have Cε(pav) = ro and problem (4.6)

shares the same optimum solution, denoted Pmin(h), with the outage capacity problem.

For convenience of subsequent derivations, we rewrite Proposition 4 in [18] and express

Pmin(h) as follows.

Definition 3 For any h, let Xw(h) be a Bernoulli w(h) random variable: Xw(h) = 1

with probability w(h) and Xw(h) = 0 with probability 1 − w(h).

The minimum average power allocation is Pmin(h) = Xw′(h)pr0(h), where

w′(h) =























1 〈pr0(h)〉 < s′

v′ 〈pr0(h)〉 = s′

0 〈pr0(h)〉 > s′

, (4.21)

and the parameters s′ and 0 ≤ v′ ≤ 1 are solutions to E [w′(h)] = 1 − ε. That is

s′ = sup {x : Pr{〈pr0(h)〉 < x} < 1 − ε} (4.22)

v′ =
1 − ε − Pr{〈pr0(h)〉 < s′}

Pr{〈pr0(h)〉 = s′} . (4.23)

Pmin(h) is an on-off transmission policy. If the required sum power 〈pr0(h)〉 > s′,

transmission is turned off, while if 〈pr0(h)〉 ≤ s′, transmission is turned on and the

power is allocated according to pr0(h). Pmin(h) for an M = 2 fading channel is plotted

in Figure 4.1. The off region may or may not be a convex set depending on ro and ε.

4.3.3 Derivation of the Optimum Allocation Scheme

In this section, we derive the optimum solution for the service outage based allocation

problem (4.6). We first show that an optimum power allocation in (4.6) is a scheme

which is randomized between two deterministic schemes.
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Figure 4.1: The Pmin(h) in an M = 2 parallel fading channel.

Lemma 4 There exists an optimum solution of problem (4.6) of the following form

P∗(h) = Xw(h)pa(h) + (1 − Xw(h))pb(h) , (4.24)

where r(h,pa(h)) ≥ ro for all h, E [w(h)] ≥ 1 − ε and E [〈P∗(h)〉] = pav.

Proof of Lemma 4 is based on the concavity of the rate function r(h,p).

By Lemma 4, we have P∗(h) = pa(h) with probability w(h), and P∗(h) = pb(h)

with probability 1 − w(h). Moreover, the conditions r(h,pa(h)) ≥ ro and E [w(h)] ≥

1 − ε ensure that the randomized scheme meets the service outage constraint. Thus,

problem (4.6) can be simplified into a problem which requires identifying pa(h), pb(h),

and w(h) as follows:

max
pa(h),pb(h),w(h)

E [w(h)r(h,pa(h)) + (1 − w(h))r(h,pb(h))] (4.25)

subject to E [w(h)〈pa(h)〉 + (1 − w(h))〈pb(h)〉] = pav (4.25a)

E [w(h)] ≥ 1 − ε (4.25b)

r(h,pa(h)) ≥ ro (4.25c)

pa(h) ≥ 0 pb(h) ≥ 0 0 ≤ w(h) ≤ 1 (4.25d)

In the following, we derive the optimum solution of problem (4.25) using the generalized

Kuhn-Tucker conditions theorem described in Section 4.2.
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Let p∗
a(h), p∗

b(h), and w∗(h) denote the optimum solution of (4.25). Let h∗
0, s∗ ≥ 0,

and u∗(h) ≥ 0 denote the corresponding Lagrange multipliers for constraints (4.25a),

(4.25b), and (4.25c), respectively. Define

l(h,pa(h),pb(h), w(h), h0 , s, u(h)) =w(h)[r(h,pa(h)) − h0〈pa(h)〉]

+ (1 − w(h))[r(h,pb(h)) − h0〈pb(h)〉]

+ sw(h) + u(h)r(h,pa(h)) (4.26)

In following, for simplicity we use the notation

l(· · · ) 4
= l(h,p∗

a(h),p∗
b(h), w∗(h), h∗

0, s
∗, u∗(h)). (4.27)

According to the Kuhn-Tucker necessary conditions theorem, the optimum solution

must satisfy the following conditions1:

∂l(· · · )
∂p∗a,i(h)







= 0 p∗a,i(h) > 0

≤ 0 p∗a,i(h) = 0
for all i = 1, . . . ,M (4.28)

∂l(· · · )
∂p∗b,i(h)







= 0 p∗b,i(h) > 0

≤ 0 p∗b,i(h) = 0
for all i = 1, . . . ,M (4.29)

∂l(· · · )
∂w∗(h)























= 0 0 < w∗(h) < 1

≤ 0 w∗(h) = 0

≥ 0 w∗(h) = 1

(4.30)

u∗(h)[r(h,p∗
a(h)) − ro] = 0, u∗(h) ≥ 0 (4.31)

s∗[E [w∗(h)] − (1 − ε)] = 0, s∗ ≥ 0 (4.32)

E [w∗(h)〈p∗
a(h)〉 + (1 − w∗(h))〈p∗

b(h)〉] = pav (4.33)

Moreover, the following lemma shows that any solution that satisfies the above condi-

tions is an optimum solution.

Lemma 5 The Kuhn-Tucker conditions (4.28)-(4.33) are sufficient conditions for the

optimum solution of problem (4.25).

1Notation ∂l(··· )
∂p∗

a,i
(h)

is the derivative over pa,i(h) evaluated at p∗
a,i(h)
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The proof of Lemma 5 requires transforming of Problem (4.25) into a convex optimiza-

tion problem. From Kuhn-Tucker conditions (4.28), (4.29), and (4.31), we have the

following lemma.

Lemma 6 The optimum p∗
a(h) and p∗

b(h) are

p∗
a(h) =







pwf(h, h∗
0) r(h,pwf(h, h∗

0)) ≥ ro

pr0(h) otherwise
(4.34)

p∗
b(h) = pwf(h, h∗

0) . (4.35)

Proposition 4(b) implies that p∗
a(h) has an equivalent expression as

p∗
a(h) = pwf(h, h∗

0) + [pr0(h) − pwf(h, h0)]
+ . (4.36)

We define the second term as the supplemental power allocation, that is

ps(h, h0) = [pr0(h) − pwf(h, h0)]
+ . (4.37)

The supplemental power allocation provides the additional power needed for the water-

filling allocation to meet the basic rate requirement. The rate achieved by p∗
a(h) can

be expressed as

r(h,p∗
a(h)) = r(h,pwf(h, h∗

0)) + rs(h, h∗
0) (4.38)

with rs(h, h0) = [ro − r(h,pwf(h, h0))]
+ being the additional rate allocation needed for

water-filling allocation to meet the basic rate requirement.

Combining Lemma 4, Lemma 6 and expression (4.36), the optimum power allocation

P∗(h) is

P∗(h) = pwf(h, h∗
0) + Xw∗(h)ps(h, h∗

0) . (4.39)

In the following, we determine w∗(h). Employing (4.35), (4.36), and (4.38) in l(· · · ),

we have

l(· · · ) = w∗(h)[s∗ − g(h, h∗
0)] + r(h,pwf(h, h∗

0)) − h∗
0〈pwf(h, h∗

0)〉 (4.40)

with

g(h, h0) = h0〈ps(h, h0)〉 − rs(h, h0). (4.41)
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The first term in g(h, h0) is the power expense of allocating supplemental power, the

second term is the corresponding rate return, and h0 is the Lagrange multiplier that

connects the power with the rate. Thus, function g(h, h0) provides a measure for the

cost of allocating the supplemental power, and is called the supplemental cost function.

Lemma 7 Properties of g(h, h0) are as follows:

(a) If h′ ≥ h, then g(h′, h0) ≤ g(h, h0).

(b) If ps(h, h0) > 0, then g(h, h0) > 0. If ps(h, h0) = 0, then g(h, h0) = 0.

Lemma 7(a) shows that a higher cost is associated with a poorer channel state vector.

Based on Lemma 7(b) and Proposition 4, we have the following equivalent statements.

g(h, h0) = 0 ⇐⇒ ps(h, h0) = 0 ⇐⇒ r(h,pwf(h, h0)) ≥ ro. (4.42)

Taking the derivative of l(· · · ) over w∗(h), we have

∂l(· · · )
∂w∗(h)

= s∗ − g(h, h∗
0) . (4.43)

From condition (4.30) and equality (4.43), we obtain

w∗(h) =























1 g(h, h∗
0) < s∗

v∗(h) g(h, h∗
0) = s∗

0 g(h, h∗
0) > s∗

, (4.44)

where 0 ≤ v∗(h) ≤ 1 needs to be determined. As we can see, the cost function g(h, h∗
0)

determines the value of w∗(h) and indicates where the supplemental power should be

allocated.

Condition (4.32) implies the following two situations:

• When s∗ > 0, we must have E [w∗(h)] = 1 − ε.

• When s∗ = 0, we must have E [w∗(h)] ≥ 1−ε. s∗ = 0 implies that either g(h, h∗
0) =

0 or w∗(h) = 0. Consequently, from Lemma 7(b) we have that Xw∗(h)ps(h, h∗
0) =

0. Therefore, in this case P∗(h) = pwf(h, h∗
0). Since no supplemental power is

allocated, 0 ≤ v∗(h) ≤ 1 can be any function that meets E [w∗(h)] ≥ 1 − ε. In
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order to simplify the presentation and without loss of generality, we choose v∗(h)

so that E [w∗(h)] = 1 − ε.2

The following theorem combines above results.

Theorem 4 If problem (4.6) is feasible, an optimum power allocation is

P∗(h) = pwf(h, h∗
0) + Xw∗(h) [pr0(h) − pwf(h, h∗

0)]
+ , (4.45)

where

w∗(h) =























1 g(h, h∗
0) < s∗

v∗(h) g(h, h∗
0) = s∗

0 g(h, h∗
0) > s∗

. (4.46)

and h∗
0, s∗, and 0 ≤ v∗(h) ≤ 1 are solutions to

E [〈P∗(h)〉] = pav, E [w∗(h)] = 1 − ε.

The optimum power allocation can be viewed as a two layer allocation: the first

layer is the water-filling allocation, and the second layer is the supplemental allocation.

The supplemental allocation provides the additional power and rate for the water-filling

allocation to meet the basic rate requirement. If the channel states are so poor that

the cost g(h, h∗
0) is above a threshold, the supplemental allocation is turned off and a

service outage is declared. Thus, g(h, h∗
0) divides the channel space into a service set

g(h, h∗
0) < s∗ with rates r ≥ ro, a boundary set g(h, h∗

0) = s∗ with a probabilistic policy,

and an outage set g(h, h∗
0) > s∗ with rates r < ro. The service set can be further divided

into a basic-rate set with rate r = ro, and an enhanced-rate set with rate r > ro.

4.3.4 Properties of the Optimum Solution

In this section, we study the properties of the optimum solution. By further examination

of P∗(h) in Theorem 4, it can be seen that the optimum solution is a combination of

basic-rate allocation and water-filling allocation in the non-boundary channel state set,

2In this case, the outage probability is less than or equal to 1−E [w∗(h)] = ε.
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and is randomized between these two at the boundary set. The optimum solution for

the M = 1 fading channel can be found in Chapter 2. The optimum solution for M = 2

fading channels is depicted in Fig 4.2. The optimum solution can be classified into four

types as a function of an increasing pav for any given (ro, ε) as follows.

• P∗(h) is Type I when pav = Pmin(ro, ε). In this case, we have pwf(h, h∗
0) = 0 and

w∗(h) = w′(h) from (4.21). The optimum solution is the same allocation as the

outage capacity, that is

P∗(h) = Pmin(h) = Xw′(h)pr0(h). (4.47)

• P∗(h) is Type II when pwf(h, h∗
0) = 0 in the outage set. In this case, we have

w∗(h) = w′(h) and the outage set is the same as for the outage capacity allocation.

In this case, the cost function g(h, h∗
0) in the outage set reduces to h∗

0〈pr0(h)〉−ro.

Therefore, the optimum outage set, defined as g(h, h∗
0) > s∗, can be rewritten as

〈pr0(h)〉 > s′. Type II solution includes no transmission in the outage set, a

probabilistic scheme in the boundary set, basic-rate allocation in the basic-rate

set, and water-filling allocation with rate r > ro in the enhanced-rate set.

• P∗(h) is Type III in the most general case. All other types can be considered as

special cases of Type III. It includes water-filling allocation with rate r < ro in the

outage set, a probabilistic scheme in the boundary set, basic-rate allocation in the

basic-rate set, and water-filling allocation with rate r > ro in the enhanced-rate

set.

• P∗(h) is Type IV when Pr{r(h,pwf(h, h∗
0)) ≥ ro} ≥ 1 − ε holds. In this case, we

have s∗ = 0 and Xw∗(h)ps(h, h∗
0) = 0. Thus, the optimum solution is P∗(h) =

pwf(h, h∗
0).

With increasing pav, P∗(h) gradually changes from Type I solution Pmin(h), the

optimum solution for the outage capacity, to Type IV solution pwf(h, h∗
0), the optimum

solution for the ergodic capacity. The service outage achievable rate gradually changes

from ro(1−ε) to the ergodic capacity. The outage probability is equal to ε for the types

I-III solutions, and is less than ε for the type IV solution.
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Figure 4.2: Optimum solution types I-IV in M = 2 parallel fading channels. The
optimum solution is probabilistic only at the boundary set.

The optimum solution is probabilistic at the boundary set only when s∗ > 0. For a

continuous channel distribution, the boundary set has a probability measure zero when

s∗ > 0. Therefore, the optimum solution is deterministic for the continuous channel

distribution. As stated before, the deterministic allocation problem for M -parallel

fading channel is hard to solve directly. However, by considering the probabilistic

allocation problem (4.6), we in fact obtain the optimum solution for the corresponding

deterministic allocation problem for continuous channel distributions.
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4.3.5 Computation of the Optimum Parameters

In this section, we study the algorithm that determines the parameters of the optimum

scheme P∗(h). The optimum parameters h∗
0, s∗, and v∗(h) are the solutions of the

average power constraint and the outage probability constraint (necessary condition)

as follows:

E [〈pwf(h, h0)〉 + 〈ps(h, h0)〉[1 (g(h, h0) < s) + v(h)1 (g(h, h0) = s)]] = pav, (4.48)

Pr{g(h, h0) < s)} + E [v(h)1 (g(h, h0) = s)] = 1 − ε, (4.49)

0 ≤ v(h) ≤ 1 . (4.50)

A solution of (4.48)-(4.50) must exist when Problem (4.6) is feasible. Moreover, Lemma 5

shows that any solution of these equations is the optimum parameter set (sufficiency).

In the following, we discuss algorithms to solve (4.48)-(4.50) for continuous channel

distributions and discrete channel distributions respectively.

In the case of a continuous channel distribution function F (h), {g(h, h0) = s} is a

set of probability measure zero for s > 0, and thus (4.48)-(4.50) can be reduced to

E [〈pwf(h, h0)〉 + 1 (g(h, h0) ≤ s)ps(h, h0)] = pav, (4.51)

Pr{g(h, h0) ≤ s} = 1 − ε . (4.52)

The left sides of (4.51) and (4.52) are continuous functions of h0 and s, and a variety

of well known root finding algorithms can be used [69].

The case of a discrete channel distribution function is more complicated, since we

have to determine the value of v(h) for the boundary set. For given h0 and s, (4.48)-

(4.50) form a linear programming problem on v(h). Standard linear programming

approaches (such as employing artificial variables and simplex method) [57] can be

used to determine whether there exist a feasible solution of v(h). If there exists a

solution of v(h), the corresponding h0 and s are the solutions we try to find. Therefore,

the iterative algorithm is to search h0 and s until a feasible solution of v(h) is found.

