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ABSTRACT OF THE THESIS

Two Dimensional Spreading for Doubly Dispersive

Channels

by Joydeep Acharya

Thesis Director: Professor Roy D. Yates

Systems supporting broadband mobile services over wireless channels suffer from dis-

persion along time and frequency. Hence transmission by replicating information along

both these domains leads to diversity gain in each domain. This work proposes a scheme

to implement this replication principle, motivated by the Variable Spread Factor-

Orthogonal Frequency Code Division Multiplexing (VSF-OFCDM) scheme introduced

by NTT-DoCoMo. In this scheme a symbol is transmitted across several subcarriers

with a total power constraint and along each subcarrier it is spread with CDMA code-

words. The information theoretic bounds on capacity for this scheme are derived for

three different scenarios each corresponding to a specific nature of channel state in-

formation (CSI) available at the transmitter. The cases are perfect CSI, partial CSI

characterized by one bit of channel information per subcarrier and no CSI. The re-

ceiver is assumed to have perfect CSI. The optimal codeword and power allocation

strategies to achieve these bounds are also derived for the single user and multi-user

uplink channel. We show that for perfect CSI, optimal strategy is to transmit along

the best subchannel. For imperfect CSI at transmitter, diversity benefits are observed

for a large number of subcarriers. It is also observed that, 1 bit feedback per subcarrier

is a good scheme, both in terms of achievable rates and implementation complexity.
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Chapter 1

Introduction

Wireless channels are characterized by time-varying multipath fading which makes them

doubly dispersive [1]. When signals are transmitted over such channels, the multipath

effect leads to dispersion in time, while the time varying channel gain associated with

each multipath, causes dispersion in frequency. The nature of these dispersive effects

increases with the transmitted signal bandwidth and hence poses an acute problem for

reliable broadband mobile services. Quantitatively these effects are broadly captured

by the Spread Factor of the channel, which is TmBd where Tm is the rms delay spread

and Bd is the Doppler spread of the channel. A higher value of Spread Factor indicates

a more dispersive channel. Figure 1.1 illustrates the double-dispersive nature of the

channel, when an OFDM signal is transmitted. It can be inferred from the received

SNR plot, that the channel response depends both upon the exact time duration and

the frequency components of the input signal.

A usual approach to reliable communications is orthogonal signalling, in which the

transmitted symbols are modulated by a set of orthonormal basis functions, which corre-

spond to the eigen-modes of the channel. For a variety of channels that have low values

of Doppler spread Bd, and hence are not frequency dispersive, OFDM achieves orthog-

onal signalling by decomposing the transmit signal spectrum into narrow-bands. How-

ever, as Bd increases, the channel becomes increasingly doubly-dispersive and OFDM

tones lose orthogonality at the receiver. Hence in recent years there have been con-

siderable research [2, 3, 4, 5] in the area of finding theoretical basis functions for such

channels. The results suggest signaling with short-time Fourier (STF) basis functions.

To understand their properties, assume that an STF basis function s(t) extends from

time T0 to time T0 + τ and its spectrum S(f) lies between frequencies f0 and f1. Then
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the channel gains from T0 to T0 + τ and over frequencies f0 to f1 would be highly

correlated. Let us call this region specified by (T0, τ, f0, f1) as a time-frequency coher-

ence subspace. Thus An STF basis function falls in a time-frequency coherence subspace

of the channel, within which the channel gains are highly correlated and these gains

are independent across different ‘time-frequency’ coherence subspaces of the channel.

Interestingly, such signaling leads to the classical Block Fading interpretation for even

doubly-dispersive channels [2]. This opens the possibility of analyzing transmission over

doubly-dispersive channels, in an information theoretic framework. This is the main

aim in this thesis.

Apart from theoretical signal design there have also been attempts to design prac-

tical systems for transmitting information over doubly dispersive channels [6]. NTT-

DoCoMo, a pioneer in this field, has developed a system, based on the signaling scheme

called Variable Spread Factor-Orthogonal Frequency Code Division Multiplexing (VSF-

OFCDM), [7, 8, 9, 10]. The key idea in VSF-OFCDM is two-dimensional spreading

of symbols, which is explained as follows: Information symbols are first spread by a

CDMA codeword. Each chip of the resultant sequence is allocated to the successive

OFCDM symbols in the time domain (called time domain spreading) and to the suc-

cessive sub-carriers in the frequency domain (called frequency domain spreading). The

extent of spreading in time and frequency domains is adaptively adjusted depending

upon the double dispersive nature of the channel. Note that fundamental characteristic

of VSF-OFCDM is that of diversity as symbols are being replicated in time and across

frequency subcarriers. For the multi-user case, VSF-OFCDM also serves as the multiple

access scheme for the wireless medium, where different users are code-multiplexed by

different CDMA codewords. Extensive simulation studies on VSF-OFCDM [7, 8, 9, 10]

have been done and they conclude that this scheme is better than both OFDM and

MC-CDMA [11, 12, 7, 9] as a wireless access scheme, in terms of maximizing the avail-

able sector throughput in a cellular system. However these studies do not offer any

analytical understanding of the VSF-OFCDM scheme. This is another aspect which we

focus upon in this thesis.

