
EFFECTS OF PHYSICAL LAYER MODELS ON
WIRELESS NETWORK SIMULATIONS

BY UMUT AKYOL

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Professor Roy D. Yates

and approved by

New Brunswick, New Jersey

May, 2005

ABSTRACT OF THE THESIS

Effects of Physical Layer Models on Wireless Network

Simulations

by Umut Akyol

Thesis Director: Professor Roy D. Yates

In the study of wireless networks, simulation has become the most common tool for evalua-

tion of devices and protocols due to its ease of use. However, the correct level of detail that

should be implemented in simulations is not well known by the research community. For

example the most common simulators are essentially packet level network protocol simula-

tors which use simple channel models for computational efficiency. In this thesis, we explore

the effects of physical layer details on wireless network simulations.

In this thesis, we focus on a specific network simulator, ns-2, due to its open source

code base and a specific protocol 802.11b, due to the fact that it’s already implemented in

ns-2. The ns-2 simulator focuses on the higher layer protocols, while abstracting the details

of models at other layers, particularly the interactions with physical layer models. In this

thesis, we examine physical layer models for transmitter interference, signal transmission

and reception for 802.11b that are relevant to the performance evaluation of higher layer

protocols. Starting with an overview of 802.11b’s physical layer and current physical layer

ii

modeling of ns-2 with the Monarch extensions, we propose and implement enhancements

to the physical layer models. We also describe how these changes can be used to model

physical layers other than 802.11b. We then quantify the impact of these changes under

typical scenarios used for the performance evaluation of wireless networks.

iii

Acknowledgements

I would like to thank Prof. Roy Yates for his constant support, guidance and patience

throughout this thesis, which helped me to have a great educational experience at WINLAB.

I am deeply thankful for having the privilege of working with him as my advisor.

I would like to thank Prof. Dipankar Raychaudhuri, Prof. Marco Gruteser and Prof.

Yanyong Zhang for being in my thesis committee. I would also like to thank all WINLAB

colleagues for making a friendly and collaborative research environment.

I would like to thank all my friends, here in USA and especially in Turkey, The Crew of

Destabilize61 (I wouldn’t survive without you guys). Finally, my deepest thanks go to my

family for the lifelong encouragement, support and love.

iv

Dedication

To my father Mahir Akyol

to my mother Saadet Akyol

and to my brother Ilter Akyol

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . ix

List of Figures . x

1. Introduction . 1

1.1. Background . 1

1.2. Motivation and Objectives . 3

2. 802.11b PHY Layer . 7

2.1. Details of Data Transmission and Reception 8

2.1.1. Data Transmission . 10

2.1.2. Data Reception . 10

2.1.3. Clear Channel Assessment (CCA) 11

3. Fundamentals of Ns-2 . 12

3.1. Introduction to Ns-2 . 12

3.2. Ns-2 Abstraction . 12

3.3. Mobile Networking in Ns-2 . 13

vi

3.4. Packet Reception in Ns-2 . 15

4. Modifications . 19

4.1. An SINR Interference Model . 19

4.2. A Model for Packet Reception . 21

4.3. Designing the BER-SINR look-up table . 24

4.4. A Model for Carrier Sensing . 27

4.5. A Model for PLCP Preamble and Header 28

4.6. Modifications in the ns-2 code . 28

4.7. Radio Parameters . 30

4.8. A Simple Simulation with Four Nodes . 34

5. Experiments with DSR and AODV . 37

5.1. DSR . 37

5.1.1. Route Discovery . 38

5.1.2. Route Maintenance . 40

5.1.3. Route Caching . 40

5.2. AODV . 41

5.2.1. Route Discovery . 41

5.2.2. Route Maintenance . 43

5.3. Simulation Setup . 43

5.4. Simulations with UDP at 1Mbps Data Rate 45

5.4.1. Varying Transmit Power . 45

5.4.2. The Effect of Changing CST . 48

vii

5.5. Simulations with UDP at Higher Data Rates 49

5.5.1. PHY Layer Rates Used in the Simulations 49

5.5.2. The Effect of RTS/CTS . 53

5.5.3. Varying Offered Load . 55

5.6. Experiments with TCP . 58

6. Conclusion and Future Work . 72

References . 74

viii

List of Tables

4.1. Ns-2 parameter values. 31

4.2. Ns-2 parameter values for higher data rates. 34

5.1. Goodput drop relative to ns-2 in Figure 5.14 68

ix

List of Figures

2.1. PPDU Frame Format . 9

3.1. Change of receiver states . 18

4.1. BER vs γ . 26

4.2. A Two Node Experiment: The range of revised ns-2 and ns-2.mme for trans-

mit power Pt=10dBm with 512-byte packets 32

4.3. A Two Node Experiment: The range of revised ns-2 and ns-2.mme for trans-

mit power Pt=10dBm with 1500-byte packets 33

4.4. CS and transmit ranges of revised ns-2 and ns-2.mme. 35

4.5. Topology and the results of the simulation with four nodes 36

5.1. Performance at different CST levels . 47

5.2. 11Mbps with broadcast data and control packets at 1Mbps. 50

5.3. 11Mbps with 512-byte packets RTS/CTS ON 51

5.4. 11Mbps with 512-byte packets RTS/CTS OFF 52

5.5. 1Mbps with 512-byte packets RTS/CTS ON 53

5.6. 1Mbps with 512-byte packets RTS/CTS OFF 54

5.7. 1Mbps with 1500-byte packets . 55

5.8. 2Mbps with 512-byte packets RTS/CTS ON 56

5.9. 2Mbps with 512-byte packets RTS/CTS OFF 57

5.10. 5.5Mbps with 512-byte packets RTS/CTS OFF 58

x

5.11. 5.5Mbps with 512-byte packets RTS/CTS ON 59

5.12. Goodput and normalized routing load with 512 bytes packets at 1Mbps . . 60

5.13. Goodput and normalized routing load with 512 bytes packets at 2Mbps . . 61

5.14. Goodput and normalized routing load with 1500 bytes packets at 2Mbps . . 62

5.15. 8 similar multi-hop TCP experiments with 512 bytes packets at 2Mbps . . . 65

5.16. ACK sequence numbers vs. time with 512 bytes packets at 2Mbps 66

5.17. ACK sequence numbers vs. time with 512 bytes packets at 2Mbps 67

5.18. Goodput and normalized routing load with 512 bytes packets at 5.5Mbps . 69

5.19. Goodput and normalized routing load with 1500 bytes packets at 5.5Mbps . 70

xi

1

Chapter 1

Introduction

1.1 Background

To date, the most common tool in wireless networking research has been simulation. There

are two important motivating reasons to use simulation. The first is the difficulty of creating

a real implementation which requires use of a system with many components. The second

reason is that it gives maximum experimental control to the researcher. In a simulator,

the code is contained within a single component which is clearly defined and accessible.

Therefore, the researcher can control the whole system and design experiments without

limitations.

However, it has become increasingly difficult to build accurate analytical models of the

devices and protocols of modern wireless networks. Simulation of wireless networks differ

considerably from simulation of wired networks in that they have to include modeling of

physical channel properties (fading and interference) which has a profound effect on network

performance. But it is not possible to exactly replicate physical channel properties inside

a computer model, so when creating a simulation some factors must be statistically or

otherwise approximated. However, adjusting the level of detail is a difficult problem. The

failure to properly capture the behavior of first-order factors can lead to incorrect results.

On the other hand, excessive detail may increase simulation run-time without even affecting

the results.

2

OPNET Modeler [1], ns-2 [2, 3] and GloMoSim [4] are among the most popular sim-

ulators. Each provides an advanced simulation environment to test and debug wireless

networking protocols. Among these, ns-2 is widely used in the research community due

to its open source code base. In ns-2, two MAC layer protocols, 802.11 and TDMA are

implemented for mobile networks. Due to its popularity in wireless networking research, we

focus on the 802.11 MAC protocol in this thesis.

The ns-2 simulator focuses on the higher layer protocols, while abstracting the details

of models at other layers, particularly the interactions with physical layer models. This

thesis examines physical layer models for transmitter interference and signal transmission

and reception that are relevant to the performance evaluation of higher layer protocols such

as AODV and DSR. The plan of the thesis is as follows:

• In Chapter 1, motivation and objectives of this thesis will be explained.

• In Chapter 2, the details of 802.11b PHY Layer which may affect the results of a

simulation will be presented.

• In Chapter 3, the fundamentals of ns-2 and its wireless physical layer model will be

described.

• In Chapter 4, the details of the modification of ns-2’s wireless physical layer model

will be given.

• In Chapter 5, simulation results of ad hoc routing protocols with the modified ns-2

will be presented and the reasons for divergence from the results of the original ns-2

will be explained.

• In Chapter 6, a brief summary of the results and the conclusion will be given.

3

1.2 Motivation and Objectives

The ns-2 simulator has highly developed models for the network and transport layers, and

has proven invaluable as a community research tool. Ns-2 has become a de facto standard

for characterizing performance differences in networking and transport protocols for its

particular model of the wireless physical layer. Not surprisingly, most recent studies on the

interactions on the MAC and network layer protocols, [5, 6] for example, employ the ns-2

simulator.

In these works, it is understood that end-to-end network performance evaluation is

essential. Thus a simulator must support appropriate models at all layers. However, with

the increasing complexity of radio physical systems, fine grain physical layer simulations

implement bit detection and packet decoding an order of magnitude slower than real time

for a single communication link. [7]. This implies that detailed physical layer simulations

are orders of magnitude too slow for the simulation of wireless network protocols. Thus,

the objective of physical layer modeling is to capture the representative characteristics of

interfering transmissions in a model of sufficient simplicity to support practical network

simulation. In fact, the Monarch extensions have achieved this balance for CSMA wireless

networks in which the MAC protocol prevents large numbers of interfering transmissions.

In this thesis, we propose modifications to the Monarch extensions intended both to

enhance the accuracy of simulations in low-power wireless networks as well to advance the

development of ns-2 models of other wireless communication technologies. Specifically, we

modify the Monarch extensions to account for multiple simultaneous interferers by tracking

the signal to interference plus noise ratio (SINR) during packet reception. We use SINR

tracking to determine whether a packet is received successfully. In simulation experiments,

4

we observe that performance variations between the SINR tracking model and the stan-

dard ns-2 pairwise collision model emerge when the transmit power is low. In this case,

the transmission range is small and the network can support a significant number of simul-

taneous transmissions. We quantify such differences under typical scenarios used for the

performance evaluation of wireless ad hoc routing protocols. In particular, in comparing

DSR and AODV under the modified physical layer, we observe that their performance can

be very sensitive to the variations in the SINR tracking model in various scenarios.

There has been similar studies comparing the performance of ad hoc routing protocols

with ns-2 [8–15]. Broch, Maltz, Johnson, Hu and Jetcheva, the original authors of the

simulation model, evaluated four ad hoc routing protocols including AODV and DSR [13].

DSR demonstrated vastly superior routing load performance, and somewhat superior packet

delivery and route length performance. This is contradictory to some of our results.

A more recent work, by Johansson, Larssson, Hedman and Mielczarek [14], extended

the above work by using new mobility models. To characterize these models, a new mobility

metric is introduced that measures mobility in terms of relative speeds of the nodes. In

low loads DSR was more effective, while AODV was more effective at higher loads. The

packetwise routing load of DSR was almost always significantly lower than AODV. The au-

thors attributed the comparative poor performance of DSR to the source routing overheads

in data packets. They used small data packets (64 bytes), thus making things somewhat

unfavorable for DSR.

In these works, the routing protocols were compared only under varying traffic load

or the mobility patterns. The performance of the routing protocols weren’t tested under

different transmit power levels, which we found to be a very significant performance factor

which affects the routing protocols in very different ways.

5

Other than comparisons, there are also several recent papers that have dealt with DSRs

caching performance, an important performance determinant in our experience as presented

in this thesis. In [6], the authors concluded that even though many cache replies carried

stale routes, route maintenance in DSR is able to adapt and deliver good performance which

conflicts most of our results. However, Holland et al. [16] have shown that the stale caches

in DSR have a harmful effect on TCP performance in a mobile environment, and observed

that performance could be improved by switching off replies from caches. More recently,

the effects of cache structure, cache capacity, cache timeouts, and mobility patterns on the

performance of DSR were studied [17]. It was observed that, in general, expiration of cached

routes improved performance. We observed that in stationery networks, caching is actually

the main factor that makes DSR overperform AODV.

Another study has described details of physical layer modeling in OPNET Modeler [1],

ns-2 [2] and GloMoSim [4] [18]. They showed the impacts of their differences on the overall

network performance for scenarios typically used for the evaluation of ad hoc routing proto-

cols. However, this difference cannot be interpreted as stemming only from the difference of

PHY layer models in these simulators. These three simulators have many other differences

than their PHY layer models.

Also in another work [19], they concluded that simulations which lack necessary details

can result in misleading or incorrect answers, therefore, researchers must chose their level

of simulation detail with care. They have offered several case studies in wireless network

simulation to offer guidance for when detail is or is not required. However, they didn’t focus

on details in packet reception modeling.

The most similar study to ours is given in [20] and [21]. In these works, they have

implemented an extensive indoor radio propagation model and included an implementation

6

of SINR tracking model in the physical layer model of ns-2. However, no details are given

about the SINR tracking model, and there are no comprehensive ad hoc routing simulations

with this model. The authors also noted that their simulations required a runtime of up to

100 times longer than standard ns-2. By comparison, we didn’t observe such a degradation.

They concluded that, as the power of processors increase drastically, heavy computation

will become less of an issue and their modeling simulator may be used to re-run previous,

well-known validations such as [13]. Our work, in fact, does simulate a number of the large-

scale scenarios given in [5] and [13]. Therefore, to our knowledge, this is the first study to

have made extensive ad hoc routing protocols evaluation with a modified PHY layer model

in ns-2.

7

Chapter 2

802.11b PHY Layer

In this chapter we present the details of 802.11b PHY layer which may affect the results of

a simulation. In the next chapters we also explain the level of detail of ns-2’s physical layer

model.

The IEEE 802.11b standard actually provides three variations for PHY layer. These

include Direct Sequence Spread Spectrum (DSSS), Frequency Hopping Spread Spectrum

(FHSS), and Infrared. In practice, only DSSS has any significant presence in the market.

802.11b DSSS operates in the 2.4Ghz ISM band which is allocated from 2400 to 2483Mhz.

The channel assignments in North America are channels 1 to 11, starting at 2412Mhz

and spaced at 5Mhz intervals to 2462Mhz. Each channel is about 22Mhz wide so there

is substantial overlap. Therefore, channels 1, 6, and 11 can be used as non-overlapping

channels.