The two dimensional search for h0 and s can be carried in a sequential manner as shown

below. For a given h0, since 0 ≤ v(h) ≤ 1, (4.49) implies that

Pr{g(h, h0) < s)} ≤ 1 − ε ≤ Pr{g(h, h0) ≤ s} . (4.53)
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Thus, for a given h0, s can be expressed as

s(h0) = sup {x : Pr{g(h, h0) < x} < 1 − ε} . (4.54)

The linear programming approach for solving v(h) is a numerical method, and usually

requires a lot of computations. Moreover, it gives no insight on the structure of the

solution. Therefore, in Appendix B we have also derived the exact feasibility condition

and a closed form solution of v(h) for any (h0, s) by exploiting the structure of (4.48)-

(4.50).

4.4 Near Optimum Allocation Schemes

In this section, we consider power allocations with the same two-layer structure

P(h, h0, w(h)) = pwf(h, h0) + Xw(h)ps(h, h0) . (4.55)

as the optimum solution P∗(h). As we can see, any P(h, h0, w(h)) that satisfies

E [〈P(h, h0, w(h))〉] = pav and E [w(h)] ≥ 1 − ε is a feasible scheme for problem (4.6).

In this section, by choosing some particular (h0, w(h)), we obtain two near optimum

schemes in the form of (4.55). These schemes are simpler to implement than the opti-

mum P∗(h) policy.

We first develop bounds for the average rate achieved by the P(h, h0, w(h)) as

follows.

Lemma 8 The average rate achieved by P(h, h0, w(h)) with E [w(h)] ≥ 1−ε is bounded

as

Ru(h0) − roε ≤ E [r(h,P(h, h0, w(h)))] ≤ Ru(h0),

where Ru(h0) = ro + E [[r(h,pwf(h, h0)) − ro]
+].

The upper bound is achieved when we have zero outage, and the lower bound is achieved

when the rate during the outage is equal to zero.

It can be seen that for small ε the average rate performance is determined mainly

by the value of Ru(h0). Since r(h,pwf(h, h0)) is a decreasing function of h0, Ru(h0) is
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a decreasing function of h0. Thus, in order to achieve a high average rate, the value of

h0 should be small.

For a given h0, w(h) that satisfies the average power and outage constraints is not

unique. There could be an infinite number of choices of w(h) for a given h0 when h is a

vector of continuous random variables. The bounds of Lemma 8 imply that the average

rate performance is relatively insensitive to the value of w(h) for a given h0. When

the outage probability is sufficiently small, there are many near optimum schemes with

small h0 and the exact shape of the outage set is not critical.

4.4.1 Near Optimum Power Allocation I

Consider a policy P̂(h) = pwf(h, ĥ0) + Xŵ(h)ps(h, ĥ0) with

ŵ(h) =























1 〈ps(h, ĥ0)〉 < ŝ

v̂(h) 〈ps(h, ĥ0)〉 = ŝ

0 〈ps(h, ĥ0)〉 > ŝ

, (4.56)

where ĥ0, ŝ, and 0 ≤ v̂(h) ≤ 1 are solutions to E
[

〈P̂(h)〉
]

= pav and E [ŵ(h)] = 1 − ε.

We will see that it is sufficient to choose v̂(h) = v̂. For any solution (ĥ0, ŝ, v̂(h)), it can

be directly verified that (ĥ0, ŝ, v̂) with

v̂ =
E
[

v̂(h)1 (〈ps(h, ĥ0)〉 = ŝ)
]

E
[

1 (〈ps(h, ĥ0)〉 = ŝ)
]

is also a solution to E
[

〈P̂(h)〉
]

= pav and E [ŵ(h)] = 1 − ε. This simplifies the com-

putation of parameters relative to the computation of the optimum solution P∗(h). In

this section, we show that P̂(h) is a near optimum scheme for problem (4.6). Applying

the generalized Kuhn-Tucker conditions, we have the following lemma characterizing

ŵ(h).

Lemma 9 ŵ(h) is the optimum solution of the following problem.

ŵ(h) = arg min
0≤w(h)≤1

E
[

w(h)〈ps(h, ĥ0)〉
]

(4.57)

subject to E [w(h)] ≥ 1 − ε
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The following lemma is a corollary of Lemma 9.

Lemma 10 Policy P̂(h) has the minimum water-filling parameter h0 among all P(h, h0, w(h))

that satisfy E [〈P(h, h0, w(h))〉] = pav and E [w(h)] ≥ 1 − ε.

Earlier in this section, it is shown that the average rate of P(h, h0, w(h)) is mainly

determined by Ru(h0), which is a decreasing function of h0. This implies that P̂(h)

with the minimum h0 should be a good scheme. Applying Lemma 8, we have

R∗ − roε
(a)

≤ Ru(h
∗
0) − roε

(b)

≤ Ru(ĥ0) − roε
(c)

≤ E
[

r(h, P̂(h))
]

≤ R∗. (4.58)

Here R∗ is the maximum average rate achieved by P∗(h). Inequalities (a) and (c) are

direct results of the rate bounds in Lemma 8. Inequality (b) follows from the fact that

ĥ0 ≤ h∗
0 by Lemma 10. Therefore, P̂(h) achieves a rate between R∗ − roε and R∗, and

is a near optimum solution for Problem (4.6) for small ε.

To determine (ĥ0, ŝ, v̂), we have to solve

E [〈pwf(h, h0)〉 + 〈ps(h, h0)〉1 (〈ps(h, h0)〉 < s)] + svE [1 (〈ps(h, h0)〉 = s)] = pav,

(4.59)

Pr{〈ps(h, h0)〉 < s)} + vE [1 (〈ps(h, h0)〉 = s)] = 1 − ε, (4.60)

0 ≤ v ≤ 1 . (4.61)

We search (ĥ0.ŝ, v̂) in an iterative way. For a given h0, we first examine (4.60) and

(4.61), and obtain v(h0) and s(h0) as a function of h0 as

s(h0) = sup {x : Pr{〈ps(h, h0)〉 < x} < 1 − ε} , (4.62)

v(h0) =
1 − ε − Pr{〈ps(h, h0)〉 < s(h0)}

Pr{〈ps(h, h0)〉 = s(h0)}
. (4.63)

Then we adjust the value of h0 until E
[

〈P̂(h)〉
]

= pav. Each time we adjust h0, we

have to compute s(h0) and v(h0) according to (4.62) and (4.63).
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4.4.2 Near Optimum Power Allocation II

Consider a policy P′(h) = pwf(h, h′
0)+Xw′(h)ps(h, h′

0) with w′(h) given by (4.21) and

h′
0 satisfying E [〈P′(h)〉] = pav. Recall that

w′(h) =























1 〈pr0(h)〉 < s′

v′ 〈pr0(h)〉 = s′

0 〈pr0(h)〉 > s′

. (4.64)

Policy P′(h) allocates the supplemental power at channel states where 〈pr0(h)〉 is below

a threshold. Since w′(h) does not depend on h′
0, the outage set of P′(h) is much simpler

than P∗(h) and P̂(h). Applying the equality

pwf(h, h0) + ps(h, h0) = pr0(h) + [pwf(h, h0) − pr0(h)]+,

P′(h) can be expressed equivalently as

P′(h) = Pmin(h) + [pwf(h, h′
0) −Pmin(h)]+ . (4.65)

Recall that Pmin(h) = Xw′(h)pr0(h) achieves the minimum sufficient power to meet

the outage constraint. The physical meaning of P′(h) is that: we first assign Pmin(h)

to meet the outage constraint with the minimum sufficient power, and then allocate the

remaining power in an optimum way to maximize the excess rate. The [pwf(h, h′
0) −

Pmin(h)]+ is in fact a ‘water-filling’ allocation when Pmin(h) is viewed as an interference.

In the following, we show that P′(h) is a near optimum scheme for Problem (4.6).

It is hard to show directly that P′(h) is a near optimum scheme. Our approach is

to introduce a second scheme P′′(h) as an intermediate step, as

P′′(h) = Pmin(h) + [pwf(h, h′′
0) − pr0(h)]+ , (4.66)

where h′′
0 is the solution to E [〈P′′(h)〉] = pav. The following lemmas on P′′(h) allow us

to show that P′′(h) is a near optimum scheme of problem (4.6).

Lemma 11 The average rate achieved by P′′(h) satisfies E {r(h,P′′(h))} ≥ Ru(h′′
0) −

roε.

Lemma 12 We have h′′
0 ≤ ĥ0, where the ĥ0 is the water-filling parameter in P̂(h).
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Applying Lemma 11 and Lemma 12, we have

R∗
(a)

≥ E
{

r(h,P′′(h))
}

(b)

≥ Ru(h
′′
0) − roε

(c)

≥ Ru(h
∗
0) − roε

(d)

≥ R∗ − roε . (4.67)

Inequality (a) holds since P′′(h) is a feasible scheme for problem (4.6). Inequality (b)

follows from Lemma 11. Inequality (c) holds since Ru(h0) is a decreasing function of h0

and h′′
0 < ĥ0 ≤ h∗

0 by Lemma 10 and Lemma 12. Applying the rate bounds in Lemma 8

to the optimum allocation P∗(h), we have R∗ = E [r(h,P∗(h))] ≤ Ru(h∗
0) and thus

inequality (d) holds. Therefore, P′′(h) is a near optimum scheme for problem (4.6) for

small ε.

As we can see, both P′(h) and P′′(h) first allocate Pmin(h) to meet the outage

constraint, but the P′(h) allocates the remaining power in an optimum way to maximize

the additional rate.

Lemma 13 Scheme P′(h) achieves a higher average rate than P′′(h).

Therefore, P′(h) is a near optimum scheme for problem (4.6) for small ε.

The computation of P′(h) is much simpler than P∗(h) and P̂(h), since its (s′, v′)

do not depend on h′
0. The (s′, v′) can be determined by solving the outage probability

constraint alone, which is given by (4.22) and (4.23). Then h′
0 can be determined by

solving E [〈P′(h)〉] = pav using a line search technique. Therefore, in P′(h) the (s′, v′)

are the same for different values of pav, while in P∗(h) and P̂(h) we have to compute

(s, v) for each value of pav.

The structure of P′(h) in (4.65) suggests a simple implementation of transmission

of mixed real-time and non real-time services. The Pmin(h) can be used to transmit

the real-time service with the basic-rate requirement, and [pwf(h, h′
0) −Pmin(h)]+ can

be used to transmit the non real-time service. Two codebooks will be generated ac-

cording to the corresponding power assignments to these two services, and transmitted

simultaneously using superposition coding. The successive decoding is employed at

receiver.
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4.4.3 Discussion

We derived three allocation schemes P∗(h), P̂(h), and P′(h). All of these three schemes

have a similar two-layer structure: pwf(h, h0) + Xw(h)ps(h, h0) but with different h0

and w(h). The w(h) determines where to allocate the supplemental power according to

a metric. The metric is g(h, h∗
0) for P∗(h), 〈ps(h, ĥ0)〉 for P̂(h), and 〈pr0(h)〉 for P′(h).

The service outage happens at the channel states where the metric is above a threshold.

Since the metrics g(h, h∗
0), 〈ps(h, ĥ0)〉, and 〈pr0(h)〉 are all non-increasing functions of

h, outage occurs at poor channel states for a good scheme, which is consistent with the

intuition.

In previous sections, we have shown that P̂(h) and P′(h) achieve a rate between

R∗ − roε and R∗. It can be directly verified that for sufficiently small pav such that

pwf(h, h∗
0) = 0 holds in the outage set, we have P∗(h) = P̂(h) = P′(h). For sufficiently

large average power, all three policies become water-filling allocation. Thus, for suffi-

ciently small and large pav, both P̂(h) and P′(h) are optimum. Moreover, as shown

below, we have P̂(h) = P′(h) = P∗(h) in an M = 1 fading channel for all parameters.

When M = 1, since the metrics g(h, h∗
0), 〈ps(h, ĥ0)〉, and 〈pr0(h)〉 are all non-increasing

functions of h, all w∗(h), ŵ(h), and w′(h) can be expressed in the same way as

w(h) =























1 h < hb

v h = hb

0 h > hb

, (4.68)

Hence, v and hb are the same for all three schemes since they are the solutions of

E [w(h)] = 1 − ε. With the same w(h), the average power constraints implies that

h∗
0 = ĥ0 = h′

0. Thus, we have P̂(h) = P′(h) = P∗(h) in an M = 1 fading channel.

4.5 Numerical Results

In most of our numerical results, the two near optimum schemes achieve an average rate

almost equal to the maximum rate R∗ achieved by P∗(h), and the lower bound R∗−roε is

loose, especially for large ε. To highlight the performance difference between these three

schemes, we construct a particular two state model as follows: in an M = 2 channel, the
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Figure 4.3: The average rate performance of the optimum scheme P∗(h) versus
two near optimum schemes P̂(h) and P′(h) for a two state model with fixed ro =
0.36 bits/symbol and ε = 1/2.

channel state vector h = (h1, h2) is equal to (0.1238, 0.1238) with probability 1/2, and

equal to (0.1827, 0) with probability 1/2. The average rate versus the average power

performance for P∗(h), P̂(h), and P′(h) in this model with fixed ro = 0.36 bits/symbol

and ε = 1/2 is given by Figure 4.3. It can be seen that the optimum solution P∗(h)

achieves a slightly higher average rate than the near optimum schemes P̂(h) and P′(h).

For sufficiently small and high average power, both P̂(h) and P′(h) are equal to P∗(h).

In this example, P̂(h) is slightly better than P′(h) in a range of parameters. As shown

in Fig 4.4 with ro = 0.5 bits/symbol, P′(h) is almost as good as P∗(h), and both are

better than P̂(h). The relative performance difference is still much less than ε = 0.5.

We apply the results to the M = 2 parallel Rayleigh fading channel model. To

simplify the computations, we assume that the sub-channels are iid with the joint

PDF:

f(h1, h2) =







e−(h1+h2) h1 ≥ 0, h2 ≥ 0

0 otherwise
(4.69)

In Fig 4.5, the average rate versus the average power is plotted for P∗(h), P̂(h), and
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Figure 4.4: The average rate performance of the optimum scheme P∗(h) versus two near
optimum schemes P̂(h) and P′(h) for a two state model with fixed ro = 0.5 bits/symbol
and ε = 1/2.
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P′(h) with fixed ε = 0.01 and ro = 3 bits/symbol in Rayleigh fading channel. As we can

see, the near optimum schemes are indistinguishable from the optimum solution P∗(h).

In Fig 4.6, the service outage achievable rates with different ro are plotted against the

ergodic capacity and the outage capacity in M = 2 Rayleigh fading channel. As we can

see, for the given outage probability ε = 0.01, the outage capacity has a close to 2 dB

loss in the average power compared to the ergodic capacity. A larger average power

loss is expected when the outage probability is smaller. Between the outage capacity

and the ergodic capacity, a number of service outage achievable rates with different r0

exist. The service outage achievable rate is always between the outage capacity times

(1 − ε) and the ergodic capacity. Starting from r0(1 − ε), it approaches the ergodic

capacity as the average power increases. The outage probability achieved by the water

filling allocation with respect to different r0 is also plotted against the service outage

solution with a given ε = 0.01 in Fig 4.7. It can be observed that, for a range of Pav,

the service outage solution achieves a rate very close to the ergodic capacity, and, at

the same time, significantly reduces the outage probability. Hence, the service outage

approach strikes good balance between average rate and outage probability.

Since the basic rate allocation pr0(h) converges to pwf(h, h0), the water-filling al-

location, as M → ∞ [18], in the following, we compare the performance of pwf(h, h0)

and Pmin(h) when M is large.

The water-filling allocation pwf(h, h0) achieves the same ergodic capacity per sub-

channel at all M . The instantaneous rate r(h,Pmin(h)) achieved by Pmin(h) is either 0

during the outage set, or the outage capacity (that is the basic rate) during non-outage.