Motivated by such practical transmission schemes like VSF-OFCDM and theoretical
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Figure 1.1: Two dimensional distribution of the SNR of a double dispersive fading
process with τc = 3µsec and fD = 500Hz

signal design techniques like STF, we propose a scheme to understand the information

theoretic aspects of reliable communication over doubly-dispersive channels. We assume

that STF basis functions are available of the transmitter and thus a block-fading model

of the doubly-dispersive channel can be considered [2]. In the proposed scheme an infor-

mation symbol is transmitted across several subcarriers with a total power constraint

and along each subcarrier the symbol is spread with CDMA codewords. This feature

implements diversity as in VSF-OFCDM. Note that in this context, the time-frequency

coherence subspace, defined earlier in this section, comprises of the data modulated

CDMA chips in time, along one frequency subcarrier. We study the single user and

multi-user uplink communications for which our performance metrics are information

theoretic achievable rates. This will be discussed in detail in Chapter 2. We derive the

capacity bounds and the optimal power and codeword allocation strategies to achieve

these bounds. In our work we consider three different scenarios each corresponding to a

specific nature of channel state information (CSI) available at the transmitter [13]. The

cases are perfect CSI, partial CSI characterized by one bit of channel information per

subcarrier and no CSI. The receiver is assumed to have perfect CSI. These assumptions
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are consistent with practical systems, where the receiver has an accurate estimate of

the channel by processing training symbols. However CSI at transmitter is obtained

from receiver feedback, which depending upon the quality of the feedback channel, and

receiver resources expended for feedback, can vary from accurate to erroneous.
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Chapter 2

VSF-OFDCM and Theoretical Two-Dimensional

Spreading

2.1 Introduction

In this chapter, we first describe VSF-OFCDM as a wireless multiple access scheme.

The transmitter and the multiplexing schemes are explained. The performance gains of

this scheme vis-a-vis that of OFDM and MC-CDMA are discussed. The second part of

this chapter, explains the two-dimensional spreading scheme as proposed in Chapter 1.

2.1.1 Brief Description of VSF-OFCDM

The targets for fourth generation wireless access are increased peak throughput for dif-

ferent radio environments and flexible packet access for various data types with various

QoS requirements. VSF-OFCDM which is a wireless access scheme was proposed by

NTT-DoCoMo [7, 8, 9, 10]. This scheme in conjunction with adaptive coding and mod-

ulation, MIMO etc provides data rates up to 100 Mbps in the forward link of a cellular

system. In this access scheme data modulated symbols are spread by the spreading

sequence, which is the combination of an orthogonal short channelization code and the

cell-specific long scrambling code. Each chip of the resultant sequence is allocated to

the successive OFCDM symbols in the time domain (called time domain spreading) and

to the successive sub-carriers in the frequency domain (called frequency domain spread-

ing). Therefore, the total spreading factor SF, is expressed as SF = SFTime × SFFreq,

where SFTime and SFFreq represent the spreading factors in the time and frequency

domain spreading, respectively. In VSF-OFCDM, although the data rate is reduced

by 1/SF due to replication, compared to the non-spreading cases like OFDM, the to-

tal data rate is increased by introducing the code multiplexing of different users with
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Figure 2.1: One Data Symbol is spread over 8 OFCDM symbols placed evenly in 2
subcarriers

different orthogonal short channelization codes. The concepts of time and frequency

domain spreading are explained pictorially in Fig 2.1 [10], where one data symbol is

spread in time with spread factor 4 and in frequency with spread factor 2. The param-

eters SFTime and SFFreq are adaptively controlled as per the cell structure, the channel

load and the radio link conditions. For a fixed SF [8, 10] propose to prioritize the time

domain spreading, for the following reasons,

• Within a frame duration, which is typically in the order of 0.5− 1.0msec, channel

variation in the time domain is slight.

• Meanwhile the channel variation in the frequency domain increases due to frequency-

selective fading.