The DSSS system has different modulation modes for every transmission rate. These

are:

• Differential Binary Phase Shift Keying (DBPSK) for 1Mbps,

• Differential Quaternary Phase Shift Keying (DQPSK) for 2Mbps,

• Complementary Code Keying (CCK) for 5.5Mbps and 11Mbps.

The spreading is performed by multiplying binary data by a pseudo random (PN) binary

8

waveform. At 1 and 2Mbps, the PN code is an 11-chip long Barker sequence.

For the CCK modulation, 8-chip long Walsh codes are used. The transmitter divides

the data into 4-bits or 8-bits. At 5.5Mbps, 2 of the 4 bits are used to select one of 4 complex

spread sequences from a table of CCK sequences and then DQPSK modulates this sequence

with the other two bits. At 11Mbps, 6 bits are used to select one of 64 sequences and the

remaining 2 bits are used for modulation. For 5.5Mbps data rate, 4 bits are encoded into

the 8-chip long codeword. So the processing gain is only 2. For the 11Mbps data rate,

there’s no processing gain because 8 bits are encoded into 8-chips.

2.1 Details of Data Transmission and Reception

Like other 802.11 physical layers, 802.11b has Physical Layer Convergence Procedure (PLCP)

and Physical Medium Dependent (PMD) sub-layers. The standard uses these terms to di-

vide the major functions that occur within the physical layer. The PLCP maps the IEEE

802.11 MAC protocol data units (MPDU) into a framing format suitable for sending and

receiving user data and management information between wireless nodes. Then the PLCP

directs these frames to the PMD to actually transmit and receive signals.

The PLCP takes each 802.11 frame that a station wishes to transmit and forms what

the 802.11 standard refers to as a PLCP protocol data unit (PPDU). The resulting PPDU

includes the following fields:

• Sync: This field consists of alternating 0s and 1s, alerting the receiver that a receivable

signal is present. The receiver begins synchronizing with the incoming signal after

detecting the Sync.

• Start Frame Delimiter (SFD): This field is always 1111001110100000 and defines

9

Figure 2.1: PPDU Frame Format

the beginning of a frame.

• Signal: This field identifies the data rate of the 802.11 frame. The preamble and

header are always transmitted using the 1Mbps DBPSK modulation, while the MPDU

can be transmitted using DBPSK, DQPSK or CCK. This ensures that the receiver is

initially uses the correct demodulation mechanism, which changes with different data

rates.

• Service: This field is always set to 00000000, and the 802.11 standard reserves it for

future use.

• Length: This field represents the number of microseconds that it takes to transmit

the contents of the PPDU, and the receiver uses this information to determine the

end of the frame.

• Cyclic Redundancy Check (CRC): In order to detect possible errors in the Physi-

cal Layer header, the standard defines this field for containing 16-bit cyclic redundancy

check (CRC) result. The MAC Layer also performs error detection functions on the

PPDU contents as well.

• MPDU: This is the actual 802.11 frame that’s being transmitted.

10

2.1.1 Data Transmission

In order to transmit data, the PHY layer should be in the transmit state. Based on the

status of clear channel assessment (CCA), the MAC assesses that the channel is clear. If

the channel is clear, transmission of the PPDU is initiated. This means defining the PLCP

Header parameters. Then the PHY entity initiates data scrambling and transmission of the

PLCP Preamble.

Once the PLCP Preamble transmission is complete, data is exchanged between the MAC

and the PHY. The modulation rate change, if any, is initiated with the first data symbol

of the MPDU. The PHY will proceed with MPDU transmission through a series of data

octet transfers from the MAC. Termination will occur after the transmission of the final

bit of the last MPDU octet according to the number supplied in the DSSS PHY preamble

LENGTH field. The packet transmission will be completed and the PHY entity will enter

the receive state.

2.1.2 Data Reception

In order to receive data, the PHY layer should be in the receive state. Further, the PHY is

set to the appropriate channel and the Clear Channel Assessment (CCA) method is chosen.

Upon receiving the transmitted energy, according to the selected CCA mode, an indication

of the RSSI strength reaching the energy detection threshold (EDT) and/or presence of a

DSSS signal (code locking) will be enabled. These conditions are used to indicate activity to

the MAC. After this, the PHY entity shall begin searching for the SFD field. Once the SFD

field is detected, PLCP header will be received. Then the CRC check will be processed. If

it fails, the PHY receiver shall return to the RX Idle state. If the PLCP Header reception

is successful (and the SIGNAL field is completely recognizable and supported), the rate

11

change indicated in the IEEE 802.11 SIGNAL field shall be initiated with the first symbol

of the MPDU. After the reception of the final bit of the last MPDU octet indicated by the

PLCP Preamble LENGTH field, the receiver will return to the RX Idle state.

In case of a decrease in RSSI or loosing code lock before the complete reception of the

MPDU as indicated by the PLCP LENGTH field, the error condition will be reported to

the MAC. However, the DSSS PHY will ensure that the CCA still indicates a busy medium

for the intended duration of the transmitted packet.

2.1.3 Clear Channel Assessment (CCA)

There are three methods to perform CCA:

• CCA Mode 1: Energy above threshold. CCA shall report a busy medium upon

detection of any energy above the ED threshold.

• CCA Mode 2: Carrier sense only. CCA shall report a busy medium only upon detec-

tion of a DSSS signal. This signal may be above or below the ED threshold.

• CCA Mode 3: Carrier sense with energy above threshold. CCA shall report a busy

medium upon detection of a DSSS signal with energy above the ED threshold.

Among these modes, mode 3 is usually set as default. However, it can be changed

through the driver [22].

12

Chapter 3

Fundamentals of Ns-2

3.1 Introduction to Ns-2

Ns-2 is a discrete event network simulator that began in 1989 as a variant of the REAL

network simulator which was initially intended only for wired networks. It is widely accepted

as an environment for studying TCP and other protocols over networks like the conventional

internet. However the increasing popularity of Mobile Ad Hoc Networks (MANET) [23]

prompted researchers to extend ns-2 to provide support for the simulation of wireless LANs.

In the most successful wireless extensions, developed by the Monarch Group at CMU, the

ns-2 radio model is based on the DSSS PHY reference configuration in the IEEE 802.11

standard [24], but with the parameters of the older 914 MHz WaveLAN card [25]. As the

Monarch extensions are included in the standard ns-2 distribution [13], we use the name

ns-2 to denote both the simulator and the Monarch extensions.

3.2 Ns-2 Abstraction

Ns-2 is an object oriented simulator, written in C++, with an OTcl (object oriented Tcl)

interpreter as a frontend. The simulator supports a class hierarchy in C++ (also called

the compiled hierarchy), and a similar class hierarchy within the OTcl interpreter (also

called the interpreted hierarchy). The two hierarchies are closely related to each other;

from the user’s perspective, there is a one-to-one correspondence between a class in the

13

interpreted hierarchy and one in the compiled hierarchy. The root of this hierarchy is the

class TclObject. Users create new simulator objects through the interpreter; these objects

are instantiated within the interpreter, and are closely mirrored by a corresponding object

in the compiled hierarchy. The interpreted class hierarchy is automatically established

through methods defined in the class TclClass. User instantiated objects are mirrored

through methods defined in the class TclObject.

Ns-2 uses two languages because simulator has two different kinds of tasks it needs to do.

On one hand, detailed simulations of protocols requires a systems programming language

which can efficiently manipulate bytes, packet headers, and implement algorithms that run

over large data sets. For these tasks run-time speed is important and turn-around time

(run simulation, find bug, fix bug, recompile, re-run) is less important.

On the other hand, a large part of network research involves slightly varying parameters

or configurations, or quickly exploring a number of scenarios. In these cases, iteration time

(change the model and re-run) is more important. Since configuration runs once (at the

beginning of the simulation), run-time of this part of the task is less important.

Ns-2 meets both of these needs with two languages, C++ and OTcl. C++ is fast to

run but slower to change, making it suitable for detailed protocol implementation. OTcl

runs much slower but can be changed very quickly (and interactively), making it ideal for

simulation configuration.

3.3 Mobile Networking in Ns-2

This section briefly describes the wireless model that was originally ported as CMU’s

Monarch group’s mobility extension to Ns-2.

In this extension, mobile node is implemented as an object with functionalities such as

14

movement and the ability to transmit and receive on a channel that allows it to be used

to create mobile, wireless simulation environments. The mobile node is designed to move

on a flat terrain with height always equal to zero. Thus the mobile node has X, Y, Z

co-ordinates that are continually adjusted as the node moves. When creating a mobility

scenario, the starting position of the node and its future destinations may be set explicitly.

These directives are normally included in a separate movement scenario file. Other than

this, the topography for mobile nodes always needs to be defined. Normally a flat topology

is created by specifying the length and width of the topography.

The network stack for a mobile node consists of a link layer, an ARP module connected

to the link layer, an interface priority queue, a MAC layer and a network interface, all

connected to the channel. Each component is briefly described here.

Link Layer: The link-layer object is responsible for simulating the data link protocols.

Many protocols can be implemented within this layer such as packet fragmentation and

reassembly, and reliable link protocol.

Another important function of the link layer is setting the MAC destination address in

the MAC header of the packet. Normally for all outgoing (into the channel) packets, the

packets are handed down to the link layer by the Routing Agent. Then the link layer hands

down packets to the interface queue. For all incoming packets (out of the channel), the

MAC layer hands up packets to the link layer.

ARP: The Address Resolution Protocol module receives queries from Link layer. If

ARP has the hardware address for destination, it writes it into the MAC header of the

packet. Otherwise it broadcasts an ARP query, and buffers the packet temporarily. Once

the hardware address of a packet’s next hop is known, the packet is inserted into the interface

queue.

15

Interface Queue: For the purposes of ad hoc routing, the interface queue is imple-

mented as a priority queue which gives priority to routing protocol packets by inserting

them at the head of the queue.

MAC Layer: The IEEE 802.11 distributed coordination function (DCF) MAC protocol

has been implemented by CMU. DCF is similar to MACA and MACAW and is designed to

use both physical carrier sense and virtual carrier sense mechanisms to reduce the probability

of collisions due to hidden terminals. The details of this implementation will be covered in

the next section along with the network interface implementation which is used by mobile

nodes to access the channel.

3.4 Packet Reception in Ns-2

In ns-2, each mobile node has one or more wireless network interfaces, linked together by a

single physical channel. When a network interface transmits a packet, it passes the packet to

the appropriate physical channel object. This object then computes the propagation delay

from the sender to every receiver on the channel and schedules a packet reception event

for each. This event notifies each receiving interface when the first bit of a new packet has

arrived.

After this notification, a receiver at distance d computes the received power of the packet

to be Pr = G(d)Pt where Pt is the transmitter power and G(d) is the link gain from the

transmitter to the receiver. The link gain G(d) is calculated either by the Friis free space

model [26],

G(1)(d) =
GtGrλ

2

(4πd)2L
, (3.1)

16

or the two-ray ground model [26],

G(2)(d) =
GtGr(h2

t h
2
r)

d4L
. (3.2)

Note that Gt and Gr are the transmitter and receiver antenna gains which have default

value 1, L is the system loss which has a default value 1, ht and hr are the heights of the

transmit and receiver antennas which have default value 1.5 m. If d is less than the distance

d′0 = 4πhthr/λ where G(1)(d′0) = G(2)(d′0), the Friis equation is used. Otherwise the two-ray

ground model is used to compute the received power of the packet. It follows that

G(d) = min(G(1)(d), G(2)(d)).

The received power level of the arriving packet is then compared to two different values:

the carrier sense threshold (CST) and the receive threshold (RXT). The CST has two

functions.

• If the received power level is below CST, the packet is discarded as noise; the receiver

interface operates as if that packet never existed.

• CST is also used for purposes of CSMA/CA. The transmitter cannot start transmis-

sion of a new packet if it senses another signal with a received power level higher than

CST.

This use of CST matches the definition of Clear Channel Assessment (CCA) Mode 3 in

the IEEE 802.11 Standard.

RXT is a received power threshold that is used to decide whether a packet is received

correctly. In the Monarch extensions, RXT equals the received power P
(2)
r (d0) at a given

17

distance d0, independent of the signal modulation and data rate of the transmission. If the

received power level is above CST but below

RXT, the packet is marked as a packet in error before being passed to the MAC layer

(the packet is detected, but not successfully received). Otherwise, the packet is simply

handed to the MAC layer.

A receiver’s MAC layer is modeled as a state machine with the three states.

• Idle State: The MAC layer is ready to start decoding a new packet.

• Receive State: The MAC layer is decoding a packet.

• Collision State: While in receive state, the packet currently being decoded has

suffered a collision.

When a node in the idle state receives a packet, the MAC layer switches to the receive

state, computes the transmission time of the packet and schedules a “packet reception

complete” event. If the MAC layer is not in the idle state, there are two possibilities. If the

power level of the packet already being decoded is at least 10dB greater than the received

power level of the new packet, a capture effect takes place, the new packet is discarded, and

the receiver interface continues decoding its current packet. Otherwise, a collision occurs

and both packets are dropped. If the scheduled “packet reception complete” event can

occur without a collision, the MAC layer verifies that the packet is error-free, performs

destination address filtering, and passes the packet up the protocol stack.

In the event of a collision, the MAC layer switches into the collision state and stays

in this state until the both colliding packets have completed transmission; see Figure 3.1.

This rule prevents the transmitter interface from starting a new transmission during the

transmission of the colliding packet. For a transmitter, this behavior is consistent with

18

receive state

 (ns-2)

idle state

 (ns-2)

collision state

 (ns-2)

1

2

3

 idle state

(ns-2.mme)

 receive state

 (ns-2.mme)

 receive state

 (ns-2.mme)

In both ns-2 and ns-2.mme, the receiver enters the receive state and starts to decode packet
1. In ns-2, the transmission of packet 2 causes a collision, and the receiver stays in the
collision state until both colliding packets complete transmission. (In fact, the collision
may be extended to the completion of packet 3 if its received power is sufficient.) In ns-
2.mme, the receiver stays in the receive state until Packet 1 completes transmission, and
if the received power of Packet 3 is higher than CST, the receiver again enters the receive
state.

Figure 3.1: Change of receiver states

the CSMA/CA standard, which prevents a new transmission when there is a packet in the

medium with a received power level higher than CST. However, this behavior also prevents

the receiver interface from attempting to receive any new packets until the colliding packet

reception ends. In Figure 3.1 for example, even if the received power of packet 3 is 10 dB

higher than the received power of packet 2, the receiver cannot start the reception of packet

3. (In fact, the collision state continues until the end of packet 3; however, we should note

that this is a rare event which can only take place when the RTS/CTS option is off.)