The outage capacity converges to the ergodic capacity as M → ∞. In fact, the outage

capacity approaches the ergodic capacity very fast. In Fig 4.8, the outage capacity

achieved by Pmin(h) with a fixed outage probability ε = 0.01 is plotted against the

ergodic capacity for M = 1, 2, 5 independent Rayleigh fading channels. As we can see,

Pmin(h) with ε = 0.01 achieves an outage capacity within 1 db of the ergodic capacity

when M = 5.

To compare the instantaneous rate performance of pwf(h, h0) and Pmin(h), we define

the achievable outage rate of a power allocation as the rate which can be supported
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throughout the fading process with an outage probability less than ε. The achievable

outage rate is in fact the basic rate defined in the service outage based allocation

problems. The achievable outage rate of Pmin(h) is just the outage capacity, which

is close to the ergodic capacity for a moderate large M as shown in Fig 4.8. The

achievable outage rate of pwf(h, h0) for a given outage probability ε = 0.01 in M =

5, 10, 20, 50 independent Rayleigh fading channel is plotted against the ergodic capacity

in Fig 4.9. As we can see, the achievable outage rate of pwf(h, h0) is still far from the

ergodic capacity, which is almost equal to the outage capacity of Pmin(h) when M =

50. Therefore, when M is large, Pmin(h) outperforms pwf(h, h0) in outage probability

significantly, while at the same time achieves almost the same average rate as pwf(h, h0).

On the other hand, Pmin(h) is much more complicated than pwf(h, h0) when M is

large. In Fig 4.10, the ratio of the achievable outage rate and the ergodic capacity

versus pav is plotted for water-filling allocation at fixed outage probability ε = 0.01 for

M = 1, 2, 5, 10, 20 independent Rayleigh fading channel. As we can see, for a moderate

large M , the water-filling allocation can support an achievable outage rate within a

high percentage of ergodic capacity, which may be sufficient for some applications.

Since the instantaneous rate achieved by the water-filling allocation is a sum of iid

random variables, the outage probability can be calculated using large deviation theory.

See Appendix 4.C for a large deviation approximation formula. As shown in Fig 4.11,

the large deviation approximation agrees with the simulation very well.

4.6 Conclusion

The service outage based allocation problem is to maximize the expected rate subject to

the average power constraint and the outage probability constraint in the class of prob-

abilistic power allocation schemes. The feasibility condition of this allocation problem

can be obtained from the capacity versus outage probability problem [18]. The opti-

mum power allocation is derived for an M -parallel fading channels model. The result

can be applied to both discrete and continuous fading distributions.

The optimum power allocation is shown to be a combination of the water-filling
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allocation and the basic-rate allocation, and is deterministic except at the boundary set.

It can be viewed as a two-layer allocation: the first layer is the water-filling allocation,

and the second layer the supplemental power allocation. The supplemental power is only

allocated at channel states where the supplemental cost g(h, h∗
0) is below a threshold.

With increasing average power, the optimum power allocation gradually changes from

Pmin(h), which is the optimum solution for the outage capacity, to pwf(h, h∗
0), which

is the optimum solution for the ergodic capacity. The service outage based achievable

rate R∗ gradually changes from ro(1 − ε) to the ergodic capacity. The service outage

approach strikes a good balance between the outage probability and the average rate.

Two near optimum schemes are also derived: the P̂(h) with the minimum h0 and

the P′(h) based on Pmin(h). Both P̂(h) and P′(h) have similar structures as the

optimum solution, but the supplemental power is allocated according to different metric

functions. We have P̂(h) = P′(h) = P∗(h) in an M = 1 fading channel and for a

range of parameters in M ≥ 2 fading channels. Otherwise, P̂(h) and P′(h) achieve

a rate between R∗ − roε and R∗. The derivation of near optimum schemes shows

that the exact shape of the outage set is not critical, a feasible scheme in the form of

pwf(h, h0)+Xw(h)ps(h, h0) achieves a high average rate as long as the corresponding h0

is small. The near optimum scheme P′(h) has an immediate application on transmission

of mixed real-time and non real-time services. Its computation is also significantly

simpler than the optimum solution P∗(h) and the near optimum scheme P̂(h).

4.A Proofs

4.A.1 Lemma 4

Our approach is to show that for an arbitrary feasible probabilistic power allocation

scheme P(h) with a conditional pdf fP|h(p|h), we can always construct another feasible

scheme P′(h) which is randomized between two deterministic schemes pa(h) and pb(h)

with r(h,pa(h)) ≥ ro and the sharing factor w(h) satisfying E [w(h)] ≥ 1 − ε. It can

be shown that P′(h) achieves a higher average rate than P(h). This implies that there

exists an optimum scheme which is randomized between two deterministic schemes, and
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one of them has a rate higher or equal to ro and E [w(h)] ≥ 1 − ε.

The feasibility of P(h) implies that E [〈P(h)〉] ≤ pav and Pr{r(h,P(h)) < ro} ≤ ε.

Deterministic schemes pa(h) and pb(h), and the weighting function w(h) are con-

structed as follows:

w(h) = Pr{r(h,P(h)) ≥ ro|h}

pa(h) = E [P(h)|r(h,p(h)) ≥ ro,h]

pb(h) = E [P(h)|r(h,p(h)) < ro,h] . (4.70)

Clearly, 1 − w(h) is the outage probability of P(h) for a given h. Since P(h) meets

the outage probability constraint, we must have E [1 − w(h)] ≤ ε. The pa(h) is the

conditional average of P(h) whose rate is larger than or equal to ro, while the pb(h) is

the conditional average of P(h) whose rate is smaller than ro. Since r(h,p) is concave

on p for a given h, applying Jensen’s inequality we have

r(h,pa(h)) = r(h, E [P(h)|r(h,p(h)) ≥ ro,h])

≥ E [r(h,P(h))|r(h,p(h)) ≥ ro,h] (4.71)

r(h,pb(h)) = r(h, E [P(h)|r(h,p(h)) < ro,h])

≥ E [r(h,P(h))|r(h,p(h)) < ro,h] . (4.72)

Consider a new probabilistic scheme P′(h) such that P′(h) = pa(h) with probability

w(h) and P′(h) = pb(h) with probability 1 − w(h). The average power of P′(h) is

E
[

〈P′(h)〉
]

= E [w(h)〈pa(h)〉 + (1 − w(h))〈pb(h)〉] = E [〈P(h)〉] ≤ pav . (4.73)

Since r(h,pa(h)) ≥ ro by (4.71) and Pr{P′(h) = pa(h)} = w(h), we have

Pr{r(h,P′(h)) ≥ ro|h} ≥ w(h) .

Thus, the outage probability of P′(h) satisfies

Pr{r(h,P′(h)) < ro} = 1 − E
[

Pr{r(h,P′(h)) ≥ ro|h}
]

≤ 1 − E [w(h)] ≤ ε . (4.74)

From (4.73) and (4.74), P′(h) is also a feasible scheme for problem (4.6). Inequalities

(4.71) and (4.72) imply that P′(h) achieves an average rate higher than or equal to
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P(h), that is

E
[

r(h,P′(h))
]

= E [w(h)r(h,pa(h)) + (1 − w(h))r(h,pb(h))] ≥ E [r(h,P(h))] .

Thus, from any arbitrary feasible power allocation we can always construct a better

feasible power allocation which is randomized between two deterministic power allo-

cations. This implies that there must exist an optimum power allocation which is

randomized between two deterministic power allocations. Furthermore, it is required

that r(h,pa(h)) ≥ ro and E [w(h)] ≥ 1− ε. Also it is easy to see that E [〈P(h)〉] = pav

should hold for the optimum solution; otherwise, a higher average rate can be achieved

by increasing the power.

4.A.2 Proof of Lemma 5

In order to prove Lemma 5, we need the following propositions.

Proposition 5 If f(y) is a concave function over y, then function l(x, y) = xf(y/x)

is a concave function over non negative (x, y).

Proof: Applying the fact that f(y) is a concave function and l(x, y) = xf( y
x), we have

l(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2)

= (λx1 + (1 − λ)x2)f

(

λy1 + (1 − λ)y2

λx1 + (1 − λ)x2

)

= (λx1 + (1 − λ)x2)f

(

λx1

λx1 + (1 − λ)x2

y1

x1
+

(1 − λ)x2

λx1 + (1 − λ)x2

y2

x2

)

(a)

≥ (λx1 + (1 − λ)x2)

[

λx1

λx1 + (1 − λ)x2
f

(

y1

x1

)

+
(1 − λ)x2

λx1 + (1 − λ)x2
f

(

y2

x2

)]

= λx1f

(

y1

x1

)

+ (1 − λ)x2f

(

y2

x2

)

= λl(x1, y1) + (1 − λ)l(x2, y2) . (4.75)

Note that non-negativity of (x, y) is used in inequality (a). 2

In the following proposition, we use ∇f(x) to denote the gradient of f(x).

Proposition 6 Let x and y be two vectors with equal lengths. Let g(y) = f(X(y))

where x = X(y) is a one to one transformation between x and y. If x̂ is a solution to

∇f(x) = 0, then ŷ = X−1(x̂) is also a solution to ∇g(y) = 0.
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Now we return to the proof of Lemma 5, and show that problem (4.25) can be

transformed into a convex optimization problem. Define qa(h) = w(h)pa(h) and

qb(h) = (1 − w(h))pb(h). Problem (4.25) can be transformed as follows:

max
qa(h),qb(h),w(h)

E

{

w(h) r

(

h,
qa(h)

w(h)

)

+ (1 − w(h)) r

(

h,
qb(h)

1 − w(h)

)}

(4.76)

subject to E [〈qa(h)〉 + 〈qb(h)〉] = pav (4.76a)

E [w(h)] ≥ 1 − ε (4.76b)

w(h) r

(

h,
qa(h)

w(h)

)

− w(h)ro ≥ 0 (4.76c)

qa(h) ≥ 0 qb(h) ≥ 0 0 ≤ w(h) ≤ 1 (4.76d)

Denoting fi(z) = log(1 + hiz), it follows from Proposition 5 that

w(h)r(h, w−1(h)qa(h)) =
1

M

M
∑

i=1

w(h)fi

(

qa,i(h)

w(h)

)

(4.77)

is the sum of concave functions. Thus, w(h)r(h, w−1(h)qa(h)) is a concave function

over (w(h),qa(h)). Similarly (1 − w(h))r(h, (1 − w(h))−1qb(h)) is a concave function

over (w(h),qb(h)). Thus, the objective function is concave over (w(h),qa(h),qb(h)). It

can be seen that the equality constraint (4.76a) is a linear function over (qa(h),qb(h)),

the constraint (4.76b) is a linear function over w(h). Since the left side of constraint

(4.76c) is a concave function over (w(h),qa(h)), constraint (4.76c) is a convex set.

Thus, the constraints specify a convex feasible set. Therefore, according to the Kuhn-

Tucker sufficient conditions theorem [43], the Kuhn-Tucker conditions are sufficient

conditions for the transformed problem (4.76). Let (p̂a(h), p̂b(h), ŵ(h)) be a solution

of the Kuhn-Tucker conditions of the original problem (4.25). According to Proposi-

tion 6, it is easy to see that the corresponding transformed variables (q̂a(h), q̂b(h), ŵ(h))

satisfies the Kuhn-Tucker conditions of the transformed problem (4.76). Therefore,

(p̂a(h), p̂b(h), ŵ(h)) is the optimum solution of the original problem (4.25), and, thus,

the Kuhn-Tucker conditions of problem (4.25) are also sufficient.
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4.A.3 Proof of Lemma 6

Condition (4.28) yields

p∗a,i(h) =

(

1 + u∗(h)

h∗
0

− 1

hi

)+

for all i = 1, . . . ,M . (4.78)

Condition (4.31) implies that:

1. When u∗(h) = 0 we have r(h,p∗
a(h)) ≥ ro. Moreover, when u∗(h) = 0, (4.78)

implies p∗
a(h) = pwf(h, h∗

0). Thus, in this case, we have r(h,pwf(h, h∗
0)) ≥ ro.

2. When u∗(h) > 0 we have r(h,p∗
a(h)) = ro. Expression (4.78) and r(h,p∗

a(h)) = ro

imply that p∗
a(h) = pr0(h) with 1+u∗(h)

h∗
0

= λ(h). Since u∗(h) > 0, we have λ(h) >

1/h∗
0. According to Proposition 4(a), we have λ(h) > 1/h∗

0 iff r(h,pwf(h, h∗
0)) <

ro. Therefore, when r(h,pwf(h, h∗
0)) < ro, we have p∗

a(h) = pr0(h) with a rate

equal to ro.

Therefore,

p∗
a(h) =







pwf(h, h∗
0) r(h,pwf(h, h0)) ≥ ro

pr0(h) otherwise
. (4.79)

Lastly, condition (4.29) yields p∗
b(h) = pwf(h, h∗

0) directly.

4.A.4 Proof of Lemma 7

We need the following proposition to prove Lemma 7.

Proposition 7 For x ≥ 0, t(x) = x− log(1 + x) is an increasing nonnegative function

of x.

Proof: When x > 0, the first derivative t′(x) = 1 − 1/(1 + x) > 0. Thus, t(x) is

increasing in x when x ≥ 0. Since t(0) = 0, t(x) ≥ 0 for all x ≥ 0. 2

(a) To prove Lemma 7(a), we only need to show that function g(h, h0) is a nonin-

creasing function of hi for all i = 1, 2, . . . ,M .

When ps(h, h0) = 0, we have r(h,pwf(h, h0)) ≥ ro and rs(h, h0) = 0. Thus, we

have g(h, h0) = 0 when ps(h, h0) = 0.
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When ps(h, h0) > 0, we have ps(h, h0) = pr0(h) − pwf(h, h0) and rs(h, h0) =

ro − r(h,pwf(h, h0)). Thus, in this case, we have

g(h, h0) = h0〈pr0(h)〉 − ro − q(h, h0), (4.80)

where

q(h, h0) = h0pwf(h, h0) − r(h,pwf(h, h0)). (4.81)

We have

∂q(h, h0)

∂hi
=











1
Mhi

(

h0
hi

− 1
)

< 0 hi > h0

0 hi ≤ h0

(4.82)

Partial derivative of 〈pr0(h)〉 can be computed according to the approach used in

[18]. Without loss of generality, it is assumed that h1 ≥ . . . ≥ hM . Reference [18]

shows that

∂〈pr0(h)〉
∂hi

=











1
Mhi

(

1
hi

− λ(h)
)

i = 1, . . . , µ

0 i = u + 1, . . . ,M
, (4.83)

where µ is an integer employed in λ(h). Parameter µ has a property such

that λ(h) ≥ h−1
i for i ≤ µ and λ(h) < h−1

i for i > µ [18]. Thus, we have

(∂/∂hi)〈pr0(h)〉 ≤ 0.

From (4.82) and (4.83), it follows that

– when hi ≤ h0, we have (∂/∂hi)g(h, h0) = h0(∂/∂hi)〈pr0(h)〉 ≤ 0.

– when hi > h0, we have

(∂/∂hi)g(h, h0) = h0(∂/∂hi)〈pr0(h)〉 − (∂/∂hi)q(h, h0).

In the case of ps(h, h0) > 0, by Proposition 4 we have h−1
0 < λ(h), and thus

h−1
i < h−1

0 < λ(h). By the definition of λ(h), we have λ(h) ≥ h−1
i iff i ≤ µ.

Thus, in this case we must have i < µ. Therefore, we have

(∂/∂hi)g(h, h0) =
1

Mhi
(1 − h0λ(h)) ≤ 0.

Thus, g(h, h0) is a non increasing function of hi for all i = 1, 2, . . . ,M .
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(b) As shown in (a), we have g(h, h0) = 0 when ps(h, h0) = 0.

When ps(h, h0) > 0, we want to show that g(h, h0) is strictly positive.