• Time-domain spreading leads to lower inter-code interference level.

Frequency domain spreading is applied mainly for low data rate, low SNR channels, in

order to gain frequency diversity gains.
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2.1.2 The Proposed Two-Dimensional Spreading Model

In this section we explain the two dimensional spreading scheme to model VSF-OFCDM

as mentioned in Section 1. In this scheme each symbol is replicated over nf subcarriers

in frequency and along each subcarrier they are spread by a CDMA code of length

nt chips. The CDMA codes are assumed to be of unit norm. There is a total power

constraint on the powers allocated in the nf subcarriers.

A block fading channel model is assumed for reasons explained in Chapter 1. In the

time domain, the channel remains constant for a block of nt symbols. In the frequency

domain, the channel gains on different subcarriers are independent and identically dis-

tributed. In this work, two types of channel models have been considered – uniform

fading and Rayleigh fading. Although uniform fading is not characteristic of practical

wireless channels, we consider this model because it leads to closed form expressions

relating various system parameters like total power and water-filling level. These will

be explained in Section 3.2. This gives an insight as to how these parameters are related

to each other. The same correlation structure is expected to hold for practical Rayleigh

fading channels, for which closed form expressions are not available. Details of these

fading models appear in Sections 3.2.1 and 3.2.2 respectively.

Notation

Throughout this thesis we use uppercase boldfaced letters to denote matrices, lowercase

boldface letters to denote vectors and lowercase letters to denote scalars. In particular

we adapt the following notations: the subscript i denotes parameters of user i, the

subscript j denotes a index of the jth subcarrier and the subscript k denotes the time

slot index along a subcarrier. Each time slot is occupied by an OFCDM symbol.

The symbol bi denotes the ith user’s data symbol. We use Mi = {mijk} , 1 ≤ j ≤

nf , 1 ≤ k ≤ nt to denote the nf × nt spreading code matrix for the ith user and mij

to denote the ith user’s spreading code along the jth subcarrier. The matrices Pi and

Hi are the nf × nf diagonal matrices of powers and channel gains respectively for user

i, i.e. Pi = diag
[

pi1, pi2, · · · , pinf

]

and Hi = diag
[

hi1, hi2, · · · , hinf

]

where pij is the
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Figure 2.2: Transmitter Block Diagram

power user i puts in the jth subcarrier and
√

hij is the channel gain of user i in the

jth subcarrier. Note that since Pi and Hi are diagonal matrices, the vectors containing

their diagonal elements contain the same information. We denote these vectors as pi

and hi respectively. We sometimes use the subscript ‘0′ for a random vector to denote

its value, for example h0 denotes a particular realization of the channel state random

vector. Finally, Xi, Yi are the transmitted and received signal matrices and Zi is the

AWGN noise matrix for user i. Each of these matrices has dimension nf × nt.

Single User Transmission

For the single user transmission equations, we can drop the user index user i for nota-

tional simplicity. Let the received signal matrix Y for the user be denoted as

Y = H
1

2 P
1

2 Mb + Z, (2.1)

=



















√
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√
h2

. . .

√

hnf





































√
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√
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. . .

√
pnf





































mT
1

mT
2

...

mT
nf



















b + Z, (2.2)
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where mj is the CDMA code along subcarrier j represented as a column vector. Equiv-

alently we can write

Y = X̃b + Z, (2.3)

where

X̃ =



















√
h1p1m

T
1

√
h2p2m

T
2

...
√

hnf
pnf

mT
nf



















. (2.4)

The problem statement is as follows, Given a particular fading distribution, what

is the optimal power allocation and codeword assignment to maximize the achievable

rates. In Chapters 3 and 4, we solve this problem for the cases of perfect channel state

information and imperfect channel state information at the receiver respectively.

Multi User Transmission

In this section we introduce multiple users who communicate simultaneously to a com-

mon receiver, over a multiple access channel. The received signal matrix at the receiver

is given by

Y =
N
∑

i=1

H
1

2

i P
1

2

i Mibi + Z. (2.5)

As seen from Equation (2.5), the total number of users in the system is N . Let us

define the matrix X̃i := H
1

2

i P
1

2

i Mi This can be written explicitly in terms of mij , (user

i’s spreading code along the jth subchannel), as

X̃i =



















√
hi1pi1m

T
i1

√
hi2pi2m

T
i2

...
√

hinf
pinf

mT
inf



















. (2.6)

We thus obtain

Y =

N
∑

i=1

X̃ibi + z. (2.7)
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Note that in both the single-user and multi-user cases, the total number of signalling

dimensions are given by ndim = nfnt.