19

Chapter 4

Modifications

In general, packets are decoded reliably when the received power of a packet is sufficient

to overcome the interference of other transmissions and thermal receiver noise. The ns-2

model of a 10 dB capture threshold for potential colliding packets is a simple abstraction

of the actual packet reception process. This model works well when the transmission of

each unicast packet is preceded by an RTS/CTS exchange that can be heard by most

network nodes. In these conditions, the number of instantaneous interfering transmissions

will be small and the probability of correct packet reception is well modeled by single packet

interference comparisons. However, in the presence of multiple interfering transmissions,

this model will be inaccurate. In this chapter, we describe modifications to the Monarch

extensions to account for these simultaneous multiple interferers.

4.1 An SINR Interference Model

In the single user additive white Gaussian noise channel, the probability of a bit error

is a monotonically decreasing function of the signal noise ratio (SNR). In systems with

interference from other users, it is common practice to model the communication link quality

by the signal to interference plus noise ratio (SINR) [27–29]. To formulate the SINR, we

say that on communication link j, transmitter j employs power Pj to send to receiver j.

We use Gij to denote the power gain from the link j transmitter to the link i receiver. At

20

the link i receiver, the SINR is

γi =
GiiPi∑

j 6=i θijGijPj + η
. (4.1)

Note that η is the in-band receiver noise power and includes both thermal noise as well

as the receiver noise figure [30]. In addition, θij represents the fraction of transmitter

j’s received signal power that is projected onto the signal space of user i. For example,

in a synchronous CDMA system with matched filter detection, θij equals the normalized

squared cross-correlation between the signature sequences of users i and j [31]. In general,

the interference factor θij may depend on the spreading codes, modulation formats, and

data rates of the users. Analysis has also shown that θij may also depend on such factors

as the synchronism (or asynchronism) of the users’ transmissions [32] as well as receiver

hardware implementation design choices such as the number of bits in the analog to digital

converter [33]. In certain spread spectrum systems, θij may be reduced if the receiver

employs filtering in the form of multiuser detection [31]. The interference factor θij may

also model interfering signals that overlap the frequency spectrum of user i. For example,

if link j is a UWB transmitter spreading over 3–10 GHz and link i is a 22 MHz 802.11a

transmission in the 5GHz band, then θij = 22/7000 would represent the fraction of the

power of user j in the band of user i. In a similar way, θij could be used to model the

partially overlapping channels of 802.11b.

For a link i transmitting at data rate Ri b/s, a common model in spread spectrum

systems with matched filter detection is to assume that θij = θi = Ri/W , corresponding

to the reciprocal of the processing gain Ni = W/Ri [28]. Prior analyses of CDMA systems

that concluded θi is proportional to 1/Ni were based on the assumption that both the

21

processing gain Ni and the number of interfering users are relatively large. For example,

second generation cellular CDMA systems employ a processing gain of 128 and support

10-20 simultaneous transmissions in a single cell. Thus a CDMA analysis may not be

appropriate, even for 802.11b systems operating at 1 or 2 Mb/s where the spreading factor

is only 11.

In the context of 802.11 systems, the appropriate value of θ has received little attention,

precisely because the carrier sense and RTS/CTS mechanisms have been designed to pre-

clude all but very weak interfering transmissions. In the subsequent discussion, we assume

a homogeneous single-rate system in which θij = θ for all communication links. The funda-

mental change to the physical layer model is that in the receive state, a receiver node i will

track its SINR γi. Fluctuations in the SINR will determine whether a packet is received

correctly. In the sequel, we refer to ns-2 with modified Monarch extensions to support SINR

tracking as ns-2.mme.

4.2 A Model for Packet Reception

We adopt a physical model for packet reception consistent with the IEEE 802.11 protocol.

When the receiver is in the idle state and the received power level of a new packet is higher

than CST, the MAC layer enters the receive state and stays in this state until that packet

transmission is complete. This model corresponds to the physical situation that a receiver

learns the packet length and data rate from the packet header and uses this information

to specify how many bits the receiver will decode. After decoding these bits, a CRC check

identifies whether the bits of the packet were decoded correctly. Packets that are received

correctly are then passed up the protocol stack.

The probability of correct packet reception in ns-2.mme depends on the receiver SINR,

22

which may vary during a single packet reception. The next modeling step is to translate

the SINR into a packet error probability. This translation mechanism may embed such

factors as modulation rate and error control coding. This translation may be as simple

as a threshold such that the packet is correctly received only if the SINR has been above

threshold during the entire packet duration [4]. Alternatively, the packet error probability

may be an arbitrary function of the SINR that is derived analytically, or possibly empirically

by physical layer experimentation or simulation.

In this thesis, we develop a BER based model that describes a system with uncoded

packets in which the detector makes a hard decision on each transmitted bit. This BER

based model probabilistically decides whether each bit in a packet is transmitted correctly

based on the receiver SINR during that bit reception. At every node, the total received

power Ptotal from all signal sources is stored and is updated every time a packet transmission

begins or ends. SINR tracking is implemented just by tracking the total received power as

follows:

• When a new packet arrives, increase Ptotal by the received power of that packet.

• When a packet completes transmission, decrease Ptotal by the received power of that

packet.

If a node is receiving a packet with received power Pr and the total received power is Ptotal,

the SINR is

γ =
Pr

θ[Ptotal − Pr] + η
. (4.2)

For packet decoding, we define a segment as a consecutive sequence of received bits over

which the SINR is constant. In our BER-based model of packet reception, we determine

whether a packet has errors as a function of the SINR in each packet segment. Based on

23

these segments, the packet reception algorithm is:

• For a given segment, find the bit error rate by using the pre-computed BER-SINR

table.

• If the segment has n bits, calculate the probability

PC = (1− Pe)n (4.3)

that all bits in the segment are decoded correctly.

• Throw a uniform random variable between 0 and 1. If this number is greater than

PC , mark this segment with error.

• At the end of decoding a packet transmission, check if there was a decoding error

in any packet segment. If so, discard the packet; otherwise, the packet is received

correctly. Note that the IEEE 802.11b standard does not use coding. Thus if there is

a single segment with error, that packet will fail a CRC check.

Unlike ns-2, ns-2.mme has no need for a collision state to realize the receiver state ma-

chine; see Figure 3.1. Instead, one or more interfering transmissions in ns-2.mme will reduce

the receiver SINR during packet reception and cause a packet decoding error. Whether by

collision or decoding error, the first order effect of a strong interferer is the same: a trans-

mitted packet is lost. However, there are second order differences. With SINR tracking, the

probability of correct packet decoding will depend on the cumulative effect of all interfering

transmissions. In addition, after completing the decoding of a received packet, an ns-2.mme

receiver simply returns to the idle state, which makes it ready for starting reception of a

new packet. By contrast, under ns-2, the node enters the collision state and remains in

24

the collission state until both colliding packets complete transmission. This difference is

depicted in Figure 3.1. Generally this difference will have little impact, except in unusual

cases like that of the figure, where if the received power of the packet 3 is higher than CST,

the receiver can start decoding the packet.

4.3 Designing the BER-SINR look-up table

As mentioned in the previous section, we designed a BER-SINR look-up table for our packet

reception model. For the BER of DBPSK we used the following equation as given in [34],

Pe =
1
2
e−γb . (4.4)

Here γb is the SINR per bit. For DBPSK, γb is equal to γ which is given in Equation (4.2).

For BER of DQPSK, we used the following equation which is also given in [34],

Pe = Q1(a, b)− 0.5I0(ab)e−2γb , (4.5)

where

a = [2γb(1− 1/
√

2)]1/2, (4.6)

b = [2γb(1 + 1/
√

2)]1/2, (4.7)

Q1(a, b) is Marcum Q function and I0 is the modified Bessel function of the first kind of

order 0. For DBPSK, γb is equal to γ/2. This is because of the fact that in 2Mbps data

rate the energy used for transmitting a single bit is the half of the energy that’s used in

1Mbps.

For BER of CCK, we used a simplified version of the BER computation given in [35]. In

25

CCK, n of the n+2 bits are used to select one of 2n complex spread sequences from a table

of CCK sequences and then DQPSK modulates this sequence with the other two bits. Let’s

denote these n bits as B = (b0, b1, b2, ..., bn) which can also be denoted as B = (B1, B2),

where B1 = (b0, b1) and B1 = (b2, ..., bn). There are 2n+2 codewords since they are mapped

from n + 2 binary data bits. There are 2n different codewords determined by B2. These

2n codewords have ideal cross-correlation properties due to orthogonality. To find the bit

error rate for CCK let’s first find the probability of deciding bits B2 correctly. Since they

are orthogonal, here we used the union bound for its simplicity;

Pc(B2) = (M − 1)Q(γb log2 M). (4.8)

where M = 2n and Q is the normal distribution function. Given that B2 has been decided

correctly, data bits B1 are DQPSK demodulated. So, Pb(B1|B2) is calculated as given in

Equation (4.5).

B1 consists of two data bits, hence the relation between the conditional probabilities of

symbol error and bit error can be expressed as [34],

Pb(B1|B2) =
22−1

22 − 1
Ps(B1|B2). (4.9)

So, the conditional probability of making correct decision on B1 is,

Pc(B1|B2) = 1− Ps(B1|B1) = 1− 1.5Pb(B1|B2). (4.10)

26

10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

SINR (dB)

B
E

R

1Mbps
2Mbps
5.5Mbps
11Mbps

Figure 4.1: BER vs γ

The codeword can be decided correctly when both B1 and B2 have been decided cor-

rectly. So, the probability of a correct codeword decision is:

Pc(C) = Pc(B1B1) = Pc(B2)Pc(B1|B2). (4.11)

So, the bit error rate is,

Pb =
2n+2−1

2n+2 − 1
[1− Pc(B2)Pc(B1|B2)]. (4.12)

At 5.5Mbps, n = 2 and γb = γ/5.5 where γ is given in Equation (4.2). At 11Mbps,

n = 6 and γb = γ/11.

By using these equations, we created a BER-SINR look-up table spanning SINR from

0 dB to 30 dB with 0.1 dB intervals with a precision of 10−12 in BER. A plot of this look-up

27

table is shown in Figure 4.1.

4.4 A Model for Carrier Sensing

In the 802.11 protocol, there are two kinds of carrier sensing, one is called physical carrier

sensing and the other is called virtual carrier sensing. Virtual carrier sensing is done by

employing an RTS/CTS exchange before transmitting a unicast data packet. On the other

hand, physical carrier sensing is done by using the clear channel assesment (CCA). Ns-

2 handles physical carrier sensing by using the CST. However, as we explained, ns-2 is

incapable of cumulative received power tracking. Thus, in ns-2 the wireless medium is

reported as busy when received power of a single packet is higher than CST.

We implemented a carrier sensing system which compares the total received power at

the wireless card by a power threshold. For simplicity, we will call this as “cumulative

carrier sensing” (CCS) and the current implementation in the ns-2 as CS. In the original

ns-2 code, physical carrier sensing is handled by a timer. When there is a packet with a

received power higher than CST the timer is set to the end of that packet’s transmission.

So, when that packet’s transmission ends, the MAC layer switches to idle state assuming

no other packet is currently being transmitted or received and RTS/CTS option is turned

off. We changed this implementation in the following way:

• When a packet with a received power higher than CST arrived at the node the timer

is set just like in the original code.

• When this timer expires, the MAC layer checks if the total received power level at the

node is lower than CST. If it’s lower, the wireless medium is indicated as idle.

• If the total received power at the node is still higher than the CST, the medium

28

cannot be indicated as idle until the total received power drops below CST. In order

to check if this is the case, after the ending of every single packet’s transmission the

node compares the total received power to the CST.

4.5 A Model for PLCP Preamble and Header

As explained in section 2.1, PLCP preamble and header are essential in packet reception. So,

after implementing our primary packet reception model, we also implemented a secondary

model which takes the PLCP preamble and header into consideration. In this model, we

treated all the fields in the PLCP preamble and header as a single field that has to be

decoded correctly. The details are as follows:

• When a node is receiving a packet, after receiving the PLCP Preamble and PLCP

Header, which occupy the first 192 bits, it calculates the probability that all bits are

decoded correctly. This is done as explained in section 4.2.

• If there’s a decoding error, the MAC layer returns into the idle state. Otherwise,

MAC layer starts receiving the rest of the packet, which is the MPDU. Then the same

steps in section 4.2 are the followed to determine if the packet is correctly received or

not.

4.6 Modifications in the ns-2 code

This section describes our actual modifications to the Monarch extensions. The main mod-

ifications are distributed between the Mac802.11 and WirelessPhy objects. In WirelessPhy,

when a new packet comes, it’s received power Pr is computed and the value of the total

received power variable Ptotal which is stored in the MobileNode object is increased by Pr.

29

A “packet transmission complete” event is then scheduled. When this event occurs, Ptotal

is decreased by Pr. Unlike standard ns-2, no matter what the received power Pr of a new

packet is, the receive function of the Mac802.11 object is called. CST is now employed

in the Mac802.11 object. That is, even if the receive function of the Mac802.11 object is

called, an actual reception will begin if the received power of the new packet is higher than

CST. Every time the receive function is called, using the Ptotal in the Mobilenode object,

the Mac802.11 computes the SINR as shown in Equation (4.2) and executes the packet

reception algorithm for the preceding packet segment, as explained in section 4.2. This al-

gorithm is also executed when a “packet transmission complete” event occurs. In this case,

WirelessPhy calls the receive function in Mac802.11 just to execute the packet reception

algorithm. Note that the last packet segment is evaluated when the packet reception ends.

There are three important variables that are used in the packet reception algorithm:

• Error flag: This variable is set to 1 when a segment has errors. The error flag is

reset to zero when a new packet arrives.

• SINRprevious: This variable is the SINR value of the previous segment.

• timelastupdate : This variable indicates the last time the SINR was updated. In the

previous packet segment, the number of bits n, as used in Equation (4.3), is computed

using timelastupdate and timenow, the time marking the SINR change. For a link

operating at rate Ri b/s,

n = Ri × (timenow − timelastupdate). (4.13)

30

4.7 Radio Parameters

In the following chapter, we will use simulation to determine the effect of modifications

to the physical layer models. To do this, we must select system parameters such that

results from ns-2 and ns-2.mme are comparable at the same transmit power Pt despite the

differences in physical layer models.