In this case, we have

rs(h, h0) = ro − r(h,pwf(h, h0))

= r(h,pr0(h, h0)) − r(h,pwf(h, h0))

= 1/M

M
∑

i=1

log

(

1 +
hips,i(h, h0)

1 + hipwf,i(hi, h0)

)

(4.84)

Let

gi(h, h0) = h0ps,i(h, h0) − log

(

1 +
hips,i(h, h0)

1 + hipwf,i(hi, h0)

)

,

then we have g(h, h0) = 1/M
∑M

i=1 gi(h, h0).

1. When pwf,i(hi, h0) = 0, we have hi ≤ h0 and ps,i(h, h0) = pr0,i(h). Then

gi(h, h0) = h0pr0,i(h) − log(1 + hipr0,i(h))

=
h0

hi
hipr0,i(h) − log(1 + hipr0,i(h)) ≥ t(hipr0,i(h)) . (4.85)

2. When pwf,i(hi, h0) > 0, we have 1 + hipwf,i(hi, h0) = hi/h0, and thus

gi(h, h0) = h0ps,i(h, h0) − log(1 + h0ps,i(h, h0)) = t(h0ps,i(h, h0)) .

Here, function t(x) is an increasing nonnegative function of x when x ≥ 0 by

Proposition 7. Therefore, we have gi(h, h0) > 0 for all i, and thus g(h, h0) > 0

when ps(h, h0) > 0.

4.A.5 Proof of Lemma 8

The average rate achieved by P(h, h0, w(h)) is

E [r(h,P(h, h0, w(h)))]

= E [r(h,pwf(h, h0)) + w(h)rs(h, h0)]

= E [r(h,pwf(h, h0)) + rs(h, h0)] − E [(1 − w(h))rs(h, h0)] . (4.86)
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The first term in (4.86) is

E [r(h,pwf(h, h0)) + rs(h, h0)]

= E
[

r(h,pwf(h, h0)) + [ro − r(h,pwf(h, h0))]
+
]

(a)
= E

[

ro + [r(h,pwf(h, h0)) − ro]
+
]

= Ru(h0) . (4.87)

Equality (a) follows from a + (b − a)+ = b + (a − b)+ for any a, b, and c.

The second term in (4.86) is bounded between 0 and roε, since

0 ≤ rs(h, h0) = [ro − r(h,pwf(h, h0))]
+ ≤ ro (4.88)

0 ≤ E [1 − w(h)] ≤ ε . (4.89)

Thus,

Ru(h0) − roε ≤ E [r(h,P(h, h0, w(h)))] ≤ Ru(h0) . (4.90)

4.A.6 Proof of Lemma 10

We need the following proposition to prove Lemma 10.

Proposition 8 The average power E [〈P(h, h0, w(h))〉] is decreasing in h0 for a given

w(h).

Proof: Proposition 8 The average power achieved by P(h, h0, w(h)) can be expressed

as follows:

E [〈P(h, h0, w(h))〉]

= E [〈pwf(h, h0)〉 + w(h)〈ps(h, h0)〉]

= E [(1 − w(h))〈pwf (h, h0)〉 + w(h)(〈pwf (h, h0)〉 + 〈ps(h, h0)〉)]

= E
[

(1 − w(h))〈pwf (h, h0)〉 + w(h)
(

〈pr0(h)〉 + 〈[pwf(h, h0) − pr0(h)]+〉
)]

. (4.91)

Since 〈pwf(h, h0)〉 is decreasing in h0, the above expression implies that E [〈P(h, h0, w(h))〉]

is a decreasing function of h0 for a given w(h). 2

Now we return to the proof of Lemma 10.
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For any P(h, h0, w(h)) with E [〈P(h, h0, w(h))〉] = Pav and E [w(h)] ≥ 1 − ε, con-

sider a scheme P(h, ĥ0, w(h)). By Lemma 9, we have E
[

ŵ(h)〈ps(h, ĥ0)〉
]

≤ E
[

w(h)〈ps(h, ĥ0)〉
]

for any w(h) that satisfies E [w(h)] ≥ 1 − ε. Then we have

E
[

〈P(h, ĥ0, w(h))〉
]

= E
[

〈pwf(h, ĥ0)〉 + w(h)〈ps(h, ĥ0)〉
]

≥ E
[

〈pwf(h, ĥ0)〉 + ŵ(h)〈ps(h, ĥ0)〉
]

= E
[

〈P(h, ĥ0, ŵ(h))〉
]

= pav

= E [〈P(h, h0, w(h))〉] (4.92)

Since E [〈P(h, h0, w(h))〉] is a decreasing function of h0 for a given w(h) by Proposi-

tion 8, we have ĥ0 ≤ h0. Hence, P̂(h) has the minimum water-filling parameter among

all P(h, h0, w(h)) that satisfies E [〈P(h, h0, w(h))〉] = Pav and E [w(h)] ≥ 1 − ε.

4.A.7 Proof of Lemma 11

In this section, we show that E [r(h,P′′(h))] ≥ Ru(h′′
0) − roε.

For any x1 ≥ 0 and x2 ≥ 0, we have

log(1 + x1 + x2) ≤ log(1 + x1) + log(1 + x2),

and thus

log(1 + x1) ≥ log(1 + x1 + x2) − log(1 + x2).

Therefore, for any two power allocations pa(h) and pb(h) we have

E [r(h,pa(h))] ≥ E [r(h,pa(h) + pb(h))] − E [r(h,pb(h))] . (4.93)

Let pu(h, h0) = pr0(h) + [pwf(h, h0) − pr0(h)]+. Expanding P′′(h) and applying

Pmin(h) = Xw′(h)pr0(h), we have

P′′(h) = Pmin(h) + [pwf(h, h′′
0) − pr0(h)]+

= Pmin(h) − pr0(h) + pr0(h) + [pwf(h, h′′
0) − pr0(h)]+

= pu(h, h′′
0) − (pr0(h) −Pmin(h))

= pu(h, h′′
0) − X1−w′(h)pr0(h) . (4.94)
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Applying Proposition 4 (b) and (c), it is easy to show that

r(h,pu(h, h′′
0)) = ro + [r(h,pwf(h, h′′

0)) − ro]
+ . (4.95)

Thus, E [r(h,pu(h, h′′
0))] = Ru(h

′′
0).

Since E [w′(h)] = 1 − ε, we have

E [r(h, X1−w′(h)pr0(h))] = E
[

1 − w′(h)
]

ro = roε . (4.96)

Thus, applying (4.93) we have

E
[

r(h,P′′(h))
]

≥ E
[

r(h,pu(h, h′′
0))
]

− E [r(h, X1−w′(h)pr0(h))]

= Ru(h
′′
0) − roε . (4.97)

4.A.8 Proof of Lemma 12

To show h′′
0 ≤ ĥ0, we only need to show that h′′

0 ≤ h0 for any P(h, h0, w(h)) that

satisfies E [〈P(h, h0, w(h))〉] = pav and E [w(h)] ≥ 1 − ε.

We have

E
[

〈P′′(h)〉
]

= E
[

〈Pmin(h) + [pwf(h, h′′
0) − pr0(h)]+〉

]

= pav

= E [〈P(h, h0, w(h))〉]

= E [〈pwf(h, h0) + w(h)ps(h, h0)〉]
(a)

≥ E
[

〈pwf(h, h0) + [w(h)pr0(h) − pwf(h, h0)]
+〉
]

(b)
= E

[

〈w(h)pr0(h) + [pwf(h, h0) − w(h)pr0(h)]+〉
]

(c)

≥ E
[

〈w(h)pr0(h) + [pwf(h, h0) − pr0(h)]+〉
]

(d)

≥ E
[

〈Pmin(h) + [pwf(h, h0) − pr0(h)]+〉
]

. (4.98)

Inequality (a) and (c) follows from 0 ≤ w(h) ≤ 1. Equality (b) follows from a+(b−a)+ =

b+(a−b)+. Inequality (d) holds since Pmin(h) achieves the minimum power that needed

to support ro with probability 1 − ε, that is E [〈Pmin(h)〉] ≤ E [〈w(h)pr0(h)〉] for any

w(h) that satisfies E [w(h)] ≥ 1 − ε.
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Thus, it follows that

E
[

〈[pwf(h, h′′
0) − pr0(h)]+〉

]

≥ E
[

〈[pwf(h, h0) − pr0(h)]+〉
]

. (4.99)

Since 〈pwf(h, h0)〉 is a decreasing function of h0, we have h′′
0 ≤ h0, and thus h′′

0 ≤ ĥ0.

4.A.9 Proof of Lemma 13

In this section, we show that P′(h) achieves a higher average rate than P′′(h).

For any nonnegative pa(h) and pb(h), let Π denote a set of probabilistic schemes

with average power pav such that P(h) = pr0(h) + pa(h) with probability w′(h) and

P(h) = pb(h) with probability 1 − w′(h). Here w′(h) is given by (4.21). It is easy to

show that P′(h) ∈ Π with pa(h) = [pwf(h, h′
0)− pr0(h)]+ and pb(h) = pwf(h, h′

0), and

P′′(h) ∈ Π with pa(h) = pb(h) = [pwf(h, h′′
0) − pr0(h)]+.

Consider the following optimization problem

max
pa(h),pb(h)

E
[

w′(h)r(h,pr0(h) + pa(h)) + (1 − w′(h))r(h,pb(h))
]

(4.100)

subject to E
[

w′(h)〈pr0(h) + pa(h)〉 + (1 − w′(h))〈pb(h)〉
]

≤ pav (4.100a)

pa(h) ≥ 0, pb(h) ≥ 0 .

Applying the generalized Kuhn-Tucker conditions [56], the optimum solution of (4.100)

is

p∗
a(h) = [pwf(h, h′

0) − pr0(h)]+, p∗
b(h) = pwf(h, h′

0) ,

Thus, P′(h) is the optimum power allocation that maximizes the average rate in set Π.

Therefore, P′(h) achieves a higher average rate than P′′(h).

4.B Closed Form Solution for Sub-problem

As shown in section 4.3.5, to determine (h∗
0, s

∗, v∗(h)) for P∗(h), it requires solving a

linear programming problem on v(h) for given h0 and s.

For a given h0 and the corresponding s(h0) in (4.54), let

p = pav − E [〈pwf(h, h0)〉 − 〈ps(h, h0)〉[1 (g(h, h0) < s(h0))] , (4.101)

δ = 1 − ε − Pr{g(h, h0) < s(h0)} . (4.102)
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Define event B as g(h, h0) = s(h0). Equations (4.48)-(4.50) become

E [v(h)〈ps(h, h0)〉|B] = p, (4.103)

E [v(h)|B] = δ (4.104)

0 ≤ v(h) ≤ 1 . (4.105)

To determine whether (4.103)-(4.105) is feasible, we first solve the following two

optimization problems.

pmin = min
0≤v(h)≤1

E [v(h)〈ps(h, h0)〉|B] (4.106)

subject to E [v(h)|B] = δ, (4.106a)

and

pmax = max
0≤v(h)≤1

E [v(h)〈ps(h, h0)〉|B] (4.107)

subject to E [v(h)|B] = δ, (4.107a)

Let v1(h) and v2(h) denote the corresponding optimum solution for pmin and pmax

respectively.

We have the following lemma for the sub-problem.

Lemma 14 For a given h0, problem (4.103)-(4.105) is feasible iff pmin ≤ p ≤ pmax.

When it is feasible, one solution is v(h) = λv1(h)+(1−λ)v2(h), where λ is the solution

to p = λpmin + (1 − λ)pmax.

The v1(h) can be obtained by solving problem (4.106) using the Kuhn-Tucker con-

ditions. We have

v1(h) =























1 ps(h, h0) < t1

v1 ps(h, h0) = t1

0 ps(h, h0) > t1

, (4.108)

where parameters t1 and 0 ≤ v1 ≤ 1 are solutions of (4.106a) as

t1 = sup {x : Pr{B,ps(h, h0) < x} < δ} (4.109)

v1 =
δ − Pr{B,ps(h, h0) < t1}

Pr{B,ps(h, h0) = t1}
. (4.110)
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Similarly, solving problem (4.107), we have

v2(h) =























1 ps(h, h0) > t2

v2 ps(h, h0) = t2

0 ps(h, h0) < t2

, (4.111)

where t2 and v2 are

t2 = inf {x : Pr{B,ps(h, h0) > x} < δ(h0)} (4.112)

v2 =
δ − Pr{B,ps(h, h0) > t2}

Pr{B,ps(h, h0) = t2}
. (4.113)

In summary, the algorithm to find out the optimum parameters is as follows:

1. choose h0.

2. compute s according to (4.54).

3. compute p and δ according to (4.101) and (4.102).

4. compute v1(h, h0) and v2(h, h0) according to (4.108) and (4.111). Compute the

corresponding pmin and pmax.

5. If pmin ≤ p ≤ pmax, we have v∗(h) = λv1(h) + (1 − λ)v2(h), where λ is the

solution to p = λpmin +(1−λ)pmax. The corresponding h0 and s are the optimum

solutions.

6. Otherwise, adjust h0 go to step 2.

4.C Large Deviation Approximation

In this section, we introduce techniques to compute the tail probability

Pr{ 1

N

N
∑

n=1

zn < A},

where zn are independent, identically distributed random variables with pdf fZ(z) and

A < E {z}. When the mean and variance of Z are known, the tail probability may be

computed by using a Gaussian approximation. The Gaussian approximation, though

can be evaluated with extreme ease, is not particular accurate for tail probablity. The
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calculation of the tail probability falls into the area of large deviation theory [32, 34],

which is concerned with the sum of a large number of random variables.

First, we examine the Chernoff bound. Define u(s) as

u(s) = − log(E
{

e−sz
}

) . (4.114)

Applying the Chernoff bound, we have

Pr{ 1

N

N
∑

n=1

zn < A} ≤ min
s>0

E
{

es(NA−
∑N

n=1 zn)
}

= min
s>0

e−N(u(s)−sA) . (4.115)

The optimum s∗ is the solution to u′(s) = A. Since u′(s) is decreasing and A < E {z} =

u′(0), the parameter s∗ is positive.

The above bound can be sharpened by the theory of large deviations. See [34] for

the detail. Here we only present the results. The first two derivatives of u(s) are given

by

u′(s) =
E {ze−sz}
E {e−sz} (4.116)

u′′(s) = −E
{

z2e−sz
}

E {e−sz} + [u′(s)]2 . (4.117)

Notice that u′(0) and −u′′(0) are, respectively, the mean and variance of z. From [34],

the tail probability is given by

Pr{ 1

N

N
∑

n=1

zn < A} = e−N(u(s∗)−s∗A)

(

1

s∗
√

2πN(−u′′(s∗))
+ o

(

1√
N

)

)

. (4.118)
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Chapter 5

Adaptive Transmission for Mixed Services over Fading

Channels

In this chapter, we explore adaptive transmission for systems with mixed real-time and

non real-time services over fading channels.

Wireless systems are expected to provide a variety of services including voice, file

transfer, email, Internet access, video, and audio. These services can be divided into two

basic classes: real-time service and non real-time service. Without loss of generality, we

examine the systems with mixed voice and data services where the voice represents the

real-time service and the data represents non real-time service. A lot of work has been

done in the area of integration of voice and data in multiuser scenarios to serve both

voice and data users [39, 85, 86, 88]. Typically, a static environment where the channel

conditions are fixed is assumed and the focus is on the media access control (MAC)

protocols. In this work, we concentrate on transmission of mixed services in a single

wireless link, where the channel condition changes with time. This is motivated by

the increasing popularity of multimedia applications on the world wide web that may

contain both non real-time information such as text and real-time information such as

voice or video.