The problem statement is as follows, Given a particular fading distribution, what

is the optimal power allocation vector and codeword matrix assignment for all users to

maximize the sum of achievable rates. In Chapters 3 and 4, we solve this problem for

the cases of perfect channel state information and imperfect channel state information

at the receiver respectively.
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Chapter 3

Achievable Rates for Perfect CSI at Transmitter and

Receiver

3.1 Introduction

The capacity for fading channels has multiple definitions based on the various assump-

tions about the nature of fading and availability of the fading knowledge at transmitter

and receiver. In this section we assume that the transmitter and receiver are both

equipped with the instantaneous values of the channel states, which remain constant

during the transmission of a block of nfnt symbols. If the channel realization changes

from block to block, the ergodic capacity is defined as the average of the achievable rates

for each channel realization [14]. For the single subcarrier case with no spreading Gold-

smith et al [14] gives the expression for ergodic capacity and a strategy for achievability,

which is based upon encoding data by a variable rate, variable power codebook. Caire

et al [15] proposes a fixed rate coding scheme, with dynamic power-scaling just prior

to transmission. Our problem differs from [14],[15] as we have multiple subcarriers to

transmit information. CDMA spreading along each subcarrier is another extra property

of our model. In this section we take the approach of [15] to compute bounds on the

ergodic capacity of the two dimensional spreading system. The solution of the ergodic

capacity maximization problem involves averaging over the distribution of the channel

states at the subcarriers to decide the amount of power to allocate to a subcarrier for a

given channel state. However any policy that implements this averaging leads to large

delays which might not be acceptable for practical application requirements. In order

to reduce delays we have to abandon the averaging operation to calculate power and

instead consider a fixed power budget to be allocated over the different subchannels,
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for a given channel state vector. Thus a key subproblem of the ergodic capacity max-

imization would be to consider a fixed realization of the channel state vector h = h0

and a total power budget P to be allocated over all the subcarriers for that channel

state vector. The problem is to allocate this power optimally between the subchannels

so as to maximize the mutual information expression between the output and input of

the channel for the given value, h = h0. For future reference we term this problem as

optimization of the maximum mutual information (MMI), for a given channel state.

3.2 Analysis of the Single User Transmission

The single user transmission is governed by Equation (2.3). It is difficult to calculate

entropies from the matrices in Equation (2.3). However, we note that a matrix or

vector is only a specific arrangement of numbers, it carries no information per se. So

the rearrangement of elements of a matrix into a long vector doesn’t result in any loss

of information. Hence, we form vectors y, x̃ and z̃ by stacking together rows of Y, X̃

and Z respectively. The resulting system becomes

y = x̃b + z. (3.1)

Assuming that E
[

b2
]

= 1 and that the gains x̃, are given (fixed), the maximum mutual

information (MMI) is given by [16] as,

R (x̃) =
1

2
log

(

1 +
|x̃|2
σ2

)

, (3.2)

where E[zzT ] = σ2I. Substituting for x̃ the expression for the maximum mutual

information (MMI) for a given set of signature sequences with unit norm rows (|Mj |2 =

1 for all j) and a fixed set of channel gains becomes,

R (h,u) =
1

2
log



1 +
1

σ2

nf
∑

j=1

hjpj(u)



 , (3.3)

where h =
[

h1, h2, · · · , hnf

]

, (3.4)

where u is the CSI which is conveyed to the transmitter, called henceforth as CSIT

as opposed to CSIR which stands for CSI at receiver. The transmitted powers in
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Equation (3.3) depend on u and is thus denoted by pj(u). In this section we specifically

analyze power allocation policies for u = h, which the case of perfect CSIT. Note also

that CDMA spreading used along subcarriers has no effect on the ergodic capacity, as

the terms spreading matrix Mj doesn’t appear in the term R (h,u). This is consistent

with the observation that CDMA doesn’t buy us in terms of capacity for single user

transmission [17]. The real gains of CDMA spreading would show up in the multi-user

case.

Note that our transmission structure spreads signal energy in the dual dimensions

of frequency and time which has a similar flavor to MIMO systems which use the dual

dimensions of space and time [18].