Under the reasonable assumption that the noise figure of a simulated 802.11 radio is

F = 5 dB [30], it follows from the 2W = 22 MHz bandwidth of an 802.11b signal and

thermal noise N0/2 of -174 dBm/Hz that the received in-band noise power is

10 log10 η = 10 log10 F + 10 log10(2W)− 174 = −95.6 dBm

In this case, the RXT value of -64 dBm implies that the ns-2 simulated receiver correctly

receives packets having SNR greater than 32 dB. For an 802.11b receiver operating at 1

Mb/s, this figure is conservative in that it overestimates the required SNR by perhaps

20 dB. For example, consider a 512 byte packet received with SNR γ = 10 dB. Using the

equation for DBPSK bit error probability given in Equation (4.4) the bit error probability

is Pe = 0.5e−10 = 2.27 × 10−5 and the probability of correct packet decoding is PC =

(1 − Pe)4096 = 0.91. Ns-2 does partly compensate for the very high RXT by setting the

default transmit power to Pt = 282 mW (24.5 dBm), roughly 10-15 dB higher than values

specified for modern cards.

In addition to RXT, CST is another parameter for which ns-2 which does not reflect

recent 802.11b cards’ specifications. CST should be lower than the “receiver sensitivity,” a

(somewhat ambiguously defined) manufacturer’s specification of the lowest SNR at which

a wireless card can acquire a signal and detect bits with a specified reliability. Despite

31

ns-2.1b9a
original

parameters

ns-2.1b9a
revised

parameters ns-2.mme

Pt default (dBm) 24.5 variable variable
CST (dBm) -78 -81, -84 -81, -84
RXT (dBm) -64 -78 none
η (dBm) none none -87
CS Range (@ Pt = 24.5 dBm) 550m 650m, 775m 650m, 775m
Transmit Range (@ Pt = 24.5 dBm) 250m 550m 550m

Table 4.1: Ns-2 parameter values.

the ambiguity of the definition, today’s wireless cards are very sensitive. For example, the

receiver sensitivity of a Cisco Aironet 350 card is -94 dBm for 1Mbps data rate [22] which

is 16 dB below ns-2’s default CST value of -78 dB. Nevertheless, as a result of the pairwise

collision model, it has made little difference that ns-2 uses values for the CST, RXT, and

transmitter power Pt corresponding to the outmoded 900 MHz adaptors. A more realistic

set of parameters yielding the same transmit range and CS range would yield identical

wireless network performance.

In general, the transmit range denotes the maximum transmitter-receiver separation

such that a packet will be decoded correctly. In ns-2, the transmit range is determined by

RXT threshold, the transmit power Pt, and the link gain function G(d). For Pt = 24.5 dBm

and RXT = −64 dBm, the range is 250 m. In ns-2.mme, the transmit range is less well

defined. In the absence of interference, the SINR γ = PtG(d)/η, the BER Pe, and the packet

success probability PC are continuous functions of the distance d. However, it is generally

true that PC will make a sharp transition from nearly 1 to almost 0 at a critical value of

the SINR. Thus we define the transmit range for ns-2.mme as the distance where the data

packet error rate is 0.5 in a zero-interference environment. Although this definition of range

32

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

th
ro

ug
hp

ut
 (M

bp
s)

time (sec)

1Mbps ns−2
1Mbps ns−2.mme
2Mbps ns−2
2Mbps ns−2.mme
5.5Mbps ns−2
5.5Mbps ns−2.mme
11Mbps ns−2
11Mbps ns−2.mme

Figure 4.2: A Two Node Experiment: The range of revised ns-2 and ns-2.mme for transmit
power Pt=10dBm with 512-byte packets

is somewhat arbitrary and depends on the data packet length, we will see shortly that it

does make sense for the BER-based packet reception algorithm proposed here for uncoded

packets. It also makes sense in a wide variety of systems with forward error correction

where it is common for the bit error probability to exhibit a sharp transition.

For the BER-based decoding described in this thesis, at 1Mbps, PC makes a very sharp

transition around γ = 9 dB. In fact, for 512 byte packets, PC = 1/2 at γ = 9 dB. This sharp

transition can be seen in a simple simulation involving just two nodes (one transmitter and

one receiver) with Pt = 10 dBm. When the simulation starts at t = 0, node 1 is at (0,0)

and node 2 is at (100,0), and node 2 starts to move away from the transmitter at a speed of

1 m/s. In Figure 4.2, with 512 bytes packets, we see that the throughput at 1Mbps makes

a sharp transition at t = 140 m, corresponding to γ = 9 dB. At first glance, a range of

33

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

th
ro

ug
hp

ut
 (M

bp
s)

time (sec)

1Mbps ns−2
1Mbps ns−2.mme
2Mbps ns−2
2Mbps ns−2.mme
5.5Mbps ns−2
5.5Mbps ns−2.mme
11Mbps ns−2
11Mbps ns−2.mme

Figure 4.3: A Two Node Experiment: The range of revised ns-2 and ns-2.mme for transmit
power Pt=10dBm with 1500-byte packets

240 m may seem too high at Pt = 10 dBm, but this is representative of the range of today’s

wireless cards in outdoor environments [22].

In Figure 4.2, we can also see the ranges for the other data rates as well. The sharp

transition is seen at various distances depending on the data rate. However, when we look

at the results of the same simulation with 1500 bytes packets we see that there’s a gap

between the ranges for ns-2 and ns-2.mme (Figure 4.3). This is because of the fact that

our definition of range depends on the data packet length. When we use 1500 bytes packets

the SINR required for all the bits to be correct is higher than the 512 bytes packets case.

The opposite behavior can be also observed with much smaller packets. For example, TCP

ACK packets would have a higher range in ns-2.mme than in ns-2.

Weighing these considerations against the desirability of simulation results comparable

34

ns-2.1b9a
revised

parameters
2Mb

ns-2.1b9a
revised

parameters
5.5Mb

ns-2.1b9a
revised

parameters
11Mb

RXT (dBm) -73 -68.5 -65.5
Transmit Range (@ Pt = 10 dBm) 188.5m 150m 126m

Table 4.2: Ns-2 parameter values for higher data rates.

with standard ns-2 results, we have tuned the RXT and CST in standard ns-2 and the noise

power in ns-2.mme such that both simulators will give the same range for any transmit

power. This is accomplished by defining 4 different RXT thresholds for each data rate

in ns-2 such that the SNR values at these RXT thresholds will approximately correspond

to PC = 1/2 in ns-2.mme. Although we have observed that an appropriate figure for the

receiver noise would be η = −96 dBm, we will perform our experiments with the inflated

figure of -87 dBm. This is simply so that a reasonable transmit power of 10 mW (10dBm)

yields a 240 m transmit range, roughly corresponding to the traditional 250 m range of

ns-2. The radio parameters used in this thesis are summarized in Table 4.1 and Table 4.2.

As most experiments will use the transmit power Pt as a control parameter, the CS range

and transmit range are shown as functions of Pt in Figure 4.4.

4.8 A Simple Simulation with Four Nodes

To show the effect of interference on a wireless system, we studied a simple scenario with

four nodes shown in Figure 4.5. In this scenario, all nodes have transmit power of 10 dBm

and therefore a transmit range of 240 m at 1Mbps; see Figure 4.4. CST is set to -81

dBm. Therefore the carrier sensing range for the nodes is 284 meters; see Figure 4.4. The

interference factor is θ = 1, corresponding to a system that does no spreading. As shown in

35

10 15 20 25
200

300

400

500

600

700

800

transmit power (dBm)

ra
ng

e
(m

)

CS Range for CST = −84 dBm
CS Range for CST = −81 dBm
Transmit Range

Figure 4.4: CS and transmit ranges of revised ns-2 and ns-2.mme.

Figure 4.5, Node 1 is at position (x, y) = (50, 0), and is transmitting CBR data to Node 0 is

at (0,0) with packet size 512 bytes and a rate of 1000 packets/second. Node 3 is at (400,0)

and is transmitting CBR data with packet size 512 bytes and a rate of 1000 packets/second

to Node 2 at (340,0). The simulation is run for 180 seconds and at time t = 0, node 3

starts to move towards position (580,0) with a speed of 1m/s. These settings imply that

Node 1 cannot receive Node 2’s CTS packets correctly. Neither can Node 2 receive Node

1’s RTS packets correctly. In fact, they cannot even hear each other. We first simulated

this scenario with ns-2.1b9a at 1Mbps where node 2 is, by design, in the transmit range of

node 3 until the end of the simulation at t = 180s. Thus the node 3 connection remains

good for the entire duration.

When we repeated this simulation with ns-2.mme, we observed in Figure 4.5 that the

node 3 connection begins to degrade at t = 90s and that its connection is lost around

t = 110s. That is, one interferer 290 meters away from Node 2 reduced the effective transmit

range of Node 3 from 240 meters to 170 meters. This can be explained as follows. The

received interference power from node 1 at node 2 is -81.45 dBm. At t = 110s the received

36

0 50 340 400

Node 0 Node 1 Node 2 Node 3

1 m/s
CBR CBR

(a) Topology of the four node simulation

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

time (sec)

th
ro

ug
hp

ut
 (

M
bp

s)

1Mbps ns−2
1Mbps ns−2.mme
2Mbps ns−2
2Mbps ns−2.mme
5.5Mbps ns−2
5.5Mbps ns−2.mme
11Mbps ns−2
11Mbps ns−2.mme

(b) Node 2 throughput in the four node network

Figure 4.5: Topology and the results of the simulation with four nodes

power from node 3 at node 2 is -72.17 dBm. This implies that the SINR of node 3’s signal

at Node 2 is around 9.2 dB. At this value, the BER of DBPSK modulation is close to 10−4.

This implies that for a 512 byte packet, the packet error rate is 1− (1− 10−4)4096 = 0.34.

Thus the connection is lost after t = 110 s. A similar behavior is also observed at the

other data rates and the explanation is the same. Although this example was chosen to

magnify the differences between ns-2.1b9a and ns-2.mme, the differences do exist. In the

next section, we examine when these differences matter in larger scale ad hoc networks.

37

Chapter 5

Experiments with DSR and AODV

This chapter quantifies the effects of the ns-2.mme model on typical scenarios used in the

evaluation of ad hoc routing protocols. In these scenarios, we evaluate the performance of

two dynamic routing protocols for ad hoc networks: the Dynamic Source Routing protocol

(DSR) [36] and the Ad Hoc On-Demand Distance Vector protocol (AODV) [37]. Although

they are both on-demand protocols which initiate routing activities when a node in the ad

hoc network wants to send a data packet to a destination, their routing mechanisms are

very different. This leads to significant performance differences in various scenarios.

5.1 DSR

DSR is a source routing protocol which adds to each data packet a header that has the

complete route which the packet must follow in order to reach the destination. This requires

the sender to know the complete route to the destination.

Each mobile node maintains a cache that holds source routes that it has learned. When

a node wants to send a packet to another node, it first checks its route cache for a source

route to the destination. If a route is found, the sender uses this route to transmit the

packets. If no route is found, the sender may attempt to discover one using the route

discovery procedure.

While a node is using a source route, if the destination, or any of the other nodes on the

38

route, moves out of wireless transmission range of the next or previous node on the route,

the route can no longer be used to reach the destination. In this case the route maintenance

procedure informs this node. When route maintenance detects a problem with a route in

use, route discovery may be used again to discover a new, correct route to the destination

in case the sender doesn’t already have another route to the destination in its cache.

The protocol has two main parts: the route discovery process and the route maintenance

process.

5.1.1 Route Discovery

Route discovery allows any node in the ad hoc network to dynamically discover a route to

any other node. A node initiating a route discovery broadcasts a route request (RREQ)

packet which may be received by those nodes within wireless transmission range of it. The

route request packet identifies the node, referred to as the target of the route discovery,

for which the route is requested. If the route discovery is successful, the initiating node

receives a route reply packet listing a sequence of network hops through which it may reach

the target. In addition to the addresses of the original initiator and target of the request,

each route request packet contains a route record, in which is accumulated a record of

the sequence of hops taken by the route request packet as it is propagated through the

ad hoc network during this route discovery. Each route request packet also contains a

unique request id, set by the initiator from a locally-maintained sequence number. In order

to detect duplicate route requests received, each node maintains a list of the (initiator

address, request id) pairs that it has recently received on any route request.

When any host receives a route request packet, it processes the request according to the

following steps:

39

• If the pair (initiator address, request id) contained in the RREQ packet is found in

this node’s list of recently seen requests, it discards this packet and does not process

it further. This removes later copies of the request that arrive this node by a different

route.

• If this node’s address is already listed in the route record in the request, it discards

the RREQ packet and does not process it further. This guarantees that no single copy

of the request can propagate around a loop.

• If the target of the request matches this node’s own address, then the route record

in the packet contains the route by which the request reached this node from the

initiator of the route request. In this case, this node returns a copy of this route in a

route reply (RREP) packet to the initiator.

• If this node has a route cache entry for the target of the request, it appends this

cached route to the accumulated route record in the packet, and returns this route in

a RREP packet to the initiator without re-broadcasting the route request

• If none of these statements is true, this node appends its own address to the route

record in the RREQ packet, and re-broadcasts the request.

The route request thus propagates through the ad hoc network until it reaches the target

host, which then replies to the initiator.

In order to return the route reply (RREP) packet to the initiator of the route discovery,

the target reverses the route in the route record from the RREQ packet, and use this route

to send the route reply packet. This, however, requires the wireless network communication

between each of these pairs of hosts to work equally well in both directions, which may not

be true in some environments or with some MAC-level protocols.

40

5.1.2 Route Maintenance

In conventional routing protocols, nodes continuously send periodic routing updates. If the

status of a link or a node changes, the periodic updates eventually reflects the changes to

all other nodes, presumably resulting in the computation of new routes. However DSR does

not have periodic messages of any kind from any of the mobile nodes. Instead, while a route

is in use, the route maintenance procedure monitors the operation of the route and informs

the sender of any routing errors.

Since wireless networks are inherently less reliable than wired networks, many wireless

networks utilize a hop-by-hop acknowledgement at the data link level in order to provide

early detection and retransmission of lost or corrupted packets. In these networks, route

maintenance can be easily provided, since at each hop, the node transmitting the packet for

that hop can determine if that hop of the route is still working. If the data link level reports

a transmission problem for which it cannot recover (for example, because the maximum

number of retransmissions it is willing to attempt has been exceeded), this node sends a

route error packet to the original sender of the packet encountering the error. The route

error packet contains the addresses of the nodes at both ends of the hop in error: the node

that detected the error and the node to which it was attempting to transmit the packet on

this hop. When a route error packet is received, the hop in error is removed from this nodes

route cache, and all routes which contain this hop must be truncated at that point.