The adaptive transmission of mixed voice and data services in a fading channel was

previously discussed in [1]. In [1] the inphase (I) channel was dedicated to voice and

the quadrature (Q) channel was dedicated to data. It is assumed in [1] that the power

for both services is constant throughout the fading. Since the voice service requires a

constant rate, the power allocation for voice is the channel inversion. The remaining

power is allocated to the data service, and the code rate for data varies according to

the channel state and the availabe power. Reference [1] didn’t address the problem of
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finding optimum transmission scheme in a system with mixed services.

In this chapter, we first determine the optimum transmission scheme for a system

with mixed services from an information theoretic point of view. We show that the op-

timum transmission scheme is the service outage based allocation described in Chapter

4. The service outage based allocation and its implementations with joint transmission

are discussed in detail in Section 5.1. In Section 5.2, it is shown that the service outage

based allocation can also be implemented by an adaptive channel partition scheme.

The optimum fixed channel partition scheme is derived and compared to the adaptive

scheme in Section 5.3. In addition, a suboptimum fixed partition scheme called equal

power density partition is studied and observed to be close to the optimum fixed scheme

in M = 1 Rayleigh fading channel in Section 5.4

5.1 Service Outage Based Capacity and Joint Transmission Strategies

Consider a system with mixed voice and data services in BF-AWGN channels. The voice

service is a real time service and let ro denote its information source rate. When the

transmission rate is less than ro, the information bits are useless and are thrown away,

and this event is termed an outage. In order to guarantee good voice quality, the service

outage probability must be less than a specified value ε. Therefore, the transmission

rate must be at least the voice target rate ro with probability 1 − ε, nevertheless, it is

not restricted to be just equal to ro. We allow for a higher transmission rate than ro,

so that any excess rate can be used to transmit data. As we can see, the maximum

average rate achieved by this system is just the service outage based achievable rate

discussed in previous chapters.

In the system with mixed voice and data services, the service outage based achievable

rate can be achieved by joint encoding and decoding of both services. Particular, near

optimum allocation II discussed in Chapter 4 has a structure appealing to transmission

of mixed services. Recall that near optimum allocation II can be expressed as

P′(h) = Pmin(h) + [pwf(h, h′
0) −Pmin(h)]+ . (5.1)

Here Pmin(h) = Xw′(h)pr0(h) achieves the minimum sufficient power to maintain the
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basic rate r0 with outage probability ε. Let pex(h) = [pwf(h, h′
0) − Pmin(h)]+ denote

the second term in (5.1), called excessive power allocation. It maximizes the excessive

rate in the presence of Pmin(h).

Near optimum allocation II can be implemented in the mixed services system using

superposition coding and successive decoding with different orders as shown below. To

describe successive decoding schemes, for two arbitrary power allocations pa(h) and

pb(h), we define

r(h,pb(h)|pa(h)) =
1

M

∑

i=1

M log

(

1 +
hipb,i(h)

1 + hipa,i(h)

)

. (5.2)

Rate r(h,pb(h)|pa(h)) is the rate achieved by pb(h) when pa(h) is an additive inter-

ference. Using chain rule, we have

r(h,pa(h) + pb(h)) = r(h,pa(h)) + r(h,pb(h)|pa(h))

= r(h,pb(h)) + r(h,pa(h)|pb(h)) . (5.3)

Two joint transmission strategies can be employed in the system as follows:

• Strategy I: first decode data and then voice, that is

r(h,P′(h)) = r(h,Pmin(h)) + r(h,pex(h)|Pmin(h)) . (5.4)

In this approach, voice is allocated with the minimum power Pmin(h), and data

is allocated with the excessive power pex(h). At the receiver, data is decoded

first and is subtracted from the received signal, then voice is decoded. In a BF-

AWGN channel model, if the data service uses variable-rate multiple-codebooks,

the decoding delay associated with the voice service is the time to decode one

short codeword for data, which may be acceptable for many cases. If instead, the

data service uses a constant-rate single-codebook averaged out all fading states,

the decoding delay associated with the voice service is likely to be unacceptable.

Fortunately, in many wireless systems, variable-rate short codes are usually used

for non realtime data service.

• Stategy II: first decode voice and then data. In the outage set, only data is

transmitted. In the service set, we have Pmin(h) = pr0(h). Using the idea in [45],
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in the service set we have

r(h,P′(h)) = r(h,pex(h)e−r0 + pr0(h) + pex(h)(1 − e−r0))

= r(h,pex(h)e−r0) + r(h,pr0(h) + pex(h)(1 − e−r0)|pex(h)e−r0) .

Using the fact that r(h,pr0(h)) = r0, it is easy to show that

r(h,pr0(h) + pex(h)(1 − e−r0)|pex(h)e−r0) = r0 . (5.5)

Therefore, in this approach, in the service set, data service is allocated with power

pex(h)e−r0 , and voice service is allocated with power pr0(h) + pex(h)(1 − e−r0).

At the receiver, voice is decoded first and is subtracted from the received signal,

then the data is decoded. This approach allows the voice service to be decoded

with a delay independent of the data service and the rate of channel variation.

5.2 Adaptive Channel Partition

In this section, we show that, without using joint coding, the service outage based

capacity can in fact be achieved by an adaptive channel partition scheme, where services

are transmitted in separate channels. By using the adaptive channel partition, the

system complexity is significantly reduced compared to the joint transmission schemes,

and also it brings more flexibility in the design of systems with mixed services.

In an channel partition scheme, the channel is partitioned into voice and data sub-

channels. Similar to frequency division (FD), time division (TD), and orthogonal code

division (CD) in multiuser communications [8, 81], the partition between different ser-

vices can be done in either frequency, time, or code space. For an adaptive channel

partition scheme, the fraction of channel (time, bandwidth, or code) allocated to each

service is adapted according to the channel state. Orthogonal partition schemes in dif-

ferent spaces are equivalent to each other, in the sense that they can achieve the same

rate [8, 81]. Without loss of generality, we use partitioning in time to illustrate the

basic ideas and all the results can be applied to the partition schemes in other spaces.

For partition in time, the time is divided into a sequence of frames with the same time

duration. Within each frame the time is divided into the voice slot and the data slot.
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The channel state is assumed to be constant within each frame, but may vary from

frame to frame.

Let α(h) denote the fraction of time allocated to the voice slot at channel state

h. Then the remaining 1 − α(h) of time is allocated to the data slot at channel state

h. If the power allocations in both the voice slot and the data slot are the service

outage based allocation, denoted by p(h, h0), then the voice rate achieved in the frame

is α(h)r(h,p(h, h0)) and the data rate is (1 − α(h))r(h,p(h, h0)). The total rate

r(h,p(h, h0)) can be achieved in the frame with h. Let Ho denote the outage set for

scheme p(h, h0). Choose the partition ratio as

α(h) =







ro
r(h,p(h,h0))

h /∈ Ho

0 h ∈ Ho

. (5.6)

Then, the voice rate ro can be provided with probability 1 − ε. The proposed adaptive

channel partition scheme employs the following three modes of operations to achieve

the service outage based capacity:

1. In the outage set, the partition ratio α(h) = 0. In this case, the whole channel is

dedicated to the data service with rate r(h,p(h, h0)).

2. In the basic-rate set with r(h,p(h, h0)) = ro, the partition ratio α(h) = 1. In

this case, the whole channel is dedicated to the voice service.

3. In the enhanced-rate set with r(h,p(h, h0)) > ro, the partition ratio α(h) =

ro/r(h,p(h, h0)) < 1. In this case, the channel is partitioned into voice sub-

channel and data subchannel. The partition ratio α(h) decreases with channel

state vector h. Therefore, at a better channel state vector a larger faction of the

channel is allocated to data.

5.3 Optimum Fixed Channel Partition Scheme

In Section 5.1, it is shown that the service outage based capacity can be achieved by

a adaptive channel partition scheme. In this section, we study fixed channel partition

schemes, whose partition ratio is fixed throughout the whole communication session.
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Let α denote the fraction of channel allocated to the voice service. Then the remaining

1 − α fraction of channel is allocated to the data service. Let pv(h) and pd(h) denote

the power allocations in the voice and data subchannels respectively. In the following

allocation problem, we would like to find out (pv(h),pd(h), α) that maximize the ex-

cessive rate for the data service, while at the same time maintain a basic rate r0 for the

voice service with an outage probability ε.

max
pv(h),pd(h),α

(1 − α)E [r(h,pd(h))]

subject to αE [〈pv(h)〉] + (1 − α)E [〈pd(h)〉] ≤ pav

Pr{αr(h,pv(h)) < r0} ≤ ε

0 ≤ α ≤ 1, pv(h) ≥ 0, pd(h) ≥ 0 . (5.7)

Clearly, the excessive rate for the data service increase as the average power allocated

for the data services increases. Therefore, allocation problem (5.7) can be solved in the

following two steps:

1. Find pv(h) that minimizes the average power needed for voice for given α. The

optimum solution is denoted by pv(h, α).

2. Find pd(h) and α that maximize the average excessive rate for data, when the

power allocation for voice is pv(h, α). The optimum solutions are denoted as

p∗
d(h) and α∗.

Clearly, the optimum solution pv(h, α) in step one is equal to Pmin(h) with an

effective basic rate r0/α in the voice subchannel. That is

pv(h, α) =







pr0/α(h) 〈pr0/α(h)〉 ≤ s

0 otherwise
, (5.8)

where s to the solution to Pr{〈pr0/α(h)〉 > s} = ε. Define

Pv(α) = E [pv(h, α)] =

∫

〈pr0/α(h)〉≤s
〈pr0/α(h)〉dF (h) (5.9)

as the power density in the voise subchannel. Then the minimum average power for

voice is αPv(α) and the maximum average power for data is Pav − αPv(α).
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Let αmin to be the solution to αPv(α) = Pav. Problem (5.7) is feasible iff α ≥ αmin.

Allocation problem in step two can be written as

max
pd(h),α

(1 − α)E [r(h,pd(h))]

subject to αPv(α) + (1 − α)E [〈pd(h)〉] ≤ Pav

pd(h) ≥ 0, αmin ≤ α ≤ 1 . (5.10)

Using Lagrange multiplie h0, define

l(pd(h), α, h0) = (1 − α)r(h,pd(h)) − h0(αPv(α) + (1 − α)pd(h)) . (5.11)

The average rate for data service is equal to zero when α = αmin or α = 1. Therefore,

when αmin < 1, the optimum α∗ must be a non-boundary point, that is, we must

have αmin < α∗ < 1. According to the Kuhn-Tucker necessary conditions theorem, the

optimum solution (p∗
d(h), α∗) should satisfy the following conditions:

∂l(pd(h), α, h0)

∂pd(h)

∣

∣

∣

∣

pd(h)=p∗
d(h)







= 0 p∗
d(h) > 0

≤ 0 p∗
d(h) = 0

(5.12)

∂l(pd(h), α, h0)

∂α

∣

∣

∣

∣

α=α∗

= 0, αmin < α∗ < 1 (5.13)

α∗Pv(α
∗) + (1 − α∗)E [p∗

d(h)] = Pav (5.14)

Condition (5.12) yields

p∗
d(h) = pwf(h, h0) . (5.15)

The optimum power allocation in the data subchannel is the water-filling allocation.

Define the power density in the data subchannel as Pd(h0) = E [p∗
d(h)], and the rate

density in the data subchannel as Rd(h0) = E [r(h,p∗
d(h))]. Then it follows that h0

and α∗ must satisfy

h0[Pd(h0) − Pv(α
∗) − α∗P ′

v(α
∗)] − Rd(h0) = 0 (5.16)

α∗Pv(α
∗) + (1 − α∗)Pd(h0) = Pav . (5.17)

P ′
v(α) is the derivative of Pv(α) over α.
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Figure 5.1: Optimum fixed partition ratio α∗ versus Pav in M = 1 Rayleigh fading
channel for ro = 0.5 bits/s/Hz and ε = 0.01.

Calculation of Pv(α) and P ′
v(α) is complicated in an M ≥ 2 parallel fading channel

model. Here we only present the results for M = 1 fading channel. When M = 1, we

have

pv(h, α) =







0 h < hε

er0/α−1
h h ≥ hε

. (5.18)

It follows that

Pv(α) =

∫ ∞

hε

er0/α − 1

h
dF (h) . (5.19)

Function αPv(α) is convex in α when M = 1. By replacing pd(h) with a new

variable qd(h) = (1 − α)pd(h), allocation problem (5.10) can be transformed into a

convex optimization problem when M = 1. Thus, the Kuhn-Tucker conditions (5.12)-

(5.14) are also sufficient for the optimum solution when M = 1, which implies that any

solutions of (5.16) and (5.17) are the optimum solution for problem (5.10). The h0 and

α∗ can be obtained numerically through two dimensional search.

Consider a Rayleigh fading channel with a probability density function f(h) = e−h

for h > 0. In Figure 5.1, the optimum partition ratio α∗ versus Pav is presented for

M = 1 Rayleigh fading channel with fixed ro = 0.5 bits/s/Hz and ε = 0.01. The

optimum partition ratio decreases with average power. In Figure 5.2 the total average
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Figure 5.2: Comparison of the optimum fixed partition ratio α∗ with arbitrary partition
ratio in M = 1 Rayleigh fading channel for ro = 0.5 bits/s/Hz, and ε = 0.01.
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Figure 5.3: Comparison of service outage approach with optimum fixed partition scheme
in M = 1 Rayleigh fading channel for ro = 2 bits/s/Hz, and ε = 0.01.
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Figure 5.4: Comparison of service outage approach with optimum fixed partition scheme
in M = 1 Rayleigh fading channel for ro = 0.1 bits/s/Hz, and ε = 0.01.

rate achieved by the optimum partition ratio is plotted against the performance by

arbitrary partition ratios. It can be seen that a significant performance degradation

can be incurred if an arbitrary partition ratio is used.

We compare the service outage approach with the optimum fixed partition scheme

in Figures 5.3 and 5.4 for M = 1 Rayleigh fading channel. Figure 5.3 demonstrates

that in the case of high voice spectral efficiency ro = 2 bits/s/Hz, the fixed partition

scheme incurs almost 2 dB loss in average power. In the case of low voice spectral

efficiency ro = 0.1 bits/s/Hz as shown in Figure 5.4, the fixed partition scheme has less

than 0.5 dB loss in the average power. From the numerical results, we observe that

the optimum fixed partition scheme can be used without significant loss in the system

performance when the voice spectral efficiency is ro � 1.

5.4 Equal Power Density Partition in M = 1 fading channel

Since the optimum fixed partition ratio does not has a closed form solution even in

M = 1 fading channel, we propose an equal power density partition scheme, which has

a simple close form solution in M = 1 fading channel. It is observed that the equal
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Figure 5.5: Comparison of equal power density partition scheme with the optimum
fixed partition scheme in M = 1 Rayleigh fading channel with ro = 1 bits/s/Hz and
ε = 0.01. The average rate versus SNR is on the left, and the corresponding partition
ratio versus SNR is on the right.

power density partition scheme achieves an average rate close to the optimum fixed

partition scheme in M = 1 fading channel.

In the equal power density partition scheme, the partition ratio α̂ is chosen so that

Pv(α̂) = Pd(h0, α̂) = Pav.

In M = 1 fading channel, α̂ has a simple closed form solution as

α̂ =
ro

log

(

1 + Pav
∫∞

hε
1/hf(h)dh

) . (5.20)

α̂ decreases with Pav. It has been observed that the equal power density partition

achieves an average rate close to the optimum fixed partition in M = 1 Rayleigh

fading channel for a wide range of parameters. In Figure 5.5 and 5.6, the equal power

density partition scheme is compared to the optimum fixed partition scheme for ro =

1 bits/s/Hz and ro = 0.05 bits/s/Hz respectively. It is observed that R(α̂, Pav) is closer

to R(α∗, Pav) when the voice spectral efficiency ro is higher. In Figure 5.5 with ro =

1 bits/s/Hz, the ratio R(α̂, Pav)/R(α∗, Pav) ≈ 0.98. Even with a very low voice spectral
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Figure 5.6: Comparison of equal power density partition scheme with the optimum
fixed partition scheme in M = 1 Rayleigh fading channel with ro = 0.05 bits/s/Hz and
ε = 0.01. The average rate versus SNR is on the left, and the corresponding partition
ratio versus SNR is on the right.

efficiency ro = 0.05 bits/s/Hz as shown in Fig 5.6, the difference between R(α̂, Pav) and

R(α∗, Pav) is negligible. The same phenomena is also observed for different ε.