Let p(u) =
[

p1(u), p2(u), · · · , pnf
(u)
]

. The ergodic capacity maximization problem

can be formulated along the lines of the approach outlined in [15], as

CCSI = max
p(u)

∫

· · ·
∫

R (h,u) f (u,h) du dh, (3.5)

s.t.

nf
∑

j=1

∫

· · ·
∫

pj (u) f (u) du = P , pj (u) ≥ 0, (3.6)

where R (h,u) was defined as the maximum mutual information (MMI) in Equa-

tion (3.3). Since u = h, f (u,h) = f (u|h) f (h) = δ (u − h) f (h). Thus the maxi-

mization in Equation (3.5) simplifies to:

CPCSI = max
p(h)

∫

· · ·
∫

R (h,h) f (h) dh (3.7)

s.t.

nf
∑

j=1

∫

· · ·
∫

pj (h) f (h) dh = P , pj (h) ≥ 0. (3.8)

Note that the subscript ‘PCSI’ denotes perfect CSI in both transmitter and receiver.

In every time epoch, when the CSI is revealed to the transmitter, the optimal solution

to (3.7) is to transmit only in that subcarrier which has the highest channel gain

(henceforth referred to as the best subchannel) and not to transmit in the others. In

other words transmit in subchannel i∗ = arg max{h1, h2, · · · , hnf
}. Henceforth the

random variable hi∗ will be denoted by h∗
n, where n is the number of random variables

over which the maximization operation has been performed. In this case is n = nf ,

the number of subcarriers. Note that i∗ may vary from one epoch to another but the
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statistics of h∗
n stays the same. The amount of power the transmitter puts in the best

subchannel (denoted by p (h∗
n)) is obtained by waterfilling over the channel gain and it

turns out to be

p (h∗
n) =

(

1

λ
− σ2

h∗
n

)+

. (3.9)

The value of λ is found by substituting for p (h∗
n) from Equation (3.9) in Equation (3.8),

which yields,
∫ (

1

λ
− σ2

γ

)+

fh∗

n
(γ) dγ = P . (3.10)

Hence the expression for maximum mutual information, turns out to be

RPCSI (h∗
n) =

1

2
log

(

1 +
h∗

np(h∗
n)

σ2

)

, (3.11)

=
1

2
log

(

h∗
n

λσ2

)

. (3.12)

Note that in Equation (3.11) we have slightly abused the notation of MMI and denoted

R (h,h) by R (h∗
n) as in the prefect CSIT problem, h∗

n is the fundamental parameter

which determines MMI.

A brief note on the significance of Equation (3.10) is timely at this juncture. The

higher the value of h∗
n, the better are the achievable rates. Equation (3.9) shows that

transmission takes place only if the channel state h∗
n is above the threshold λσ2. So a

low value of λ implies that this threshold is low and so transmission could take place in a

relatively inferior channel, leading to lower values of achievable rates. However keeping

a high value of λ can also reduce the average achievable rate value as the encountered

channel state h∗
n may be below the threshold for most of the times and consequently

no transmission would take place. Solution of Equation (3.10) gives the optimal value

of the threshold λ.

To summarize, the optimal transmission strategy is twofold:

• First choose the best subchannel to put the power in. This corresponds to fre-

quency domain waterfilling.

• Next do waterfilling in time over different realizations of the channel states. This

in essence is to do waterfilling over the distribution of h∗
n.
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A note about the statistics of best subchannel is appropriate at this point. Let

fh(γ) and Fh(γ) be the PDF and CDF of h respectively, where h is the random vari-

able representing the channel coefficient in a subcarrier. Then assuming i.i.d. channel

coefficients across subcarriers, the PDF of h∗
n is given by

fh∗

n
(γ) = n [Fh(γ)]n−1 fh(γ). (3.13)

Let us now consider some specific cases of fading and and investigate how capacity can

be evaluated.

3.2.1 Uniform Fading

Let hi, 1 ≤ i ≤ nf , be i.i.d. uniformly distributed on [0, A]. This type of fading

distribution is not experienced in real world channels but nevertheless is of theoretical

importance. Under uniform fading assumptions the Equations (3.10) and (3.11) can be

evaluated to yield closed form expressions relating λ and P . This yields an analytical

understanding of the nature of their mutual dependencies. This in turn helps to predict

similar dependencies between these variables for more realistic fading scenarios, for

which the direct solutions of Equations (3.10) and (3.11) do not lead to closed form

expressions. Hence, uniform fading assumptions have been used in the works of Shamai

and Caire [15] and Mecking [19].

For uniform fading, the pdf of the random variable h∗
n is

fh∗

n
(γ) =















nγn−1/An 0 < γ < A,

0 otherwise.