5.1.3 Route Caching

A node can add entries to its route cache any time it learns a new route. In particular,

when a node forwards a data packet as an intermediate hop on the route in that packet,

the forwarding node is able to observe the entire route in the packet. If a node forwards a

41

RREP packet, it can also add the route information from the route record being returned in

that route reply, to its own route cache. Finally, since all wireless network transmissions are

inherently broadcast, a node may be able configure its network interface into promiscuous

receive mode, and can then add to its route cache the route information from any data or

RREP packet it can overhear.

5.2 AODV

AODV uses a broadcast route discovery mechanism, as is also used by DSR. Instead of

source routing however, AODV relies on dynamically establishing route table entries at

intermediate nodes with one entry per destination, whereas DSR can maintain multiple

route caches per destination. This difference pays off in networks with many nodes, where

a larger overhead is incurred by carrying source routes in each data packet. AODV, uses

destination sequence numbers like in DSDV to maintain the most recent routing information.

Each node maintains a monotonically increasing sequence number which is used to supersede

stale cached routes. AODV also features timer-based states in each node. A routing entry

is deleted if not used during a specific amount of time.

5.2.1 Route Discovery

The route discovery in AODV is very similar to DSR. The main difference is the use of se-

quence numbers. In addition to the similar fields in DSR’s RREQ, AODV’s RREQ contains

the pair (source sequence number, last destination sequence number known to the source).

The source sequence number is used to maintain freshness information about the reverse

route to the source and the destination sequence number species how fresh a route to the

destination must be before it can be accepted by the source.

42

As the RREQ is flooded it automatically sets up the reverse path from all nodes back to

the source. To set up a reverse path a node records the address of the neighbor from which

it received the first copy of the RREQ. These reverse path route entries are maintained

for at least enough time for the RREQ to traverse the network and produce a reply to the

sender.

When a RREQ arrives at a node (possibly the destination itself) that possesses a current

route to the destination, it checks the freshness of the route by comparing the destination

sequence number in its own route entry to the destination sequence number in the RREQ.

If the RREQs sequence number for the destination is greater than that recorded by the

this node, it cant use its recorded route to respond to the RREQ. Instead, it rebroadcasts

the RREQ. This node can reply only when it has a route with a sequence number that is

greater than or equal to that contained in the RREQ. In this case if the RREQ has not

been processed previously, the node then unicasts a route reply packet RREP back to its

neighbor from which it received the RREQ. A RREP contains the following information:

As the RREP travels back to the source each node along the path sets up a forward

pointer to the node from which the RREP came, updates its timeout information for route

entries to the source and destination, and records the latest destination sequence number

for the requested destination.

A node receiving an RREP propagates the first RREP for a given source node towards

that source. If it receives further RREPs it updates its routing information and propagates

the RREP only if the RREP contains either a greater destination sequence number than

the previous RREP or the same destination sequence number with a smaller hop count.

43

5.2.2 Route Maintenance

When the next-hop link breaks, node upstream of the break sends a RRER packet with

a fresh sequence number (i.e., a sequence number that is one greater than the previously

known sequence number) and hop count of infinity to all active upstream neighbors. Then

these nodes repeat the same process and so on. This process continues until all active source

nodes are noticed. Then it terminates because AODV maintains only loop free routes and

there are only a finite number of nodes in the network. Notice that in DSR, broken link

information is not propagated to all caches that have that link.

5.3 Simulation Setup

In our simulations, we used the standard ns-2 traffic and mobility models. The mobility

model is the random waypoint model which was first used by Johnson and Maltz in the

evaluation of DSR, and was later refined by the CMU Monarch research group, which

introduced the wireless model to ns-2. The refined version of random waypoint model has

become the de facto standard in mobile computing research. For example, ten papers in

ACM MobiHoc 2002 considered node mobility, with nine of them using the random waypoint

model.

In this model, a node starts with a uniformly distributed position in a large rectangular

field. After waiting for a predefined pause time, it chooses a randomly positioned destina-

tion, and move there at a random speed uniformly chosen from (0,Vmax), where Vmax is

the maximum speed of a simulated mobile. Sometimes the model is described as having

an average speed of Vmax/2. After reaching the destination nodes stop for the same pause

time, then this procedure repeats until the end of the simulation.

It is known that the spatial distribution of network nodes moving according to this

44

model is, in general, nonuniform [38]. This fact is claimed to impair the accuracy of simu-

lation methodology and make it impossible to relate simulation-based performance results

to corresponding analytical results. In spite of this, we employ this model due to its highly

common usage.

We set the topology as 1500× 300 m2 field with 50 nodes and used a pause time higher

than the simulation time (no mobility) or a zero pause time (continuous mobility) to make

the simulations challenging for the routing protocols. The traffic sources are continuous

bit rate (CBR) with UDP protocol or FTP with TCP protocol. In the simulations, either

512-byte data packets or 1500-byte data packets are tested.

Three important performance metrics are evaluated:

• Packet Delivery Ratio: This is the ratio of the data packets delivered to the destina-

tions to those generated by the CBR sources.

• Goodput: This is the amount of data that has been acknowledged to the sender divided

by the time when the highest TCP ACK was received. If all the packets are not

acknowledged in the specified simulation time, the amount of data is divided by the

whole simulation time.

• Normalized Routing Load: This is the number of routing packets transmitted per

data packet sent to the destination. Also each forwarded packet is counted as one

transmission. This metric is also highly correlated with the number of route changes

that occurr in the simulation.

45

5.4 Simulations with UDP at 1Mbps Data Rate

In the first set of experiments, we wanted to elaborate on the effects of the interference

factor θ, introduced in section 4.1, on wireless network simulations. To observe the effects

of the interference factor θ more clearly, we turned off the RTS/CTS option, so that we

can observe more collisions. As we explained in chapter 2, the DSSS spreading gain is

highest at the 1Mbps data rate. Because of this, in these simulations we set all the 802.11b

wireless interfaces to have a bit rate of 1 Mbps. Here, we also used a zero pause time

(continuous mobility) to make the simulations challenging for the routing protocols. The

number of source destination pairs is 15 and the sources are CBR sources with 512-byte

packets. Simulations are run for 500 seconds. Each data point is an average of at least 3

runs with identical traffic scenarios but randomly generated mobility scenarios. Each of the

15 source destination pairs sends at a rate of 3 packets/s, a relatively low packet rate in

order to avoid network congestion. (Higher rates will be considered in the next section.)

5.4.1 Varying Transmit Power

All nodes have the same transmit power, but for each experiment the transmit power is

varied from 10 dBm to 24.5 dBm. Note that 24.5 dBm is the default transmit power in

ns-2. As noted earlier, a transmit power of 10 mW (10dBm) roughly corresponds to the

traditional 250 m transmit range of ns-2.

Our experiments focus on two extreme cases for 802.11b systems. First is the scenario

in which θ = 1/11. This is a first-order model for 802.11b systems operating at 1 Mb/s

and employing the 11 chip Barker spreading sequence. In the second scenario, we assume

θ = 1, which would be a suitable approximation for higher transmission rates which do not

have the interference suppression benefits afforded by spreading. As noted in section 4.1,

46

it appears that precise values of θ for 802.11b systems has not been examined. However,

one can reasonably argue that θ = 1/11 and θ = 1 represent the extreme points of practical

values.

In Figure 5.1, we see that for CST= -84 dBm, the packet delivery ratios for DSR and

AODV are very similar with transmit power Pt higher than 16 dBm. When the transmit

power is lower than 16 dBm, AODV outperforms DSR in terms of packet delivery ratio.

However at any transmit power, DSR demonstrates significantly lower routing load than

AODV. This is due to DSR’s aggressive use of route caching. DSR is likely to find a route

in the cache and avoid using route discovery every time a link is broken. In a previous DSR

study [6], it was found that 55 percent of the route replies were from the route caches and

even though 41 percent of the route replies were based on cached data contained broken

routes, the DSR route maintenance was able to deliver good performance. However we

see that for Pt < 16 dBm, caching degrades the performance of DSR. In this case, low

transmit powers yield frequent link failures. As a result, DSR caches will not be up to

date, and stale routes often will be chosen from the cache. However, we don’t see such

a big degradation in AODV, largely because of the use of sequence numbers maintained

at each node to determine the freshness of the routing information. AODV also features

timer-based states in each node. A routing entry is deleted if it not used during a specified

amount of time. On the other hand, DSR keeps the routing entries in the cache until a link

on the route is found to be broken.

From Figure 5.1, we see that the performance of AODV is relatively insensitive to the

choice of PHY layer model. On the other hand, DSR exhibits significant performance

variation when we compare the ns-2, ns-2.mme with θ = 1, and ns-2.mme with θ = 1. We

see that DSR gives the highest packet delivery ratio with ns-2.mme and θ = 1/11. In this

47

10 15 20 25

50

60

70

80

90

100

transmit power (dBm)

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

AODV ns−2
AODV ns−2.mme θ =1/11
AODV ns−2.mme θ =1
DSR ns−2.mme θ =1/11
DSR ns−2
DSR ns−2.mme θ =1

(a) Packet delivery ratio, CST=-84dBm

10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

transmit power (dBm)

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

AODV ns−2.mPHY θ =1
AODV ns−2.mPHY θ =1/11
AODV ns−2
DSR ns−2.mPHY θ =1
DSR ns−2
DSR ns−2.mPHY θ =1/11

(b) Normalized routing load, CST=-84dBm

10 15 20 25

50

60

70

80

90

100

transmit power (dBm)

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

AODV ns−2
AODV ns−2.mPHY θ =1/11
AODV ns−2.mPHY θ =1
DSR ns−2
DSR ns−2.mPHY θ =1/11
DSR ns−2.mPHY θ =1

(c) Packet delivery ratio, CST=-81dBm

10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

transmit power (dBm)

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

AODV ns−2.mme θ =1
AODV ns−2.mme θ =1/11
AODV ns−2
DSR ns−2.mme θ =1
DSR ns−2.mme θ =1/11
DSR ns−2

(d) Normalized routing load, CST=-81dBm

Figure 5.1: Performance at different CST levels

case, with CST = -84 dBm, there are few interfering transmissions and any interference

from those transmissions is divided by 11. DSR’s aggressive route caching exploits these

favorable conditions. By comparison, the 10 dB threshold interference model of ns-2 is

more conservative and the performance of DSR is worse under this model. Finally, under

ns-2.mme with θ = 1, the effect of interfering transmissions is amplified. In this case, DSR

is quite sensitive to the additional interference.

As shown in [5], DSR is better than AODV in less “stressful” situations and AODV

48

outperforms DSR in more stressful situations. But this time, the less “stressful” situations

are those scenarios with high transmit power which results in an environment with low

interference. This occurs because there are fewer nodes that don’t hear each other and

carrier sensing results in very few interfering transmissions. This same effect also reduces

the impact of the cumulative interference calculations of ns-2.mme. For the topology used

in our simulations, this occurs in the region where the transmit power is higher than 20

dBm, which is high for modern wireless LANs and very high for emerging applications such

as sensor networks. Here, we would like to note that even with high transmit powers, there

can be situations where most nodes still fail to hear each other and cause interference.

In summary, for both AODV and DSR, the gap between ns-2 and ns-2.mme results

shrinks as the transmit power increases. However, this gap is much wider for DSR at low

transmit power. Thus, our most important observation is that the performance of DSR

can depend strongly on the physical layer model. For example, we see in Figure 5.1 for

Pt = 10 dBm that the choice of PHY layer model affects DSR packet delivery ratio by 50

percent. On the other hand, the performance of AODV appears to be relatively insensitive

to the choice of PHY layer model.

5.4.2 The Effect of Changing CST

Prior research has noted the impact of carrier sense on the aggregate throughput. That

is, the smaller the carrier sense range, the better the spatial reuse; but the interference

at a receiver can also increase. Implicitly assuming a perfect MAC protocol without any

overhead, Zhu et al. [39] has attempted to identify the optimal carrier sense threshold that

maximizes the spatial reuse given a minimum required SINR for a regular topology. In [40]

they showed that the throughput of basic CSMA scheme decreases with the increase of the

49

carrier sensing range because when carrier sensing range is smaller, more spatial reuse is

possible. In this section, our aim is not to find the optimal carrier sense threshold. However,

we would like to show when doing ns-2 simulations with various CST levels, how one can

get results that contradict the results of ns-2.mme.

The next set of experiments (Figure 5.1) demonstrate the effect of increasing the CST so

that the number of instantaneous transmissions will increase. In ns-2, increasing the CST

value increases the packet delivery ratio because the number of instantaneous transmissions

increase, but there is no SINR tracking to record the cumulative effect of interference which

would actually degrade the performance. However, this effect is clearly seen in ns-2.mme.

In Figure 5.1 with CST=-81dBm, we see that the gap between ns-2 and ns-2.mme with

θ = 1 widens. We also observe that even DSR’s performance with θ = 1/11 is now lower

than DSR with standard ns-2. This shows that when the interference increases, ns-2’s 10 dB

threshold interference model becomes even more optimistic than the SINR tracking model

for θ = 1/11 because it underestimates the cumulative effects of interference.

5.5 Simulations with UDP at Higher Data Rates

5.5.1 PHY Layer Rates Used in the Simulations

In this section, we experiment with the PHY layer data rates. However, when using a

specific rate for the unicast data packets, the choice of rate used for the broadcast data

packets and the MAC control packets can dramatically affect the results. Before going into

simulations, this issue needs to be discussed.

As explained in section 5.1.1 and 5.2.1 the route discovery in AODV and DSR is made

by the use of RREQ packets. These RREQ packets are sent as broadcast data packets.

Therefore the number of nodes participating in the route discovery and the distance between

50

4 6 8 10
30

40

50

60

70

80

90

100

P
t
=24.5dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
10

15

20

25

30

35

40

P
t
=16dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
0

2

4

6

8

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

4 6 8 10
0

2

4

6

8

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

Figure 5.2: 11Mbps with broadcast data and control packets at 1Mbps.

the nodes in the chosen path is affected by the PHY rate chosen for transmitting broadcast

data packets. A lower rate results in a higher range and therefore longer hops. However,

in a single rate environment, the routing should be done with the rate that’s used for

transmitting the actual unicast data packets. For example, if the rate chosen for data

packets is 11Mbps but the route is constructed with 1Mbps packets, the routing protocol

may find a route that has hops that can’t support an 11Mbps data rate. This may result

in frequent link breakages and an unstable network behavior.

In most studies using ns-2, the ACK packets are sent at 1Mbps. However, the ACK

packets can be sent at the same rate as the data packets. Because the SIFS time between

sending the ACK packet after receiving the data packet is very short, it’s unlikely that

the channel conditions will degrade and cause the ACK packet to be lost. Moreover, the

51

4 6 8 10
50

60

70

80

90

100

P
t
=24.5dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
50

60

70

80

90

100

P
t
=16dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
0

0.5

1

1.5

2

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

4 6 8 10
0

0.5

1

1.5

2

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

Figure 5.3: 11Mbps with 512-byte packets RTS/CTS ON

ACK packets are much shorter than the data packets, so they are more immune to inter-

ference, and therefore their transmission range is higher than data packets, as explained in

section 4.7. Therefore, in all our simulations, we used the same PHY layer rate for both

ACK and data packets.