Notice that although the resulting average rates R(α̂, Pav) and R(α∗, Pav) are close

to each other, the corresponding partition ratios α̂ and α∗ can be quite different. In

Figure 5.6 with ro = 0.05 bits/s/Hz, the corresponding α̂ = 0.46 is almost three times of

α∗ = 0.17. Thus, the equal power density partition scheme is a near optimum scheme,

but it is in general not an approximation of the optimum fixed partition scheme.
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Chapter 6

Variable-rate Turbo Bit-Interleaved Coded Modulation

In this chapter, we study the performance of variable-rate turbo bit-interleaved coded

modulation (Turbo-BICM). A continuously varying rate can be obtained by changing

the binary code rate through both random puncturing and modulation constellation

size. The closed form approximation for the rate vs SNR performance of the variable-

rate Turbo-BICM scheme is obtained and is applied to the design of adaptive transmis-

sion schemes in slow fading channels.

6.1 Introduction

Turbo codes proposed by Berrou et al. represent a recent breakthrough in coding theory

[9, 10], which has stimulated a large amount of new research. These codes are parallel

concantenated convolutional codes (PCCC) whose encoder is formed by two or more

[28] constituent systematic encoders joined through one (or more) interleavers. Other

types of turbo-like code concatenated with interleavers, such as serial concatenation

codes [5] and repeat accumulate (RA) [26] codes were proposed. Some of the early

investigations on turbo code design can be found, for example, in [27]- [29], and the

iterative decoding algorithms in [41]. In depth research on understanding the excellent

performance of turbo codes were explored in [6,7] and in [48]. Some tight upper bounds

on the error probability of ML decoding for turbo codes were reported in [25], [75].

Coding theorems for turbo code ensembles were recently derived in [44] for a single

channel and in [54, 55, 76] for parallel channels.

Successful attempts have also been undertaken to combine the binary turbo codes

with higher order modulations (e.g. 8-PSK, 16-QAM). Several bandwidth efficient

turbo code schemes, such as turbo bit-interleaved coded modulation (Turbo-BICM) [35],
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Figure 6.1: The turbo bit interleaved coded modulation transmitter.

turbo trellis coded modulation (Turbo-TCM) [74], parallel concatenated trellis coded

modulation (PCTCM) [5], and bit-interleaved coded modulation with iterative decoding

(BICM-ID) [53], were proposed. Compared to other schemes, Turbo-BICM has the

advantage of simplicity. Although simple, Turbo-BICM has been shown to achieve

bit error rate (BER) performance close to the capacity limit for a range of spectral

efficiency values, for both additive white Gaussian noise (AWGN) channels [2, 35] and

Rayleigh fading channels [36].

Turbo-BICM employs the capacity achieving binary turbo code [10] in the general

bit-interleaved coded modulation (BICM) structure. BICM was formally described by

Zehavi [87]. Unlike Ungerboecks trellis-coded modulation [80], the BICM separates

modulation and coding as two independent entities. It is a bandwidth-efficient cod-

ing technique based on serial concatenation of binary error-correcting code, bit-by-bit

channel interleaver, and a high order modulation (e.g. PSK, M-QAM) [19, 87]. At its

receiver, appropriate soft-decision bit metrics are generated from the received signals

and input into the binary decoder. The BICM achieves a better diversity order than

the symbol interleaved coded modulation in a fading channel [19, 87]. Reference [19]

presented, in a comprehensive fashion, the theory underlying BICM and provided a

general information-theoretical framework for this concept.

In this work, a continuously variable-rate Turbo-BICM is obtained by changing the

binary code rate through both random puncturing and the modulation constellation

size. Random puncturing as a tool for analysis of variable rate binary turbo-codes has

been studied in [54, 55, 76]. In the first part of this chapter, we apply recent results on
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parallel channel performance of turbo code ensembles [54, 55, 76], to obtain a union-

Bhattacharyya rate threshold for variable-rate Turbo-BICM based on a reliable channel

region for turbo codes transmitted over parallel channels. A closed form approximation

of this rate threshold is determined for an AWGN channel. This rate threshold is shown

to predict well the Turbo-BICM rate performance [61].

In the second part of this chapter, we design the adaptive Turbo-BICM in a slow

fading channel, by applying the closed form approximation of the union-Bhattacharyya

rate threshold. The performance of a fixed-rate Turbo-BICM in a fast fading envi-

ronment, where one fixed-rate codeword experience many independent fading states

through channel interleaver, has been studied in [36] and was shown to achieve a rate

within 3 dB of ergodic capacity. However, this fixed-rate approach is not applicable

in a slow fading environment due to the delay constraint. To achieve a high aver-

age rate in a slow fading environment, adaptive transmission needs to be employed.

Several information theoretic capacity notions describing adaptive transmission system

performance and the corresponding optimum power allocations have been developed

in [18,38,45,58]. In [21,37], the performance of adaptive transmission for both uncoded

and trellis coded modulation with MQAM modulation was studied and was shown to

be far away from the ergodic capacity. In this work, under the assumption that one

codeword only spans one fading state, we design variable-rate Turbo-BICM schemes

by adapting the power, puncture rate, modulation constellation size according to the

current channel state. Proposed approaches can achieve an average rate within 2−3 dB

of the ergodic capacity [60].

6.2 System Model

In this section, we introduce the system model for variable-rate Turbo-BICM. As shown

in Fig 6.1, the system consists of a mother turbo code with rate r0, a random punc-

turing device with puncturing rate λ, a bit-by-bit channel interleaver, and an M-QAM

modulation with Gray mapping. The mother turbo code results from parallel con-

catenation of two recursive systematic convolutional (RSC) codes. Fig 6.2 shows an

example of parallel concatenated turbo code. It is assumed that the systematic bits of
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Figure 6.2: Rate r0 = 1/3 standard turbo-encoder

the second encoder are not transmitted. The random puncturing device provides a large

code family with various rates by varying the puncturing rate λ. In order to obtain

an uncorrelated noise for adjacent coded bits after deinterleaving at the turbo-decoder

input, a bit-by-bit channel interleaver is employed between the puncturing device and

the modulator. After the interleaver, 2m coded bits are associated with a complex

signal point in an M = 22m QAM constellation using Gray mapping. The Gray map-

ping is asymptotically optimum in conjunction with BICM [19]. Usually, a periodic

puncturing device with certain puncturing pattern is used for generating a family of

rate compatible codes [16, 41]. Random puncturing as a tool for analysis of variable

rate binary turbo-codes was introduced in [55]. In the case of random puncturing, each

coded bit is independently punctured with probability λ. For a mother turbo code with

rate r0, let K denote the turbo code interleaving length and N the codeword length,

then we have K = r0N . After random puncturing with puncturing rate λ, the resulting

expected code rate, as well as the asymptotic rate when N → ∞, equals to r0/(1 − λ).

After channel interleaving and M-QAM modulation, the rate is

r = m
r0

1 − λ
. (6.1)

The unit of rate r is bits/s/dimension.

As shown in Fig 6.3, the Turbo-BICM receiver consists of bit metric generator,
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Figure 6.3: The turbo bit interleaved coded modulation receiver

bit metric deinterleaver, inserting bit metrics for punctured bits, and turbo iterative

decoding. For each received complex signal, 2m bit metrics are computed according

to the parallel binary random modulation model introduced in Section 6.3.1. The

resulting bit metrics for the whole codeword are then deinterleaved. The bit metrics

corresponding to the punctured code bit are inserted. Then the iterative decoding

algorithm for binary turbo code is employed by applying these bit metrics.

6.3 Union-Bhattacharyya Rate Threshold

In this section, we first review some basic results on BICM in Section 6.3.1 and the

parallel-channel coding theorem in Section 6.3.2. Then, a rate threshold for Turbo-

BICM and its approximation in an AWGN channel are derived in Section 6.3.3 and

Section 6.3.4. The simulation results on Turbo-BICM code performance in AWGN

channel is presented in 6.3.5, and is shown to agree well with the prediction by the rate

threshold.

Although M = 22m QAM constellation is used in the system, all the analysis in

this paper is based on 2m-ary modulation in one dimension. This is because the Gray

mapping in two dimensions employed in the system can be separated into two Gray

mappings in each dimension, and also with a coherent receiver the in-phase and quadra-

ture demodulator outputs are independent of each other. Therefore, it is sufficient to

study the performance of BICM based on the 2m-ary constellation .

6.3.1 Bit Interleaved Coded Modulation (BICM)

As shown in [19,87], BICM with an ideal interleaver can be analyzed based on a parallel

binary input random modulation channel model. For a 2m-ary constellation X , each
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signal point is labeled with m bits. Similar to [19, 87], the constellation X can be

partitioned into two disjoint subsets X i
0,X i

1 for each bit position i = 1, 2, . . . ,m. Subset

X i
0 includes all the signals x ∈ X whose label has the value 0 in position i. The

size of set X i
0 is 2(m−1). Similar definition applies to subset X i

1. An example of a 4-ary

constellation partition is depicted in Fig 6.4. As shown in Fig 6.5, the equivalent channel

X
2

0

01 00 1110

X1

2

01 00 1110

X0

1 X1

1

Figure 6.4: 4-ary constellation partition.

model consists of a set of m parallel independent and memoryless binary input channels,

which are connected to the encoder output by a random switch. Each sub-channel

corresponds to a position in the binary label of the signals in X and are associated

with signal subsets X i
0,X i

1. Due to the random interleaver between the binary code

and modulation, a coded bit b assigned to the i-th channel randomly chooses a signal

x ∈ X i
b with probability 2−(m−1). Let p(y|x) denote the transition probability of the

memoryless physical channel. Then the transition probability of the i-th channel in the

equivalent channel model can be expressed as

pi(y|b) =
1

2(m−1)

∑

x∈X i
b

p(y|x) i = 1, 2, . . . ,m . (6.2)
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6.3.2 Union Bhattacharyya Reliable Channel Region

Coding theorems for binary Turbo code Ensembles were presented in [44] for a single

channel. More recently, references [54,55,76] extend the coding theorem to parallel chan-

nels with random assignment, whose system model is shown in Fig 6.6. A (K,N) block

code C with rate r0 = K/N is transmitted through J independent discrete memory-

less channels (DMCs) in parallel. Each channel is modeled by its transition probability

pj(y|b), with a binary input b ∈ {0, 1} and an arbitrary output y. For a given codeword,

it is assumed that each coded bit is randomly assigned to J parallel channels indepen-

dently with probability αj , for 1 ≤ j ≤ J . The αj is called the assignment rate for

Channel j. Then, asymptotically, the code rate for the j-th channel is rj = r0/αj . The

coding theorem is characterized by the Bhattacharyya noise parameters γj for parallel
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channels and the mother turbo code ensemble threshold c
[C]
0 .

1. The Bhattacharyya noise parameter for the j-th channel is defined as

γj =

∫

√

pj(y|0)pj(y|1)dy , (6.3)

where pj(y|0) and pj(y|1) are channel transition probabilities. γj ∈ [0, 1] charac-

terizes the ‘noisiness’ of the channel. The channel is more noisy when γj is closer

to 1.

2. For a code ensemble [C], let A
[C](N)
h denote the average number of codewords with

weight h, termed average weight enumerator(AWE). Let DN be a sequence of

numbers such that

DN → ∞ and
DN

N ε
→ 0 ∀ε > 0 . (6.4)

The turbo code ensemble threshold c
[C]
0 is defined as

c
[C]
0 = lim sup

N→∞
max

DN <h≤N

lnA
[C](N)
h

h
. (6.5)

It is observed [44, 54] that most asymptotically ‘good’ codes such as turbo codes, RA

codes, and LDPC codes satisfy the following Assumption 1.

Assumption 1

lim
N→∞

DN
∑

h=1

A
[C](N)
h = 0. (6.6)

Theorem 5 A code ensemble [C], which satisfies Assumption 1, is transmitted through

J binary-input arbitrary-output channels in parallel with a set of Bhattacharyya noise

parameters {γj} and assignment rates {αj}, for j = 1, . . . , J . If

J
∑

j=1

γjαj < exp(−c
[C]
0 ). (6.7)

then, the average ML decoding word error probability

lim
N→∞

P
[C](N)
W = 0 . (6.8)
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Experimental evidence has shown that turbo code exhibits a threshold behavior, that

is, the error probability is approaching zero asymptotically when the noise parameter

is less than a threshold, and is bounded away from zero otherwise. Theorem 5 is only

an achievable condition, and provides a lower bound to the actual “threshold” of the

turbo code.

6.3.3 Equivalent Parallel Channel Model and the Union-Bhattacharyya

Rate Threshold

Similar to BICM, the Turbo-BICM with random puncturing can be modeled by an

equivalent parallel channel model with random assignments. The puncturing device

can be regarded as the (m+1)-th sub-channel with γm+1 = 1. As shown in Fig 6.7, the

λ)(1- N

m parallel binary-input
random modulation channels

channel m+1

(K,N)
Encoder 

K bits MappingN bits

λ N

ML
decoder

Figure 6.7: Equivalent parallel-channel model for BICM with random puncturing

mother code is transmitted through m + 1 parallel channels with random assignment:

the punctured bits are sent to a bad channel with γm+1 = 1 with an assignment rate

αm+1 = λ, while the remaining bits are transmitted through m-parallel channels with

γi with an assignment rate αi = (1 − λ) 1
m for i = 1, 2, . . . ,m.

Following (6.2), the Bhattacharyya noise parameter for the i-th channel is

γi =

∫

√

√

√

√

1

2m−1

∑

x∈X i
0

p(y|x) · 1

2m−1

∑

z∈X i
1

p(y|z)dy i = 1, 2, . . . ,m . (6.9)

Following the approaches in [54,76] and applying Theorem 5, the average ML decoding

word error probability approaches zero asymptotically if

λ · 1 + (1 − λ) · 1

m

m
∑

i=1

γi < exp(−c
[C]
0 ) . (6.10)
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Define the average Bhattacharyya noise parameter over m-parallel channels as

γ =
1

m

m
∑

i=1

γi . (6.11)

It follows that the word error probability goes to zero if the puncturing rate satisfies

λ <
exp(−c

[C]
0 ) − γ

1 − γ
, λ0(γ), . (6.12)

Since the puncturing rate must be nonnegative, we have that

γ ≤ exp(−c
[C]
0 ) . (6.13)

Define a union-Bhattacharyya rate threshold as

rUB(γ) =
mr0

1 − λ0(γ)
for λ0(γ) ≥ 0

=











0 γ > exp(−c
[C]
0 )

mr0

1−exp(−c
[C]
0 )

(1 − γ) γ ≤ exp(−c
[C]
0 )

. (6.14)

Then following Theorem 5, for a given average noise parameter γ any rate less than

rUB(γ) is achievable. rUB(γ) is a decreasing function of γ. When the channel is too

noisy such that γ > exp(−c
[C]
0 ), the rate threshold is zero, and a higher rate threshold

can be achieved when the channel is better.

6.3.4 Approximate Rate Threshold for an AWGN Channel

In an AWGN channel with one-side noise spectrum density N0, the noise variance per

dimension is N0/2. The channel transition probability per dimension is

p(y|x) =
1√
πN0

exp
(y − x)2

N0
.