(3.14)

Substituting for fh∗

n
(γ) in Equation (3.10) and evaluating the integral yields

(

1

n − 1

σ2n

An

)

λn −
(

P +
n

n − 1

σ2

A

)

λ + 1 = 0. (3.15)

Note that the limits of the integral for which the integrand is defined and non-zero is
[

λσ2, A
]

. Thus a necessary condition for the existence of a solution is that λσ2 ≤ A or

0 ≤ λ ≤ A/σ2. Equation (3.15) can be solved numerically or via Matlab for given values

of P ,A and n. However for any general values of these parameters is the existence of a
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Figure 3.1: Different solutions for λn = aλ + b

solution always guaranteed? To answer this question consider the function

g(λ) =

(

1

n − 1

σ2n

An

)

λn −
(

P +
n

n − 1

σ2

A

)

λ + 1. (3.16)

Now note that

g(0) = 1, (3.17)

g

(

A

σ2

)

= −AP

σ2
. (3.18)

Since g(0) and g(A/σ2) are of opposing signs, the equation g(λ) = 0 has an odd number

of solutions in the range
[

0, A/σ2
]

. We can further show that there is exactly one

solution. Equation (3.15) can be recast in the form λn = aλ + b where b < 0. So the

real solutions of the equation (3.15) are the points of intersection of the curves y = λn

and y = aλ+ b. Now exactly one of three cases can arise as shown in Figure 3.1. Hence

the number of real solutions is either 0, 1, or 2. However it was proved that there are an

odd number of solutions in the interval
[

0, A/σ2
]

. Hence there must be exactly one real

solution in this interval. There might be another solution in the interval
[

A/σ2,∞
]

but

this is not of interest in the given problem. The MMI is found out from substituting

for λ in equations (3.9) and (3.11).
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Note that the capacity CCSI is a function of n, the number of subcarriers and it

is interesting to see the limiting behavior of the capacity as n tends to infinity. We

observe that as n → ∞, fh∗

n
(γ) → δ(γ − A). Hence the capacity is same as that of a

channel with constant gain , A:

CCSI-Const =
1

2
log

(

1 +
AP

σ2

)

. (3.19)

3.2.2 Rayleigh Fading

Let the channel gains be Rayleigh distributed. Then the h’s are exponentially dis-

tributed with PDF and CDF expressions given by,

fh(γ) =
1

γa
e−(γ/γa), Fh(γ) = 1 − e−(γ/γa), γ ≥ 0. (3.20)

From Equations (3.13) and (3.20),

fh∗

n
(γ) =

n

γa

(

1 − e−(γ/γa)
)n−1

e−(γ/γa), γ ≥ 0. (3.21)

Substituting for fh∗

n
(γ) in Equation (3.10) does not lead to a closed form equation

relating λ to P . The integral is solved numerically and the results are explained in

Section 3.4.2. Recalling that the optimal policy is to waterfill over the distribution

of h∗
n, it is instructive to investigate how the the distribution of h∗

n varies with n.

Appendix B, presents a detailed analysis of the nature of the random variable h∗
n,

and how its statistics change with n, the number of subcarriers. One of the results

from Appendix B is that P[h∗
m > γ] > P[h∗

n > γ] for all m > n. This means that

probabilistically the actual value of h∗
n is going to be larger as we increase the number

of subcarriers. Since the ergodic capacity is directly proportional to the value of h∗
n,

as shown in Equation (3.11), the capacity increases as the number of subcarriers is

increased. This is shown numerically in Section 3.4.2.

3.3 Optimal Allocation for Colored Noise

In this section, we derive optimal power allocation policies when the additive noise term

in Equation (2.1) is assumed to have a colored spectrum. Such a scenario can arise in
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multi-user transmission, when the receiver for user i models the interference from other

users as Gaussian noise. This scenario is the generalization of the white noise case

considered in Section 3.2.

To simplify the analysis, we consider a specific model where no spreading is done

along time domain. This allows us to formulate the capacity maximization problem in

a way different from the approach followed in Section 3.2 where a long vector x̃ was

formed by stacking the columns of X̃. The new approach retains the decoupling of the

matrices H and P, whereas in previous approach of Section 3.2, they were coupled in

the matrix X̃. Since the dimensionality along the time domain (number of spreading

symbols) is now 1, the matrix channel of Equation (2.1) can be reduced to a vector

channel as follows,

Y = H
1

2 P
1

2 b + Z, (3.22)

y = H
1

2 p
1

2 b + z, (3.23)

where p
1

2 is the power vector
[√

p1,
√

p2, · · · ,
√

pnf

]

formed by the diagonal entries

of matrix P. Vectors y and z are similarly defined as the diagonal vectors of the

matrices Y and Z respectively. Note that p is dependent upon the channel state vector

h =
[

h1, h2, · · · , hnf

]

and is henceforth referred to as p(h).