Now, we examine how the choice of PHY layer rates affects the network. To illustrate this

behavior, we made simulations using 11Mbps to transmit the data packets. The simulation

scenario is similar to that in section 5.4. However, now the CBR data rate is changing and

two different Pt levels are used. In the first set (Figure 5.2), the broadcast data packets,

RTS, CTS and ACK packets are sent at 1Mbps and routing problems occur. For example,

at Pt =16 dBm the communication range is 150 meters for 11 Mbps. However, the routing

is done with RREQ packets sent at 1 Mbps, so the routing protocol finds routes assuming

52

4 6 8 10
85

90

95

100

P
t
=24.5dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
85

90

95

100

P
t
=16dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
0

0.5

1

1.5

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

4 6 8 10
0

0.5

1

1.5

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

Figure 5.4: 11Mbps with 512-byte packets RTS/CTS OFF

that the communication range is 340 meters (range of 1 Mbps at Pt =16 dBm). We see that

there’s no correlation between the increasing packet rate and the packet delivery ratio. For

both Pt levels, the packet delivery ratio is essentially a random variable. In case of DSR,

we also see a great difference between the results of ns-2 and ns-2.mme. On the other hand,

the performance of AODV is similar in both ns-2 and ns-2.mme. This is due to the factors

that we’ve explained in section 5.4. Now, let’s compare these results with the results of the

simulations in which we used 11 Mbps for all the packets (Figure 5.3). At Pt =24.5 dBm

the range of 11 Mbps is 280 meters and we see that even with 10 pkts/s, the network

is not overloaded. Also, the results of ns-2 and ns-2.mme are almost the same because

with this power level, there can be few multiple simultaneous transmissions. However with

Pt =16 dBm, there’s a big difference between the results of ns-2 and ns-2.mme. This is due

53

4 6 8 10
30

40

50

60

70

80

90

100

P
t
=24.5dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
30

40

50

60

70

80

90

100

P
t
=16dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
0

0.5

1

1.5

2

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

4 6 8 10
0

0.5

1

1.5

2

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

Figure 5.5: 1Mbps with 512-byte packets RTS/CTS ON

to the fact that the RTS/CTS option is turned on. We’ll elaborate more on this in the next

section.

5.5.2 The Effect of RTS/CTS

As we mentioned in section 3.3, 802.11b supports two types of access modes: the physical

carrier sensing mechanism and the RTS/CTS based mechanism. Since transmitting RTS

and CTS frames increases the overhead, there is a trade-off between such overhead and the

overhead from collisions between packets in the physical carrier sensing mode. Especially in

high-rate situations this can degrade the network performance because the physical headers

including the PLCP preambles of data, ACK, RTS and CTS frames are transmitted at

1Mbps regardless of the data rate.

54

4 6 8 10
40

50

60

70

80

90

100

P
t
=24.5dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
40

50

60

70

80

90

100

P
t
=16dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
0

0.2

0.4

0.6

0.8

1

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

4 6 8 10
0

0.2

0.4

0.6

0.8

1

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

Figure 5.6: 1Mbps with 512-byte packets RTS/CTS OFF

Some researchers have studied the performance of these mechanisms. In [41] it was shown

that the RTS/CTS mechanism could achieve a better performance when the hidden terminal

problem is encountered. In [42] Bianchi developed an analytic model and proved that

RTS/CTS mechanism performed better than the basic mechanism in most cases. However

only 1Mbps data rate was used in these studies. In [43], Bianchi’s model was extended and

it was shown that RTS/CTS performed better than the basic mechanism with 1, 2, 5.5,

11Mbps data rates. However, the fact that the physical header is always transmitted at

1Mbps wasn’t taken into account. With this fact taken into account, some simulation and

analysis were provided in [44] and [45]. In [44] only 2Mbps data rate was used and it was

again shown that RTS/CTS was superior to the basic mechanism. However, 11Mbps data

rate was used in [45] and the results were the opposite.

55

4 6 8

20

40

60

80

100
AODV

pa
ck

et
 d

el
iv

er
y

ra
tio

packet rate (pkts/s)

ns−2 rts−off
ns−2.mme rts−off
ns−2 rts−on
ns−2.mme rts−on

4 6 8

20

40

60

80

100
DSR

pa
ck

et
 d

el
iv

er
y

ra
tio

packet rate (pkts/s)

ns−2 rts−off
ns−2.mme rts−off
ns−2 rts−on
ns−2.mme rts−on

4 6 8
0

0.5

1

1.5

2

2.5

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

ns−2.mme rts−off
ns−2 rts−off
ns−2.mme rts−on
ns−2 rts−on

4 6 8
0

0.5

1

1.5

2

2.5

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

ns−2.mme rts−off
ns−2 rts−off
ns−2.mme rts−on
ns−2 rts−on

(a) Pt=24.5 dBm

4 6 8

20

40

60

80

100
AODV

pa
ck

et
 d

el
iv

er
y

ra
tio

packet rate (pkts/s)

ns−2 rts−off
ns−2.mme rts−off
ns−2 rts−on
ns−2.mme rts−on

4 6 8

20

40

60

80

100
DSR

pa
ck

et
 d

el
iv

er
y

ra
tio

packet rate (pkts/s)

ns−2 rts−off
ns−2.mme rts−off
ns−2 rts−on
ns−2.mme rts−on

4 6 8
0

0.5

1

1.5

2

2.5

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

ns−2.mme rts−off
ns−2 rts−off
ns−2.mme rts−on
ns−2 rts−on

4 6 8
0

0.5

1

1.5

2

2.5

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

ns−2.mme rts−off
ns−2 rts−off
ns−2.mme rts−on
ns−2 rts−on

(b) Pt=16 dBm

Figure 5.7: 1Mbps with 1500-byte packets

In the most recent study on the performance of RTS/CTS mechanism with ns-2, only

TCP traffic was studied and it was shown that the RTS/CTS mechanism achieve a better

performance than the basic mechanism in most cases with a data rate of 2Mbps and with

1500-byte packets [46]. However for an 11Mbps data rate, this was true only when the

number of TCP connections were higher than 25.

In our simulations, we also examine whether RTS/CTS should be employed. As a result,

most of our scenarios are repeated both with and without RTS/CTS.

5.5.3 Varying Offered Load

The simulations in this section demonstrate the effect of loading the network. We exper-

iment with two different power levels, Pt=16 dBm and Pt=24.5 dBm. We again use the

50-node model and 15 sources. The packet rate of each source is slowly increased from 1

to 10, changing the total offered load to the network from 240 kb/s to 600kb/s in case of

512-byte packets and from 700 kb/s to 1760 kb/s for 1500-byte packets.

Figure 5.5 shows the packet delivery ratio and the normalized routing load for both

56

4 6 8 10
40

50

60

70

80

90

100

P
t
=24.5dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
40

50

60

70

80

90

100

P
t
=16dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
0

0.5

1

1.5

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

4 6 8 10
0

0.5

1

1.5

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

Figure 5.8: 2Mbps with 512-byte packets RTS/CTS ON

AODV and DSR at 1Mbps with 512-byte packets and RTS/CTS option turned on. The

relative performance of AODV and DSR in figure 5.5 is consistent with results reported by

Das, Perkins and Royer [5]. We see that DSR’s packet delivery ratio is almost the same as

AODV at Pt=24.5 dBm, whereas AODV is 20% better than DSR at Pt=16 dBm at every

packet rate. This is due to the fact that in a “stressful” situation induced by lower transmit

power, DSR fails to find reliable routes during route maintenance because of its aggressive

caching strategy. As expected, AODV generates higher routing load than DSR. Also in

Figure 5.5 we see that the normalized routing load has essentially no correlation with the

increasing packet rate.

When we focus on the impact of the physical layer model on the packet delivery ratio,

we observe that both AODV and DSR are relatively insensitive to the choice of physical

57

4 6 8 10
60

70

80

90

100

P
t
=24.5dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
60

70

80

90

100

P
t
=16dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
0

0.2

0.4

0.6

0.8

1

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

4 6 8 10
0

0.2

0.4

0.6

0.8

1

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

Figure 5.9: 2Mbps with 512-byte packets RTS/CTS OFF

layer model. This is because the offered load is high for 1Mbps and packet losses are high

due to congestion, regardless of the physical layer model.

In Figure 5.6 we see the results of the same simulations with RTS/CTS option turned

off. Here the qualitative behavior is exactly the same. However, the packet delivery ratios

are 10% better than the previous simulations.

To see if RTS/CTS improves performance with longer packets, we repeated the same

experiments with 1500-byte packets. In Figure 5.7 we see that when we increase the packet

length, the relative overhead of RTS/CTS handshake decreases therefore the difference in

performance between RTS/CTS and basic scheme is much less than the 512-byte case.

However, basic CSMA scheme still performs at least as good as the RTS/CTS scheme.

In fact, at 1Mbps, the relative overhead of RTS/CTS is the least. Because of this we

58

4 6 8 10
85

90

95

100

P
t
=24.5dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
85

90

95

100

P
t
=16dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
0

0.5

1

1.5

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

4 6 8 10
0

0.5

1

1.5

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

Figure 5.10: 5.5Mbps with 512-byte packets RTS/CTS OFF

would expect RTS/CTS to perform best in 1Mbps data rate. However this is not the case

due to UDP’s unidirectional traffic nature. Unlike TCP, there are no ACK packets being

transmitted in the reverse direction. Therefore the possibility of hidden nodes is lower. And

as we see in the graphs, this possibility is so low that RTS/CTS’s overhead does not pay

off.

5.6 Experiments with TCP

As we explained before due to its bidirectional traffic, TCP is more prone to hidden termi-

nals. For this reason we also experimented with TCP to see how RTS/CTS performs. Ns-2

supports several versions of an abstracted TCP sender. These objects attempt to capture

the essence of the TCP congestion and error control behaviors, but are not intended to

59

4 6 8 10
50

60

70

80

90

100

P
t
=24.5dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
50

60

70

80

90

100

P
t
=16dBm

pa
ck

et
 d

el
iv

er
y

ra
tio

 (
%

)

packet rate (pkts/s)

AODV ns−2
AODV ns−2.mme
DSR ns−2
DSR ns−2.mme

4 6 8 10
0

0.5

1

1.5

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

4 6 8 10
0

0.5

1

1.5

no
rm

al
iz

ed
 r

ou
tin

g
lo

ad

packet rate (pkts/s)

AODV ns−2,mme
AODV ns−2
DSR ns−2.mme
DSR ns−2

Figure 5.11: 5.5Mbps with 512-byte packets RTS/CTS ON

be faithful replicas of real-world TCP implementations. They do not contain a dynamic

window advertisement, they do segment number and ACK number computations entirely

in packet units and there is no SYN/FIN connection establishment/teardown.

In the next set of experiments, we used the base TCP sender in ns-2, which performs

congestion control and round-trip-time estimation in a way similar to the version of TCP

released with the 4.3BSD “Tahoe” UNIX system release from UC Berkeley. The congestion

window is increased by one packet per new ACK received during slow-start and is increased

during congestion avoidance. Tahoe TCP assumes a packet has been lost (due to congestion)

when it observes 3 duplicate ACKs, or when a retransmission timer expires. In either case,

Tahoe TCP reacts by setting slow start threshold to half of the current window size or 2,

whichever is larger. It then initializes congestion window back to its initial value. This

60

0 0.2 0.4 0.6
0

5

10

AODV mean=0.203 std=0.148

0 1 2 3
0

10

20

AODV mean=0.166 std=0.168

0 0.2 0.4 0.6
0

5

10

DSR mean=0.206 std=0.149

goodput (Mbps)
0 1 2 3

0

10

20

DSR mean=0.044 std=0.048

normalized routing load

(a) ns-2 RTS/CTS ON

0 0.2 0.4 0.6
0

5

10

AODV mean=0.154 std=0.161

0 1 2 3
0

10

20

AODV mean=0.913 std=2.012

0 0.2 0.4 0.6
0

5

10

DSR mean=0.182 std=0.145

goodput (Mbps)
0 1 2 3

0

10

20

DSR mean=0.262 std=1.198

normalized routing load

(b) ns-2.mme RTS/CTS ON

0 0.2 0.4 0.6
0

5

10

AODV mean=0.183 std=0.188

0 1 2 3
0

10

20

AODV mean=0.634 std=0.439

0 0.2 0.4 0.6
0

5

10

DSR mean=0.198 std=0.183

goodput (Mbps)
0 1 2 3

0

10

20

DSR mean=0.159 std=0.128

normalized routing load

(c) ns-2 RTS/CTS OFF

0 0.2 0.4 0.6
0

5

10

AODV mean=0.147 std=0.188

0 1 2 3
0

10

20

AODV mean=1.070 std=1.501

0 0.2 0.4 0.6
0

5

10

DSR mean=0.189 std=0.173

goodput (Mbps)
0 1 2 3

0

10

20

DSR mean=0.340 std=1.300

normalized routing load

(d) ns-2.mme RTS/CTS OFF

Figure 5.12: Goodput and normalized routing load with 512 bytes packets at 1Mbps

typically causes the TCP to enter slow-start.

In these experiments, the topology is 1500 × 300 m2 field with 50 nodes and there’s

only one FTP connection between two randomly chosen non-mobile nodes. To make the

simulation results more understandable, we only experimented with stationery networks.

In the simulations, either 512-byte data packets or 1500-byte data packets are used and the

simulations are repeated 50 times.