In an AWGN channel, the Bhattacharyya noise parameter and the corresponding achiev-

able rate only depend on signal to noise ratio P
N0

and the modulation parameter m. Here

P is the transmission energy per complex signal, and thus P/2 is the transmission en-

ergy per dimension. Let γ
(

P
N0

,m
)

and rUB

(

P
N0

,m
)

denote the average Bhattacharyya

noise parameter and the union-Bhattacharyya rate threshold in an AWGN channel re-

spectively. In this section, we derive a closed form approximation for rUB

(

P
N0

,m
)

.



101

η1(m), the solution of

γ (η1(m),m) = exp
(

−c
[C]
0

)

, (6.15)

exists, since γ
(

P
N0

,m
)

is continuous and monotonic in P
N0

. It follows that

rUB

(

P

N0
,m

)

= 0 if
P

N0
< η1(m) , (6.16)

i.e., η1(m) is the minimum SNR for a nonzero rUB.

In the following, we derive a closed form approximation of rUB( P
N0

,m) when P
N0

≥

η1(m). We first obtain a closed form approximation of γ( P
N0

,m). It is easy to show

that in an AWGN channel with m = 1 (QPSK modulation), we have

γ(
P

N0
,m = 1) = exp

{

− P

2N0

}

. (6.17)

Though the expression for γ is simple at m = 1, it can only be calculated numerically

for m ≥ 2.

For any two signals x ∈ X and z ∈ X , let d(x, z) denote the Euclidean distance

between x and z. In an AWGN channel, we have
∫

√

p(y|x)p(y|z)dy = exp

(

−d2(x, z)

4N0

)

. (6.18)

Proposition 9 For any ai ≥ 0 with i = 1, 2, . . . , N , we have
√

√

√

√

N
∑

i=1

ai ≤
N
∑

i=1

√
ai.

The bound is tight when there exists one dominant term, that is, there exists an aj � ai

for all i 6= j.

From Proposition 9, and (6.18), we obtain an upper bound on γ
(

P
N0

,m
)

as follows:

γ

(

P

N0
,m

)

=
1

m

m
∑

i=1

∫

√

√

√

√

1

2m−1

∑

x∈X i
0

p(y|x) · 1

2m−1

∑

z∈X i
1

p(y|z)dy

≤ 1

m2m−1

m
∑

i=1

∑

x∈X i
0

∑

z∈X i
1

∫

√

p(y|x)p(y|z)dy

=
1

m2m−1

m
∑

i=1

∑

x∈X i
0

∑

z∈X i
1

exp

(

−d2(x, z)

4N0

)

, γu(
P

N0
,m) (6.19)
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Let dmin denote the minimum Euclidean distance between two signal points in a 2m-ary

constellation X . Then, from [70] we have

d2
min

N0
=

6

22m − 1

P

N0
. (6.20)

It can be shown that the upper bound (6.19) is tight for a high SNR such that
d2
min
N0

� 1.

Under this condition, signal points are separated far away from each other compared

to the noise variance. Then for any y the summation
∑

x∈X i
0

∑

x∈X i
1
p(y|x)p(y|z) is

dominated by one term with x̂ ∈ X i
0 and ẑ ∈ X i

1, which are closest signals to y. Thus,

by Proposition 9 the inequality (a) is tight at high SNR.

Definition 4 In an 2m-ary constellation, define Nd(m,x) as the number of signals

within the complement set X i
b
, whose distance from x ∈ X i

b is the minimum distance

dmin. Define

a2(m) =
1

m2m

m
∑

i=1

1
∑

b=0

∑

x∈X i
b

Nd(m,x) . (6.21)

By combining the terms with the minimum distance, the upper bound γu can be

written as

γu(
P

N0
,m) = a2(m) exp

(

−d2
min

4N0

)

+ o

(

d2
min

N0

)

≈ a2(m) exp

(

− 3

2(22m − 1)

P

N0

)

for
d2
min

N0
� 1

, γappr(
P

N0
,m) . (6.22)

Therefore, combining (6.19) and (6.22), we have γ ≈ γu ≈ γappr when d2
min/N0 � 1.

As shown from the numerical results in Fig 6.8 and Fig 6.9, the approximation is tight

when d2
min/N0 ≥ 2. By translating the aprroximation condition in terms of SNR, we

summerize the above result in the following lemma.

Lemma 15 The average Bhattacharyya noise parameter is approximated as

γ

(

P

N0
,m

)

≈ a2(m) exp

(

− 3

2(22m − 1)

P

N0

)

, (6.23)

when

P

N0
≥ 22m − 1

3
, η2(m) . (6.24)
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Figure 6.8: The average Bhattacharyya noise parameter γ, the upper bound γu, the
approximated noise parameter γappr versus d2

min/N0 for 16-QAM, 64-QAM in AWGN
channel.

It is also observed from the numerical results that rUB( P
N0

,m) is parallel to the

capacity of the AWGN channel when P
N0

≤ η2(m). Then, we have

rUB

(

P

N0
,m

)

≈ 1/2 log2

(

1 +
P

N0

1

Γ(m)

)

for η1(m) ≤ P

N0
≤ η2(m) .

Here Γ(m) denotes the gap between the rate threshold and the capacity.

In summary, the union-Bhattacharyya rate threshold rUB

(

P
N0

,m
)

for Turbo-BICM

can be approximated with a function

r̃UB

(

P

N0
,m

)

=























0 P
N0

< η1(m)

1/2 log2

(

1 + P
N0

1
Γ(m)

)

η1(m) ≤ P
N0

≤ η2(m)

a1(m)
(

1 − a2(m) exp
(

−a3(m) P
N0

))

P
N0

≥ η2(m)

, (6.25)

where parameters a1(m) and a3(m) are

a1(m) =
mr0

1 − exp(−c
[C]
0 )

, a3(m) =
3

2(22m − 1)
. (6.26)

The Γ(m) can be determined such that r̃UB

(

P
N0

,m
)

is a continuous function of P
N0

.
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Figure 6.9: The average Bhattacharyya noise parameter γ, the upper bound γu, the
approximated noise parameter γappr versus Eav/N0 for 16-QAM, 64-QAM in AWGN
channel

η1(m)(dB) η2(m)(dB) α(m) Γ(m)(dB)

m = 1 -0.06 0 1 2.3107

m = 2 4.649 6.9897 3/4 2.8434

m = 3 8.41 13.222 7/12 3.8049

Table 6.1: Parameters employed in r̃UB

(

P
N0

,m
)

.

To illustrate the above results, we use a turbo code with a rate r0 = 1/3, where

the same polynomial generators (23, 35) is used for two elementary encoders C1 and

C2 as shown in Fig 6.2. For this turbo code, we have r0 = 1/3 and c
[C]
0 = 0.51. The

parameters employed in the rate threshold approximation are given in Table 6.1. The

union-Bhattacharyya rate threshold and its approximation for QPSK, 16QAM, and 64

QAM are presented in Fig 6.10. We can see that r̃UB( P
N0

,m) is a good approximation

of rUB( P
N0

,m).
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Figure 6.10: Comparison of the rate threshold rUB

(

P
N0

,m
)

and its approximation

r̃UB

(

P
N0

,m
)

for QPSK, 16-QAM, and 64-QAM modulation.

6.3.5 Simulations and Discussions

In this section, we present the simulation results and show that the union-Bhattacharyya

rate threshold rUB( P
N0

,m) can help predict the rate performance of Turbo-BICM very

well for sufficiently large K and a range of pe.

For a typical turbo code, its codeword error probability as a function of SNR can

be described by the following three distinct regions:

• High error rate region: Below a certain critical SNR, high error probability is

observed, with almost no improvement until a critical SNR (the threshold) is

reached.

• Waterfall region: As the SNR is increased past the threshold, the error probability

drops rapidly, and the curve resembles a waterfall in this region.

• Error-floor region: After the waterfall region, the slope of the error probability

curve becomes very low, reaching the so called error floor. The error floor is

determined by the minimum free distance of the code.
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Figure 6.11: The approximated rate r̃UB( P
N0

ξ(pe,K),m) and the rate obtained from
simulation for Turbo-BICM with QPSK modulation (m = 1) with K = 1000, and
pe = 0.1, pe = 0.01, and pe = 0.001 respectively.

As codeword length N increases, the ‘water-fall’ slope is steeper and the error floor is

lower. This ’threshold’ behavior is also observed in turbo BICM schemes with M-QAM

modulation.

Let r( P
N0

,m, pe,K) denote the rate that achieves a word error probability pe at an

SNR P
N0

by a Turbo-BICM with modulation parameter m and an information sequence

length K using the iterative decoding algorithm. It is observed that r( P
N0

,m, pe,K)

is almost parallel to r̃UB( P
N0

,m). The gap depends on the error probability pe and

the information sequence length K, denoted by ξ(pe,K). The rate performance of

Turbo-BICM for sufficiently large K and a range of pe can be approximated as

r

(

P

N0
,m, pe,K

)

≈ r̃UB

(

P

N0
ξ(pe,K),m

)

. (6.27)

In Fig 6.11, the approximated rate is plotted against the rate obtained from simulation

for Turbo-BICM with QPSK modulation (m = 1) with K = 1000, and pe = 0.1,

pe = 0.01, and pe = 0.001 respectively. The turbo code used in simulation is shown in

Fig 6.2. It is observed that for K = 1000, we have ξ(pe = 0.1,K) ≈ 1.23dB dB, ξ(pe =

0.01,K) ≈ 1dB dB, and ξ(pe = 0.001,K) ≈ 0.83 dB. In Fig 6.12, the approximate
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Figure 6.12: MQAM capacity, BICM cutoff rate, rate approximation, and simulation
with pe = 0.01.

rate is plotted against the rate obtained from the simulation for QPSK, 16-QAM and

64-QPSK with pe = 0.01. It can be seen that the approximated rate predicts the rate

performance very well. In Fig 6.12, the M-QAM capacity and BICM cutoff rate are

also presented for comparison. It can be seen that at low SNR where the puncturing

rate is low, the rate is above the cutoff rate, while at high SNR where the puncturing

rate is too high, the rate is below the cutoff rate.

6.4 Adaptive Turbo-BICM for Slow Fading Channels

In this section, based on the closed form expression of the rate threshold [59] developed

in Section 6.3, we describe the optimum power and modulation allocation for Turbo-

BICM for a slow fading channel. The computational complexity of finding the optimum

allocations is exponential in the size of channel state space. A dual problem solution,

whose computational complexity increases linearly with the size of channel state space,

is described. It achieves rates close to the optimum solution. Two simple schemes:

water-filling with optimum modulation and equal power allocation with optimum mod-

ulation are shown to have a good performance. Proposed approaches can achieve an
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average rate within 2 − 3 dB of the ergodic capacity.

6.4.1 The Allocation Problem for a BF-AWGN Channel

Under the assumption that the phase can be completely compensated at the receiver,

the slow fading channel model is as follows:

y =
√

gx + w , (6.28)

where g is the fading gain, x is the transmitted complex signal with average energy

P , and noise w is a complex zero-mean Gaussian iid random variable with covariance

E[ww†] = N0
2 I2. Let the effective noise density be n = N0/g. By incorporating the

fading gain into the noise term, we get an equivalent channel model as y = x + z, with

E[zz†] = n
2 I2. The effective noise density n is a random variable which now models

the effects of the fading. We assume that the fading is slow relative to the codeword

length, that is, the effective noise density n stays the same within one codeword but

may change from one codeword to another (block fading model). We also assume that

perfect channel state information is available at both transmitter and receiver.

The puncture rate, power, and modulation constellation can be adapted according

to the channel state information to achieve a better performance than the non-adaptive

scheme. Let P (n) denote the power allocation, and m(n) denote the constellation pa-

rameter assigned to the channel state described by the noise density realization n. Op-

timal allocations P (n) and m(n) maximize the expected rate E
[

r(P (n)
n ,m(n), pe,K)

]

for a given target error probability pe. Since r(P (n)
n ,m(n), pe,K) is related to the rate

threshold r̃UB(P (n)
n ,m(n)) through a constant gap ξ(pe,K), equivalently, we solve the

following problem

R∗ = max
P (n),m(n)

E

[

r̃UB

(

P (n)

n
,m(n)

)]

(6.29)

subject to E [P (n)] ≤ Pav (6.29a)

P (n) ≥ 0, m(n) ∈ {0, 1, 2, 3} . (6.29b)

Once the optimum solution of Problem (6.29) is available, it is easy to obtain the

corresponding allocation that maximizes the rate performance E
[

r(P (n)
n ,m, pe,K)

]

.
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In this paper, it is assumed that n is a discrete random variable with an alphabet size

N . Problem (5) is a mixed-integer nonlinear optimization problem with continuous and

discrete variables and nonlinearities in the objective function and constraints [5]. Due

to its combinatorial nature, it belongs to the class of NP-complete problems [5] (see

also [9]). In the following sections, we consider several approaches to solving Problem

(5).

6.4.2 Optimum Allocation

Although there are more efficient algorithms than the naive exhaustive search, they

are usually more complicated. These algorithms commonly involve a combination of

basic nonlinear optimization subproblems and a cutting plane mixed-integer linear pro-

gramming problem (see, e.g., [40]). In this subsection, we study an exhaustive search

approach.

The exhaustive-search algorithm consists of two steps:

1. For any given sequence m(n) ∈ {(0, 1, 2, 3)N }, find the power allocation that

maximizes the average rate as follows:

R(m(n)) = max
P (n)

E

[

r̃UB

(

P (n)

n
,m(n)

)]

(6.30)

subject to E [P (n)] ≤ Pav

P (n) ≥ 0 .

For a given value of n, the rate threshold r̃UB

(

P (n)
n ,m(n)

)

is described in three

regions and its first derivative is not continuous at the boundary points of these re-

gions. Therefore, subproblem (6.30) is not a convex optimization problem and the

Kuhn-Tucker conditions theorem can not be applied directly. A naive algorithm

for solving this non-convex optimization problem is given in Appendix 6.A.

2. Find the optimum sequence m∗(n) that maximizes R(m(n)) by enumerating all

4N possible m(n) sequences.

This algorithm is guaranteed to find an optimum solution, but with a price of high

computational complexity. The computational complexity increases exponentially with
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the size of N .

6.4.3 Lagrange Dual Problem Solution

In this section, we study a dual of problem (6.29). The computational complexity of

the dual problem increases linearly with N . It provides lower and upper bounds to

problem (6.29). For some ranges of Pav where the duality gap is zero, the dual problem

solution is also the optimum solution of the primal problem (6.29).

Let λ be the Lagrange multiplier associated with the constraint (6.29a). Define a

set of dual functions at each channel state n as

g(λ, n) = max
m,P

r̃UB

(

P

n
,m

)

− λ(P − Pav) (6.31)

subject to P ≥ 0, m ∈ {0, 1, 2, 3} .

The primal problem (6.29) is decomposed into N dual problems. Since each dual prob-

lem only has two variables: m with an alphabet size 4 and P having three continuous

descriptions in three distinct regions, the computational complexity of each dual prob-

lem is small. Thus, the overall complexity of the dual approach increases linearly with

the alphabet size N .

Let m(n, λ) and P (n, λ) denote the optimum solution of problem (6.31). For any

λ ≥ 0 whose corresponding m(n, λ) and P (n, λ) are feasible solutions of Problem (2.11),

we have

g(λ, n)

= E

[

r̃UB

(

P (n, λ)

n
,m(n, λ)

)]

+ λ(Pav − E [P (n, λ)])

(a)

≥ R∗
(b)

≥ E

[

r̃UB

(

P (n, λ)

n
,m(n, λ)

)]

. (6.32)

Inequality (a) follows from the weak duality bound [14]. Inequality (b) follows from

the feasibility condition. Inequality (6.32) provides upper and lower bounds for the

optimum solution. In the case where the optimum solution is hard to obtain, the

bounds can be used to estimate the optimum solution.