Let the noise covariance matrix be given by Szz = E
[

zzT
]

. Following the approach

of Section 3.2, we can define the maximum mutual information (MMI), for a given set

of channel coefficients h and power vector p(h), as

RPCSI (h,h) =
1

2
log
(

det
[

Szz + H
1

2 p
1

2 (h)p
1

2 (h)T (H
1

2 )T
])

. (3.24)

The ergodic capacity maximization of Equation (3.24) can be written as,

CPCSI = max
p(h)

∫

· · ·
∫

RPCSI (h,h) f(h) dh (3.25)

s.t.

∫

· · ·
∫

p
1

2 (h)Tp
1

2 (h)f (h) dh = P , pj (h) ≥ 0. (3.26)

As seen in Section 3.2, the above maximization is equivalent to finding the direction of

the optimal square root power vector p
1

2 (h) and its norm given a particular realization

of the channel state vector h. The direction can be found out by maximizing the
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argument of the logarithm function in Equation (3.25), which can be simplified as,

max det
[

Szz + H
1

2p
1

2 (h)p
1

2 (h)T (H
1

2 )T
]

, (3.27)

= max det
[

I + Szz
−1H

1

2p
1

2 (h)p
1

2 (h)T (H
1

2 )T
]

, (3.28)

= max
(

1 + p
1

2 (h)T (H
1

2 )T Szz
−1H

1

2 p
1

2 (h)
)

. (3.29)

In the above derivation we have used the result det[I + AB] = det[I + BA]. Now the

ergodic capacity maximization is not mathematically tractable and hence we focus on

the key subproblem mentioned in Section 3.1. We seek to optimize the MMI for a

given instance of the channel state vector h =
[

h1, · · · , hnf

]

= h0, under a total power

constraint P . the The maximization problem can thus be posed as,

max
p

1
2 (h)

p
1

2 (h)T (H
1

2 )TSzz
−1H

1

2p
1

2 (h) (3.30)

s.t. p
1

2 (h)T p
1

2 (h) = P , p(h) > 0 (3.31)

Note that without the constraint p(h) > 0 the maximization in Equation (3.30) is equiv-

alent to a standard Rayleigh quotient problem [20] of maximizing R(x) = xTAx/xT x.

The solution is to let x be that eigenvector of A which corresponds to the largest

eigenvalue (henceforth referred to as the maximum eigenvector). When the constraint

x > 0 is added, the problem is, in general, non-trivial to solve analytically. The maxi-

mum eigenvector solution can be wrong as the components of the maximum eigenvector

can be negative, thus violating the positivity constraint. The most general solution is

outlined in Appendix C. It is shown that the optimal x lies in the space of the eigen-

vectors of all the principal sub-matrices of A, with zeros padded to these eigenvectors

to produce the vector x of length n. However there are specific cases for which the

solution again turns out to be the maximum eigenvector. One such case is when A is

positive, which means that all the entries of A are positive (this is different from pos-

itive definiteness). For this matrix the Perron-Frobenius theorem, [20] states that the

maximum eigenvector has all positive components and hence the positivity constraint

is automatically satisfied. Another case is when A ∈ R2×2, in which case due to the

orthogonality of the eigenvectors in a two dimensional space, one of the eigenvectors
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will always have both entries as positive (or both negative) and that would correspond

to the maximum eigenvector

In the present case, note that A = (H
1

2 )TSzz
−1H

1

2 , where H is diagonal. Depending

upon the structure of Szz
−1, the matrix A might or might not be positive. If A

is positive the optimal p
1

2 (h) turns out to be the eigenvector corresponding to the

maximum eigenvalue A, the effective channel gain and background noise matrix.

Note that for Szz = I, aligning p
1

2 (h) along the maximum eigenvector corresponds

to transmitting along the best subchannel as derived in Section 3.2. Note that even in

the most general case, the optimal strategy is transmission along a single dimension,

the direction along the maximum eigenvector of one of the principal sub-matrices. This

direction can be interpreted as the best effective subchannel.

3.4 Simulation Results for Single-User

In this section we take some specific fading scenarios and try to evaluate the achievable

rates. In this section we plot the quantity maximum mutual information (MMI) as

defined in Section 3.2. At each time instant an independent realization of the channel

is generated, and the transmitter goes through the steps mentioned in Section 3.2. For

the Rayleigh Fading case we also show the variation of λ with total power.