In the first set of experiments, we used 512-byte data packets at 1 Mbps data rate

61

0 0.5 1
0

10

20

AODV mean=0.245 std=0.184

0 5 10
0

10

20

30

AODV mean=0.103 std=0.091

0 0.5 1
0

10

20

DSR mean=0.246 std=0.187

goodput (Mbps)
0 5 10

0

10

20

30

DSR mean=0.031 std=0.034

normalized routing load

(a) ns-2 RTS/CTS ON

0 0.5 1
0

10

20

AODV mean=0.162 std=0.221

0 5 10
0

10

20

30

AODV mean=1.754 std=2.704

0 0.5 1
0

10

20

DSR mean=0.210 std=0.199

goodput (Mbps)
0 5 10

0

10

20

30

DSR mean=0.164 std=0.404

normalized routing load

(b) ns-2.mme RTS/CTS ON

0 0.5 1
0

10

20

AODV mean=0.250 std=0.241

0 5 10
0

10

20

30

AODV mean=0.188 std=0.130

0 0.5 1
0

10

20

DSR mean=0.271 std=0.231

goodput (Mbps)
0 5 10

0

10

20

30

DSR mean=0.060 std=0.057

normalized routing load

(c) ns-2 RTS/CTS OFF

0 0.5 1
0

10

20

AODV mean=0.183 std=0.266

0 5 10
0

10

20

30

AODV mean=3.586 std=8.865

0 0.5 1
0

10

20

DSR mean=0.245 std=0.241

goodput (Mbps)
0 5 10

0

10

20

30

DSR mean=0.140 std=0.234

normalized routing load

(d) ns-2.mme RTS/CTS OFF

Figure 5.13: Goodput and normalized routing load with 512 bytes packets at 2Mbps

and the transmit power was 10 dBm. At 1 Mbps the range is 240 meters and given the

1500 × 300 m2 field, in every simulation we expected a route to be found between the

source and the destination. In 50 simulations there was only one case with zero goodput.

In Figure 5.12, we see three peaks in the goodput histograms of ns-2. The first peak

around 0.5Mbps belongs to the connections with one hop. With one hop communications

there can’t be any collisions once the route is found since there’s just one FTP pair in

the network. Therefore one would expect to see no difference between the goodput of ns-2

62

0 0.5 1 1.5
0

10

20

AODV mean=0.391 std=0.335

0 5 10
0

10

20

AODV mean=0.306 std=0.251

0 0.5 1 1.5
0

10

20

DSR mean=0.398 std=0.328

goodput (Mbps)
0 5 10

0

10

20

DSR mean=0.118 std=0.124

normalized routing load

(a) ns-2 RTS/CTS ON

0 0.5 1 1.5
0

10

20

AODV mean=0.236 std=0.386

0 5 10
0

10

20

AODV mean=5.793 std=9.931

0 0.5 1 1.5
0

10

20

DSR mean=0.338 std=0.359

goodput (Mbps)
0 5 10

0

10

20

DSR mean=0.376 std=0.714

normalized routing load

(b) ns-2.mme RTS/CTS ON

0 0.5 1 1.5
0

10

20

AODV mean=0.352 std=0.379

0 5 10
0

10

20

AODV mean=0.695 std=0.493

0 0.5 1 1.5
0

10

20

DSR mean=0.379 std=0.363

goodput (Mbps)
0 5 10

0

10

20

DSR mean=0.214 std=0.199

normalized routing load

(c) ns-2 RTS/CTS OFF

0 0.5 1 1.5
0

10

20

AODV mean=0.231 std=0.411

0 5 10
0

10

20

AODV mean=5.619 std=9.176

0 0.5 1 1.5
0

10

20

DSR mean=0.342 std=0.383

goodput (Mbps)
0 5 10

0

10

20

DSR mean=0.422 std=0.869

normalized routing load

(d) ns-2.mme RTS/CTS OFF

Figure 5.14: Goodput and normalized routing load with 1500 bytes packets at 2Mbps

and ns-2.mme at one hop. However there is a difference because the route discovery in

ns-2.mme simulations takes longer than route discovery in ns-2 simulations. Therefore the

mean goodput of one hop TCP connections in ns-2.mme is less than that of ns-2. Also, if you

compare the 1 hop goodput distribution of the results of the experiments with RTS/CTS

ON with its RTS/CTS OFF complement, you see that they are almost the same. The only

difference is that throughput with RTS/CTS OFF is a little higher than with RTS/CTS

ON because of the overhead of the RTS/CTS. The reason of this similarity is the fact that

63

during route discovery, the RREQ packets are broadcasted and therefore not preceded with

an RTS/CTS exchange. Because of this, the route discovery in two different scenarios are

identical. This can also be seen in Figures 5.13, 5.14, 5.18 and 5.19.

In Figure 5.12, the second peak around 0.2Mbps belongs to the connections with two

hops. In this case, it’s possible that the TCP source and destination pairs may not hear

each others transmissions. So, collisions of TCP data packets and TCP ACK packets can

occur at the intermediate nodes. Therefore when we compare the two-hop goodput in

the histograms we see that when RTS/CTS is turned on, the goodput is much higher.

This is true for both ns-2 and ns-2.mme. However, we can’t observe the same behavior

in Figure 5.13 with 2Mbps i on the second peak around 0.4Mbps due to the overhead of

RTS/CTS.

When we increase the packet size to 1500 bytes and repeat the same simulations at

2Mbps, we can again see that the two-hop goodput is higher when RTS/CTS is turned

on,(Figure 5.14). This occurs because when we increase the packet length, we are also

decreasing the RTS/CTS overhead. However, this is not clearly observed in ns-2.mme

histograms. Actually, when we evaluate the performance of RTS/CTS at 2Mbps with 1500-

byte packets we see that RTS/CTS scheme doesn’t perform better in ns-2.mme simulations.

On the other hand, with ns-2, we see 11% improvement with RTS/CTS scheme in AODV

and 5% improvement in DSR. The improvement in DSR is less because DSR is already

doing well in terms of packet delivery ratio. This is because DSR performs better than

AODV in less stressful situations, as we explained in section 5.4.

We observe that, despite the fact that these are the results of stationery scenarios with

just one FTP connection, there is still a big difference between the ns-2 and ns-2.mme results

(Table 5.1). This is due to the TCP sender’s inability to accurately determine the cause

64

of a packet loss. The TCP sender assumes that all packet losses are caused by congestion.

Thus, when a link on a TCP route breaks, the TCP sender reacts as if congestion was

the cause, reducing its congestion window and, in the instance of a timeout, backing-off its

retransmission timeout (RTO). Therefore, link breakages degrade the TCP performance,

and these breakages occur more often in ns-2.mme. To understand how link breakages

occur in a stationery network, consider a six-hop route with the TCP sender as node 1, the

TCP receiver as node 7, and intermediate nodes 2 through 6. At 2Mbps, the transmission

range is 188.5 meters, so the nodes can be placed in a 1500×300 m2 field such that there are

six hops between the sender and the receiver. Even if RTS/CTS is turned on, some nodes

may be transmitting simultaneously. For example, nodes 1, 4 and 7 can transmit at the

same time. In this case, transmissions by 1 and 7 cause transmissions by 4 to be received

in error. After a number of retries, node 4 declares the link as being broken. However, this

behavior cannot be observed with ns-2.

To illustrate this difference between ns-2 and ns-2.mme, we designed eight similar ex-

periments. In the first, there are only two nodes, node 1 at (0,0) and node 2 at (0,125).

At t = 0 node 1 starts an ftp transmission to node 2 and node 2 starts to move towards

position (1400,0) with a speed of 0.5m/s.

In every experiment, another node is added 125 meters away from the last added node

as shown in Figure 5.15. Except for node 1, all nodes move towards position (1400,0) at a

speed which will set the distances between the adjacent nodes always equal to each other

and increase at 0.5m/s. At t = 0, this distance is 125m and at t = 100 it is 175m. In

Figure 5.16 and 5.17, we plotted the latest ACKed sequence numbers as a function of time.

So, the slope of the curves are proportional to the instantaneous goodput at that time. In

all these experiments, RTS/CTS was turned on. We see that in all cases, the slope of the

65

(a) 2 nodes (b) 3 nodes

(c) 4 nodes (d) 5 nodes

(e) 6 nodes (f) 7 nodes

(g) 8 nodes (h) 9 nodes

Figure 5.15: 8 similar multi-hop TCP experiments with 512 bytes packets at 2Mbps

curves in ns-2 results are almost constant throughout the entire simulation, and this slope

decreases with the increasing number of hops. However in ns-2.mme, each instances of the

scenarios does not have the same slope, in fact the slope decreases during the simulation

until it gets close to zero.

We see in Figure 5.16 that for 2 nodes there’s no difference at all between the results of

ns-2 and ns-2.mme. For 3 nodes, the slope of the curves change abruptly at t = 34. Because

after t = 34 node 1 is a hidden terminal for node 3 and vice versa. There’s a chance that

RTS of node 1 and RTS of node 3 can collide at node 2. This negligible effect causes the

slopes of the curves decrease slightly at t = 34. As expected, ns-2’s model is capable of

tracking these collisions. Therefore there’s no difference between the results of ns-2 and

ns-2.mme. We also see that ns-2.mme’s goodput drops to zero after t = 120 because it’s

66

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

time (sec)

ac
k

se
q.

 n
o

ns−2 goodput=0.784
ns−2.mme goodput=0.784

(a) 2 nodes

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

time (sec)

ac
k

se
q.

 n
o

ns−2 goodput=0.364
ns−2.mme goodput=0.360

(b) 3 nodes

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

time (sec)

ac
k

se
q.

 n
o

ns−2 goodput=0.213
ns−2.mme goodput=0.167

(c) 4 nodes

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

time (sec)

ac
k

se
q.

 n
o

ns−2 goodput=0.163
ns−2.mme goodput=0.105

(d) 5 nodes

Figure 5.16: ACK sequence numbers vs. time with 512 bytes packets at 2Mbps

reaching the end of transmission range gradually. However this can’t be observed with ns-2.

In case of 4-nodes, there can be only one interferer at a time and collisions may occur at

node 2 and 3. For example, when node 1 sends an RTS to node 2, node 2 broadcasts a CTS

to all nodes. However, node 4 cannot receive this CTS correctly. If node 4 sends an RTS to

node 3 at the same time, there will be collisions at node 2 and node 3. Due to the design

of the scenario, the SINR is always 12dB at node 2 and 3 in case of a collision. At 12dB,

the BER for 2Mbps is around 10−3. RTS packets are 160 bits (ignoring the header) long,

so this implies that in the worst case, the packet error rate will be 1− (1− 10−3)160 = 0.15.

67

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

time (sec)

ac
k

se
q.

 n
o

ns−2 goodput=0.141
ns−2.mme goodput=0.088

(a) 6 nodes

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

time (sec)

ac
k

se
q.

 n
o

ns−2 goodput=0.132
ns−2.mme goodput=0.084

(b) 7 nodes

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

time (sec)

ac
k

se
q.

 n
o

ns−2 goodput=0.120
ns−2.mme goodput=0.066

(c) 8 nodes

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

time (sec)

ac
k

se
q.

 n
o

ns−2 goodput=0.112
ns−2.mme goodput=0.063

(d) 9 nodes

Figure 5.17: ACK sequence numbers vs. time with 512 bytes packets at 2Mbps

However, in Figure 5.16 we don’t see such a big degradation. This is because node 1 and

node 4 are not always transmitting at the same time. We also observe that with four nodes

the change of slope at t = 34 is not clearly observable. In fact, with ns-2.mme it’s almost

impossible to observe this behavior. Because in ns-2.mme, the goodput is already degraded

by node 4’s transmissions. We also see that ns-2.mme’s goodput drops to zero around

t = 120 because it’s reaching the end of transmission range gradually. Because of all these

factors, ns-2.mme’s goodput is 67 percent of ns-2’s goodput. As expected, this difference

increases when new nodes are added to the scenario.

68

AODV DSR

RTS/CTS ON 40% 15%
RTS/CTS OFF 35% 10%

Table 5.1: Goodput drop relative to ns-2 in Figure 5.14

We can think of every instance of these simulations as a stationery case. In some cases

we see that the slope of ns-2.mme results in Figure 5.16 and Figure 5.17 are very low. In

these cases, link breakages can occur, forcing the routing protocol to look for a new route.

Until a new route is discovered, no packet can be transmitted, and this causes the goodput

to drop. Although there may be multiple routes from node 1 to the destination, the routing

protocol may eventually rediscover the same route again since it’s based on shortest path

routing. The breaking and rediscovery of the path can result in much worse performance. In

this case, faster route discovery results in better performance. When we look at Table 5.1,

we see that the goodput drop is much less in DSR. Due to its aggressive caching strategy,

DSR takes much less time to find a route than AODV.

AODV’s failure to quickly find a route can be clearly seen in Figure 5.14. When we switch

from ns-2 to ns-2.mme, the normalized routing load of AODV increases approximately 18

times with RTS/CTS and 8 times without RTS/CTS. The normalized routing load is usually

less than 0.2 but we see that in some cases it can get as high as 10. This degradation is worse

with the RTS/CTS mechanism because when RTS/CTS is off, there are more hidden nodes

and ns-2’s simple model can easily track the major collisions. However, when RTS/CTS is

on, ns-2 is not able to track most of the collisions due to multiple interferers. On the other

hand, ns-2.mme employs cumulative SINR tracking and therefore there will be collisions

which RTS/CTS cannot prevent. This is also seen in Table 5.1 where goodput drop is

higher when RTS/CTS is turned on.

69

0 0.5 1 1.5
0

10

20

30
AODV mean=0.293 std=0.315

0 5 10 15
0

10

20

30

AODV mean=0.041 std=0.043

0 0.5 1 1.5
0

10

20

30
DSR mean=0.293 std=0.313

goodput (Mbps)
0 5 10 15

0

10

20

30

DSR mean=0.011 std=0.014

normalized routing load

(a) ns-2 RTS/CTS ON

0 0.5 1 1.5
0

10

20

30
AODV mean=0.167 std=0.307

0 5 10 15
0

10

20

30

AODV mean=4.539 std=8.221

0 0.5 1 1.5
0

10

20

30
DSR mean=0.223 std=0.303

goodput (Mbps)
0 5 10 15

0

10

20

30

DSR mean=1.641 std=4.181

normalized routing load

(b) ns-2.mme RTS/CTS ON

0 0.5 1 1.5
0

10

20

30
AODV mean=0.397 std=0.422

0 5 10 15
0

10

20

30

AODV mean=0.029 std=0.025

0 0.5 1 1.5
0

10

20

30
DSR mean=0.399 std=0.422

goodput (Mbps)
0 5 10 15

0

10

20

30

DSR mean=0.011 std=0.013

normalized routing load

(c) ns-2 RTS/CTS OFF

0 0.5 1 1.5
0

10

20

30
AODV mean=0.249 std=0.419

0 5 10 15
0

10

20

30

AODV mean=3.580 std=6.900

0 0.5 1 1.5
0

10

20

30
DSR mean=0.302 std=0.406

goodput (Mbps)
0 5 10 15

0

10

20

30

DSR mean=0.686 std=2.106

normalized routing load

(d) ns-2.mme RTS/CTS OFF

Figure 5.18: Goodput and normalized routing load with 512 bytes packets at 5.5Mbps

When we repeated the same experiments at 5.5 Mbps, we saw that in 12 experiments,

the TCP sender and receiver were totally disconnected (Figure 5.18 and Figure 5.19). At

first glance, this might seem too high but this is actually expected since the range of 5 Mbps

data rate at 10 dBm is only 150 meters.