To obtain a feasible solution close to the optimum solution, we chose λ′ to minimize
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Figure 6.13: E [P (λ, n)] versus λ in a two-state model: n1 = 1 and n2 = 3 with equal
probability.

the gap between the bounds as1

λ′ = arg min
λ≥0

λ(Pav − E [P (λ, n)])

subject to Pav − E [P (λ, n)] ≥ 0 .

The P (λ′, n) and m(λ′, n) are feasible solutions of the primal problem (2.11). In

Fig 6.13, E [P (λ, n)] versus λ is plotted for a two-state model: n1 = 1 and n2 = 3

with equal probability. As we can see, since P (λ, n) is the optimum solution to the

mixed-integer optimization problem (6.31), its expected value E [P (n, λ)] is not a con-

tinuous function of λ. If there exists a λ′ such that E [P (n, λ′)] = Pav for a given Pav,

the duality gap is zero and the corresponding P (λ′, n) and m(λ′, n) are the optimum

solution for the primal problem (2.11). If no solution of E [P (n, λ)] = Pav exists for a

given Pav, the dual solution is sub-optimum. A probabilistic scheme may be employed

for the range of Pav where the dual solution is sub-optimum. The probabilistic approach

is out of the scope of this paper. Interested readers may refer to [59] for an example of

1The tightest upper bound is achieved by λ∗ = minλ≥0 g(λ, n), but the corresponding P (λ∗, n) and
m(λ∗, n) may not be a feasible solution to problem (2.11).
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Figure 6.14: AWGN capacity and rate threshold approximation r̃UB(η,m) for QPSK,
16-QAM, 64-QAM.

probabilistic schemes.

6.4.4 Simple Power Allocations with Optimum Modulation

In previous sections, we have discussed several approaches to solving Problem (6.29).

The optimum solution as well as the dual problem solution, can be computationally

intensive. In this section, we propose two simple allocation schemes: water-filling alloca-

tion with optimum modulation, and equal power allocation with optimum modulation.

These two simple schemes, as shown in Section V, have a performance close to the

optimum solution.

We first determine the optimum modulation mode for a given P (n) as

m(n, P (n)) = arg maxm∈{0,1,2,3}r̃UB

(

P (n)

n
,m

)

. (6.33)

The rate threshold r̃UB(η,m) as a function of received SNR η for all m = 0, 1, 2, 3 is

plotted in Fig 6.14. As can be observed, for any two modulation modes m1 and m2,

the corresponding rate functions r̃UB(P (n)
n ,m1) and r̃UB(P (n)

n ,m2) intersect only once.
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Let ηa, ηb, and ηc denote the SNR at the intersections as

r̃UB(ηa, 1) = 0, r̃UB(ηb, 1) = r̃UB(ηb, 2),

r̃UB(ηc, 2) = r̃UB(ηc, 3) . (6.34)

We have ηa = 0 dB, ηb = 4.65 dB, and ηc = 11.35 dB.

The optimum modulation mode for given P (n) is

m(n, P (n)) =



































0 P (n)
n ≤ ηa

1 ηa ≤ P (n)
n ≤ ηb

2 ηb ≤ P (n)
n ≤ ηc

3 P (n)
n ≥ ηc

. (6.35)

We propose two power allocation schemes, the water-filling allocation and the equal

power allocation. The water-filling allocation is Pwf(n, λ) = (λ − n)+, where λ is the

solution to E [Pwf(n, λ)] = Pav. The equal power allocation is Peq(n) = Pav. The

motivation of choosing these two power allocations is as follows. The rate threshold

r̃UB(P (n)
n ,m) is almost parallel to AWGN capacity with a constant gap when P (n)

n ≤

η2(m), and goes away from the AWGN capacity when P (n)
n ≥ η2(m). The optimum

modulation mode allocation implies switching to a higher order modulation after the

rate vs. SNR relationship diverges from the AWGN capacity. As shown in Fig 6.14, the

rate threshold achieved by the power allocation with the optimum modulation allocation

follows closely the trend of the AWGN capacity curve. Since the water-filling allocation

is the optimum power allocation and the equal power allocation is near optimum at high

SNR for a BF-AWGN channel, these two schemes should provide performance close to

the optimum solution.

6.4.5 Numerical Results

In this section, we compare different approaches for a simple two-state channel model,

and a N -state discrete channel model approximating the Rayleigh fading channel model.

Due to high computational complexity, the exact optimum solution of problem (2.11)

is only available for small N . To compare the optimum solution with other approaches,
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Figure 6.15: In a two-state channel: n1 = 1 and n2 = 3 with equal probability, compare
the optimum solution with the dual solution and the dual upper bound.
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Figure 6.16: In a two-state channel: n1 = 1 and n2 = 3 with equal probability, compare
the optimum solution with water-filling with optimum modulation and equal power
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Figure 6.17: In a N = 10 state channel model obtained from Rayleigh fading, compare
the optimum solution with the dual solution, the dual upper bound, water-filling with
optimum modulation and equal power allocation with optimum modulation .

we study a simple two-state channel: n1 = 1 and n2 = 3 with equal probability 1/2.

In Fig 6.15, the optimum solution is plotted against the dual solution and the corre-

sponding upper bound for the two-state channel model. As can be seen, the optimum

solution is between the dual solution and its upper bound. In Fig 6.16, the optimum

solution is plotted against the water-filling allocation with the optimum modulation

and the equal power allocation with the optimum modulation for the two-state channel

model. Compared to the optimum solution, at low SNR these two simple sub-optimum

schemes have some performance loss, while at high SNR they achieves a performance

almost the same as the optimum solution.

We also study the performance in Rayleigh fading channel. In a Rayleigh fading

channel, we assume that the channel gain has a pdf as f(h) = exp(−h) for h ≥ 0. The

channel state space is divided into N regions with equal probability. Then a N -state

discrete channel model is obtained by using N boundary points 0 = h1 < h2 < . . . < hN

to represent N regions. The equivalent noise variance at state i is ni = 1/hi. Since

the optimum solution is hard to obtained for large N , we use the dual solution and its
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Figure 6.18: Compare the ergodic capacity of Rayleigh fading channel with the real
rate performance of Turbo-BICM using dual solutions in a N = 5, 10, 20 state channel
model obtained from Rayleigh fading.

upper bound to estimate the optimum solution. As shown in Fig 6.17, in a N = 10 state

fading channel model the dual solution almost achieve the same rate as its upper bound.

Therefore, the dual solution is almost as good as the optimum solution. The water-

filling with optimum modulation and equal power allocation with optimum modulation

are also presented in Fig 6.17. As we can see, these two simple schemes achieve a

performance close to the dual solution.

As shown in Section 6.3.5, the rate performance of a Turbo-BICM can be estimated

by shifting the rate threshold a constant gap. For a Turbo-BICM with an information

sequence K = 1000 and code word error probability pe = 0.01, the gap is almost 1 dB.

In Fig 6.18, the rate performance of the adaptive Turbo-BICM is plotted by shifting

the rate threshold 1 dB in N = 5, 10, 20 state fading channel models and compared to

the ergodic capacity. As can be seen, the adaptive Turbo-BICM can achieve an average

rate with 2 − 3 dB of ergodic capacity.
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6.A Algorithm for Solving Problem (6.30)

Let ni with i = 1, . . . , N denote N possible values of the random variable n. Let fi, mi,

and Pi denote the corresponding probability, modulation constellation size, and power

assignment at ni respectively. Problem (6.30) can be rewritten as

R(m1, . . . mN ) = max
P1,...,PN

N
∑

i=1

r̃UB

(

Pi

ni
,mi

)

fi (6.36)

subject to

N
∑

i=1

Pifi ≤ Pav

Pi ≥ 0 for i = 1, . . . , N .

Although rate r̃UB

(

Pi
ni

,mi

)

is not continuous in the first derivation for Pi ≥ 0, it is

concave and continuous in all derivatives within each of three regions of Pi: 0 ≤ Pi
ni

<

η1(mi), η1(mi) ≤ Pi
ni

< η2(mi), and Pi
ni

≥ η2(mi) . The space of (P1, . . . , PN ) can

be divided into 3N subspace, where in each subspace Pi for all i = 1, . . . , N belongs

to one of its three regions. Problem (6.36) can be decomposed into 3N subproblem,

where in each sub-problem the whole space of (P1, . . . , PN ) is replaced by one subspace.

Since each subproblem is a convex optimization problem, it can be solved using Kuhn-

Tucker conditions theorem. The solution of each subproblem is a candidate solution

for problem (6.36). Compare the average rates achieved by 3N candidate solutions of

subproblems, and the one who achieves the highest average rate is the optimum solution

of problem (6.36).
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Chapter 7

Conclusion and Future Work

7.1 Thesis Summary

In this thesis, we have studied service outage based allocation problems and adaptive

turbo bit-interleaved coded modulation in fading channels.

The service outage based allocation problem explores variable rate transmission

schemes and combines the concepts of ergodic capacity and outage capacity for fad-

ing channels. The ergodic capacity determines the maximum achievable rate for non

real-time applications, and the outage capacity is developed for constant rate real-time

applications. None of them is appropriate for variable rate multimedia applications for

the next generation wireless networks. In order to address this problem, the service

outage based allocation problem is proposed. A service outage occurs when the instan-

taneous transmission rate is smaller than the basic rate specified by the application.

The service outage allocation problem is to find the optimum power allocation that

maximizes the average rate subject to an outage probability constraint and an average

power constraint. In this work, it is assumed that perfect channel state information is

available at both transmitter and receiver.

We first derived the optimum power allocation in the class of deterministic alloca-

tion schemes for a single fading channel with a continuous channel distribution. The

feasibility of this problem is related to the capacity versus outage problem. When the

problem is feasible, the optimum power policy is shown to be a combination of water

filling and channel inversion allocation, where the outage occurs at a set of channel

states below a certain threshold. For a given pair (ro, ε), as Pav increases, and the

optimum scheme gradually changes from the on-off channel inversion allocation to the

water filling allocation. We also studied the service outage based allocation problem
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in terms of the energy efficiency, which is the ratio of average rate and average power.

The optimum operating average power that maximizes the energy efficiency subject to

the service outage constraint is obtained.

We extended the service outage based allocation problem to the general M -parallel

fading channel. The results can be applied to both discrete and continuous channel

distribution. The M -parallel flat fading channel model can characterize a number of

diversity system, including an OFDM system with frequency selective fading and the

multiple antenna signal model when the perfect channel state information is available

at transmitter and singular value decomposition is employed. The allocation problem

is formulated in the general class of probabilistic schemes. In a probabilistic scheme,

multiple power vectors can be assigned to the same channel state vector with a con-

ditional pdf. The class of probabilistic schemes is more general than the class of de-

terministic schemes. The optimum power allocation is shown to be a combination of

the water-filling allocation and the basic-rate allocation, and is deterministic except

at the boundary set. It can be viewed as a two-layer allocation: the first layer is the

water-filling allocation, and the second layer the supplemental power allocation. The

supplemental power is only allocated at channel states where the corresponding supple-

mental cost is below a threshold. With increasing average power, the optimum power

allocation gradually changes from the minimum outage power allocation to the water-

filling allocation. The resulting service outage based average rate gradually changes

from the basic rate times 1 − ε to the ergodic capacity. The service outage approach

strikes a good balance between the outage probability and the average rate.

We also derived two near optimum scheme for M -parallel fading channel. The two

near optimum schemes have the similar two layer structure as the optimum scheme,

except that they have different outage sets. In near optimum solution I, outage occurs

when the sum of supplemental power allocation is above a threshold. In near optimum

solution II, outage occurs when the sum of the basic-rate power allocation is above

a threshold. Near optimum allocation II also significantly reduces the computational

complexity of the optimum scheme and near optimum solution I.

We have also investigated the transmission of both realtime and non realtime services
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in fading channels. The optimum service outage based power allocation maximizes the

average rate in such system, and it can be implemented using an adaptive channel

partition scheme, where different services are transmitted in separated channels and the

partition ratio varies with fading states. We also examined the fixed channel partition

scheme. In a fixed channel partition scheme, the optimum power allocation in the

subchannel for the realtime service is the minimum outage power allocation, where

the optimum power allocation in the subchannel for the non realtime service is the

water-filling allocation. The optimum fixed channel partition ratio can be computed

numerically. We also examined another fixed channel partition scheme: the equal power

density partition scheme, where the partition ratio can be easily obtained in a single

fading channel. It is observed from the numerical results that the equal power density

partition scheme is almost as good as the fixed optimum channel partition scheme, and

both of them have a negligible loss compared to the optimum service outage solution

when the basic rate is small.

We also studied the performance of a continuously variable-rate Turbo-BICM by

changing the rate through both random puncturing and the modulation constellation

size. We apply recent results on parallel channel performance of turbo code ensembles,

to obtain a union-Bhattacharyya rate threshold for variable-rate Turbo-BICM based

on a reliable channel region for turbo codes transmitted over parallel channels. A

closed form approximation of this rate threshold is determined for an AWGN channel.

This rate threshold is shown to predict well the Turbo-BICM rate performance. By

applying the closed form approximation of the union-Bhattacharyya rate threshold,

we designed the adaptive Turbo-BICM in a slow fading channel. The optimum power

and modulation allocations are described. A dual problem solution which achieves a

rate close to the optimum solution with significantly reduced computational complexity

is described. Two simple schemes: water-filling with optimum modulation and equal

power allocation with optimum modulation are also presented and shown to achieve

a good performance. Proposed adaptive schemes are shown to achieve a rate within

2 − 3 db of the ergodic capacity of a Rayleigh fading channel.
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7.2 Future Directions

In this thesis, we studied the service outage based allocation problem for a single user.

Similar allocation problems can be formulated and studied for multiple users. Each user

may have its own basic rate and outage probability requirements. The capacity region

may be identified subject to the outage constraints and average power constraints for

each user. The minimum rate capacity region for multiple users, which corresponds

to the service outage based problem with zero outage, was recently derived in [45].

The multi-user outage capacity region were characterized in [52]. The approaches and

techniques used in these works may be helpful in deriving the multi-user service outage

based capacity region.

In this work, perfect channel state information is assumed at both transmitter and

receiver. The allocation problems with imperfect channel state information can also

be studied. The channel state information can be estimated at the receiver and fed

back to the transmitter. In general, the channel state estimates at the transmitter

can be different from the channel state estimates at the receiver, and they can be

modeled by their joint distribution with the true channel state information. The channel

capacity with imperfect channel state information has been addressed in several works,

including [17], [64] and [84].

In this work, it is assumed that there is an infinite number of packets available at

the source and the transmission delay is the main concern. However, in a packet-radio

network, data arrivals in bursts, which results in queuing delay. How to allocation

power and rate according to the channel states, buffer length, and arrival statistics is

an interesting research topic.

In our adaptive Turbo-BICM, the random puncturing is carried on both systematic

bits and non-systematic bits. For sufficiently high SNR such that the coded scheme can

work well, it is better to only puncture the non-systematic bits to obtain a higher rate.

For a given target error probability, the uniform random puncturing scheme saturates

in a lower rate than the uncoded system at high SNR, while the non-systematic random

puncturing scheme approaches the uncoded scheme at high SNR. We may investigate
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the performance of the non-systematic puncturing scheme, and/or a hybrid system with

uniform random puncturing at low SNR and non-systematic random puncturing at high

SNR.

The adaptive Turbo-BICM can also be extended to fast fading, where one codeword

spans multiple fading blocks, and compared to non-adaptive scheme. As number of

fading blocks increases within one codeword, one may expect that the benefit of an

adaptive scheme over a non-adaptive scheme is negligible due to the sufficient diversity

order within one codeword. It will be interesting to examine when it is sufficient to

apply a non-adaptive scheme in a fast fading environment.
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