When we look at the performance of RTS/CTS at 5 Mbps we see that the basic access

mechanism (CSMA) performs better than the RTS/CTS mechanism in every case. This is

because when we increase the data rate, the overhead of RTS/CTS increases. In this final

70

0 1 2 3
0

10

20

30
AODV mean=0.590 std=0.657

0 5 10 15
0

10

20

30

AODV mean=0.091 std=0.089

0 1 2 3
0

10

20

30
DSR mean=0.588 std=0.655

goodput (Mbps)
0 5 10 15

0

10

20

30

DSR mean=0.030 std=0.037

normalized routing load

(a) ns-2 RTS/CTS ON

0 1 2 3
0

10

20

30
AODV mean=0.303 std=0.607

0 5 10 15
0

10

20

30

AODV mean=7.455 std=11.193

0 1 2 3
0

10

20

30
DSR mean=0.404 std=0.608

goodput (Mbps)
0 5 10 15

0

10

20

30

DSR mean=1.866 std=3.814

normalized routing load

(b) ns-2.mme RTS/CTS ON

0 1 2 3
0

10

20

30
AODV mean=0.699 std=0.787

0 5 10 15
0

10

20

30

AODV mean=0.099 std=0.086

0 1 2 3
0

10

20

30
DSR mean=0.703 std=0.784

goodput (Mbps)
0 5 10 15

0

10

20

30

DSR mean=0.082 std=0.222

normalized routing load

(c) ns-2 RTS/CTS OFF

0 1 2 3
0

10

20

30
AODV mean=0.365 std=0.716

0 5 10 15
0

10

20

30

AODV mean=6.704 std=10.624

0 1 2 3
0

10

20

30
DSR mean=0.514 std=0.729

goodput (Mbps)
0 5 10 15

0

10

20

30

DSR mean=0.998 std=2.009

normalized routing load

(d) ns-2.mme RTS/CTS OFF

Figure 5.19: Goodput and normalized routing load with 1500 bytes packets at 5.5Mbps

case, ns-2 and ns-2.mme results actually agree on whether RTS/CTS performs better than

CSMA. However, with 512-byte packets at 1Mbps and 1500-byte packets at 2Mbps ns-2

results favor RTS/CTS scheme whereas there’s essentially no improvement with RTS/CTS

in ns-2.mme results. When we compare the performance of AODV and DSR, we see a big

contradiction between the results of ns-2 and ns-2.mme. In ns-2, both routing protocols

perform almost the same. However, in ns-2.mme results, DSR outperforms AODV in every

example with stationery networks having single TCP session for the same reasons that we

71

explained before.

72

Chapter 6

Conclusion and Future Work

In this thesis, we examined the effects of different physical layer models on the performance

evaluation of higher layer protocols. In Chapter 2 we presented the details of 802.11b PHY

layer which are relevant to our modifications. In Chapter 3 we explained the fundamentals

of wireless PHY layer modeling in ns-2 and in Chapter 4 we presented the flaws in this

modeling and the reasoning behind our modifications. Later in Chapter 4, we presented

the details of our modifications and verified our model analytically on some understandable

simple simulations.

In Chapter 5, we quantified the differences between ns-2 and our model under typical

large-scale scenarios used for the performance evaluation of wireless ad hoc routing proto-

cols. In these experiments we have observed significant divergences between the results of

simulations using different physical layer models. The differences are not only quantitative

(not the same absolute value) but also qualitative (not the same behavior). We saw that in

continuously mobile networks with UDP traffic, the choice of physical layer model can affect

DSR packet delivery ratio by as much as 50 percent, whereas the performance of AODV

is relatively insensitive. On the other hand we saw that in stationery networks with TCP

traffic, the choice of physical layer model affects both routing protocols, especially AODV’s

goodput degrades by as much as 50 percent.

We also showed that when experimenting with tunable 802.11 parameters such as CST

73

and RTS/CTS threshold, ns-2 can give results that contradict the results of our model. We

saw that in ns-2, increasing the CST value increases the packet delivery ratio because the

number of instantaneous transmissions increase. However with ns-2.mme, increasing the

CST value actually degrades the performance because of the SINR tracking to record the

cumulative effect of interference. We also saw that ns-2’s wireless PHY layer model doesn’t

have enough details to judge if RTS/CTS performs better than basic CSMA scheme.

We believe that this thesis makes contributions in two areas. First, we describe our

modifications to the ns-2 network simulator to provide a more accurate simulation of the

interactions between the PHY and the upper layers, including accumulative SINR calcu-

lations, which doesn’t slow down the simulations excessively. Second, these modifications

can be a starting point for the examination of a variety of other problems which currently

cannot be properly addressed by ns-2 simulation. Two such examples are:

• Transmission Rate Adaptation All 802.11 cards support a collection of transmis-

sion rates. However, reliable decoding of a higher rate demands a higher link quality.

Thus higher rate transmissions will have a shorter range, or require higher power to

maintain the same range. Although power adaptive routing has been examined, the

combination of power, rate and route adaptation has not been fully explored.

• Network Simulation with other Physical Layers With the recent FCC ruling

on ultra wideband (UWB) operation [47], there is growing interest in networks of low

power UWB devices [48] and coexistence of UWB devices and existing networks.

These two problems constitute the primary part of our future work.

74

References

[1] Opnet Modeler. http://www.opnet.com/products/modeler/home.html.

[2] The Network Simulator - Ns-2. http://www.isi.edu/nsnam/ns/.

[3] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed Helmy,
Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu. Advances
in network simulation. IEEE Computer, 33(5):59–67, May 2000.

[4] GloMoSim. http://pcl.cs.ucla.edu/projects/glomosim/.

[5] S. R. Das, C. E. Perkins, and E. M. Royer. Performance Comparison of Two On-
Demand Routing Protocols for Ad Hoc Networks. In Proc. of the IEEE INFOCOM
2000 Conference, March 2000.

[6] D. Maltz, J. Broch, J. Jetcheva, and D. Johnson. The Effects of On-Demand Behavior
in Routing Protocols for Multi-Hop Wireless Ad Hoc Networks. IEEE Journal on
Selected Areas in Communication, 17, August 1999.

[7] William H. Tranter, K. Sam Shanmugan, Theodore S. Rappaport, and Kurt L. Kosbar.
Principles of Communication Systems Simulation with Wireless Applications. Prentice-
Hall, 2002.

[8] M. Bansal and G. Barua. Performance comparison of two on-demand routing protocols
for mobile ad hoc networks. In IEEE International Conference on Personal Wireless
Communications, pages 206–210, December 2002.

[9] T.D. Dyer and R.V. Boppana. Routing http traffic in a mobile ad hoc network. In
Proceedings of MILCOM, volume 2, pages 958–963, October 2002.

[10] E.M. S. Gwalani, Belding-Royer and C.E. Perkins. Aodv-pa: Aodv with path accumu-
lation. In IEEE International Conference on Communications, volume 1, pages 11–15,
May 2003.

[11] N. Bai, F. Sadagopan and A. Helmy. Brics: a building-block approach for analyzing
routing protocols in ad hoc networks-a case study of reactive routing protocols. In
IEEE International Conference on Communications, volume 6, pages 3618–3622, June
2004.

[12] D. Sun and H. Man. Tcp flow-based performance analysis of two on-demand routing
protocols for mobile ad hoc networks. In Vehicular Technology Conference VTC 2001
Fall. IEEE VTS 54th, volume 1, pages 272–275, 2001.

[13] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva. A Performance
Comparison of Multi-hop Wireless Ad Hoc Network Routing Protocols. In Proc. of
Fourth Annual ACM/IEEE Int. Conf. Mobile Computing and Networking, pages 85–
97, October 1998.

75

[14] N. Hedman B. Mielczarek P. Johansson, T. Larsson and M. Degermark. Routing proto-
cols for mobile ad-hoc networks - a comparative performance analysis. In Proceedings
of the ACM/IEEE International Conference on Mobile Computing and Networking
(MOBICOM), pages 195–206, 1999.

[15] S. Das, R. Castaneda, and J. Yan. Simulation based performance evaluation of mobile,
ad hoc network routing protocols. ACM/Baltzer Mobile Networks and Applications
(MONET) Journal, pages 179–189, July 2000.

[16] G. Holland and N. H. Vaidya. Analysis of tcp performance over mobile ad hoc networks.
In Proceedings of the ACM/IEEE International Conference on Mobile Computing and
Networking (MOBICOM), pages 219–230, 1999.

[17] Y. C. Hu and D. Johnson. Caching Strategies in On-demand Routing Protocols for
Wireless Ad Hoc Networks. page 231242, August 2000.

[18] Jay Martin Mineo Takai and Rajive Bagrodia. Effects of wireless physical layer model-
ing in mobile ad hoc networks. In Proceedings of the 2nd ACM international symposium
on Mobile ad hoc networking and computing , pages 87–94, 2001.

[19] John Heidemann, Nirupama Bulusu, Jeremy Elson, Chalermek Intanagonwiwat, Kun
chan Lan, Ya Xu, Wei Ye, Deborah Estrin, and Ramesh Govindan. Effects of detail in
wireless network simulation. In Proceedings of the SCS Multiconference on Distributed
Simulation, pages 3–11, Phoenix, Arizona, USA, January 2001. Society for Computer
Simulation.

[20] E. Zimnyi F. Grenez J. Dricot, Ph. De Doncker. Impact of the physical layer on
the performance of indoor wireless networks. In Proc. of the Int. Conf. on Software,
Telecommunications and Computer Networks, Split, Croatia, October 2003.

[21] J. Dricot and Ph. De Doncker. High-accuracy physical layer model for wireless network
simulations in ns-2. In Proc. of the Int. Workshop on Wireless Ad-hoc Networks,
IWWAN’04, Oulu, Finland, May-June 2004.

[22] Cisco aironet 350 series client adapters data sheet. http://www.cisco.com.

[23] Internet Engineering Task Force MANET Working Group Charter.
http://www.ietf.org/html.charters/manet-charter.html.

[24] International Standard ISO/IEC 8802-11: 1999E. ANSI/IEEE Standard 802.11, 1999
Edition.

[25] Bruce Tuch. Development of Wavelan, an ISM band wireless LAN. ATT Technical
Journal, 72:27–33, July/August 1993.

[26] Theodore S. Rappaport. Wireless Communications: Principles and Practice, 2nd Edi-
tion. Prentice Hall, 2001.

[27] J. Zander. Radio resource management in future wireless networks: requirements and
limitations. IEEE Communications Magazine, 35:30–36, August 1997.

[28] Andrew J. Viterbi. CDMA Principles of Spread Spectrum Communication. Addison-
Wesley, 1995.

76

[29] Nicholas Bambos, Shou C. Chen, and Gregory J. Pottie. Radio link admission algo-
rithms for wireless networks with power control and active link quality protection. In
INFOCOM (1), pages 97–104, 1995.

[30] Simon Haykin and Michael Moher. Modern Wireless Communication. Prentice-Hall,
2004.

[31] S. Verdu. Multiuser detection. Cambridge University Press, 1998.

[32] M. B. Pursley. Performance evaluation for phase-coded spread-spectrum multiple-
access communications part i: System analysis. IEEE Trans. Comm., COM-25(8):795–
799, August 1977.

[33] Ivan Seskar and Narayan B. Mandayam. A software radio architecture for linear multi-
user detection. IEEE Journal on Selected Areas in Communications, 17(5):814–823,
May 1999.

[34] J. G. Proakis. Digital Communications. McGraw Hill, 1989.

[35] Zhao-yang Zhang Shao-bo Liu, Aiping Huang and Zhijian Zhang. Performance analysis
of cck modulation under multipath fading channel. In Proc. of the Sixth Nordic Signal
Processing Symposium - NORSIG 2004, pages 276–279, June 2004.

[36] D. Johnson and D. Maltz. Dynamic Source Routing in Ad Hoc Wireless Networks.
Kluwer Academic Publishers, pages 153–181, 1996.

[37] C. E. Perkins and E. M. Royer. Ad Hoc On-Demand Distance Vector Routing. In
Proc. 2nd IEEE Wksp. Mobile Comp. and Apps., pages 90–100, February 1999.

[38] G. Resta C. Bettstetter and P. Santi. The Node Distribution of the Random Way-
point Mobility Model for Wireless Ad Hoc Networks. IEEE Transactions on Mobile
Computing, 2(3):257–269, July-Sept 2003.

[39] L. Lily Yang Jing Zhu, Xingang Guo and W. Steven Conner. Leveraging Spatial
Reuse in 802.11 Mesh Networks with Enhanced Physical Carrier Sensing. In IEEE
Internatioanl Conference on Communications - ICC 2004, June 2004.

[40] B. Liang J. Deng and P. K. Varshney. Tuning the Carrier Sensing Range of IEEE
802.11 MAC. In Proc. of IEEE Global Telecommunications Conference - Wireless
Communications, Networks, and Systems - Globecom’04, November 2004.

[41] S. Gupta H. S. Chhaya. Performance Modeling of Asycnhoronous Data Transfer Meth-
odsof IEEE 802.11 MAC Protocol. Wireless Networks, 3:217–234, 1997.

[42] G. Bianchi. Performance Analysis of the IEEE 802.11 Distributed Coordination Func-
tion. IEEE J. Select Areas Commun., 18(3):535–547, 2000.

[43] T. Antanakopoulos E. Ziouva. CSMA/CA Performance Under High Traffic Conditions:
Throughput and Delay Analysis. Computer Commun., 25:313–321, 2002.

[44] F. Ye . S. T. Sheu, T. Chen. The Impact of RTS Threshold on IEEE 802.11 MAC
Protocol. In Proc. of IEEE ICPADS 2002, pages 267–272, December 2002.

77

[45] E. Gregori. R. Bruno, M. Conti. IEEE 802.11 Optimal Performance: RTS/CTS Mech-
anism vs. Basic Mechanism. In Proc. of IEEE PIMRC’02, volume 4, pages 1747–1751,
September 2002.

[46] Danny H.K.Tsang Zhen-ning Kong and Brahim Bensaou. Adaptive RTS/CTS Mech-
anism for IEEE 802.11 WLANs to Achieve Optimal Performance. In Proceedings of
ICC, volume 1, pages 185–190, June 2004.

[47] Federal Communications Commission. New public safety applications and broadband
internet access among uses envisioned by fcc consideration of ultra-wideband technol-
ogy. Docket No. 98-153, pages 1–118, Feb. 2002.

[48] T. Shepard. Getting the most value out of the radio spectrum. 1999 International
UWB Conference, Sep. 1999.