3.4.1 Uniform Fading

The fading is assumed to be uniform in the range [0, A]. The various simulation param-

eters are listed in Table 3.1. Note that the term SNR is used to denote the quantity

P/σ2, where P is the average power, as defined in Equation (3.6). It is not the instan-

taneous signal to noise ratio in a particular subchannel for a given fading state, which

would be pj(h)/σ2 or pj(u)/σ2, depending upon the nature of CSI at transmitter.

Figures 3.2 and 3.3 plot the variations in the (MMI) sequence for two different values

of SNR. We make the following observations.

• The MMI (and hence the ergodic capacity) increases as the number of subcarriers

increase as the distribution of fh∗

n
(γ) shifts to the right with more subcarriers.
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Parameter Value

A 1

No. of Subcarriers nf 2,10,100

SNR 1 dB, 10 dB

Table 3.1: Simulation Parameters for Uniform Fading
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Figure 3.2: MMI variations with time for
SNR = 1 dB
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Figure 3.3: MMI variations with time for
SNR = 10 dB

• The fluctuations in MMI decrease as the number of subcarriers increase, as the

distribution of fh∗

n
(γ) gets more narrow with more subcarriers. The variances of

the MMI sequence along time are recorded in Table 3.2.

• In the regime of large number of subcarriers, the simulation results match the

theoretical values of capacity, CCSI-Const, obtained by substituting A = 1 and

SNR = 1 dB, or SNR = 10 dB in Equation (3.19). The simulation capacity

C(100) corresponds to the time average for 25 time instants, of the MMI sequence,

for 100 subcarriers. The values are recorded in Table 3.3.

3.4.2 Rayleigh Fading

Each subcarrier undergoes independent Rayleigh Fading so the distribution of the his

are exponential. The mathematical preliminaries of this case has been presented in Sec-

tions 3.2.2 and Appendix B. The various simulation parameters are listed in Table 3.4.

Equation (3.10) relates λ to P and has to be solved numerically. Figure (3.4) gives the

results of this numerical computation. The following observations are readily made
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SNR
1 dB

SNR
10 dB

n=2 0.0612 0.0726

n=10 0.0024 0.0068

n=100 5.709e-5 1.217e-4

Table 3.2: Variances in MMI Sequence

CCSI-Const C(100)

SNR
1 dB

0.5878 0.5835

SNR
10 dB

1.7297 1.7223

Table 3.3: Theoretical and Simulated Val-
ues of Ergodic Capacities for Large n

Parameter Value

γa 1

No. of Subcarriers nf 2,10,100

SNR 1 dB, 10 dB

Table 3.4: Simulation Parameters for Rayleigh Fading

• For the same value of n, a decrease in Total Average Power P , leads to an in-

crease in the value of λ, which means an increase in the threshold above which

transmission takes place. This implies that when the P less then the transmitter

has to wait for a really good channel to transmit reliably. This also suggests that

the transmission frequency would be less and transmission would be bursty in

nature.

• For the same value of Total Power, increasing the number of subcarriers leads to an

increase in λ, which raises the threshold. This is because by increasing subcarriers

the probability of encountering a higher value of the encountered channel state

h∗
n is increased.

Figures 3.5 and 3.6 show how the MMI sequence varies with time. The MMI se-

quence values (and hence the ergodic capacity) increases with number of subcarriers

and increasing SNR. For SNR = 1 dB and n = 2 there are some instances when there

is no transmission as the actual value of encountered channel state h∗
n is below the

threshold λ.
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Figure 3.4: Water-Filling parameter λ vs Total Power for n subcarriers: n = 2, 10, 100
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Figure 3.5: MMI variations with time for
SNR = 1 dB
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Figure 3.6: MMI variations with time for
SNR = 10 dB

3.5 Analysis of the Multi-User Transmission

We assume that there are N users in the system. The multi-user transmission is gov-

erned by Equation (2.5). The metric we consider is maximization of the sum capacity.

The problem of multi-user codeword assignment and power control has been studied for

various contexts. Verdu [21] derived the capacity region for the single carrier CDMA

symbol synchronous transmission, in a AWGN channel. Based on the work of [21] Rupf

et al [22] gave the structure of the optimal codewords when all users had equal power

constraints. Viswanath et al [23] extended the results for users with unequal power con-

straints and also formulated a procedure for constructing these codewords. Based upon

the approach of [23] Kaya and Ulukus [24] solved the problem of optimal codeword

selection and power allocation for a single carrier Rayleigh flat-fading channel. For
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MIMO channels, the problem becomes transmission over multi-user vector channels.

There has been considerable work in trying to find optimal strategies for such types of

communications. The results suggest simultaneous water-filling by all the users, where

each user treats the interference from other users as background noise [25] [26] [27]. This

kind of solution is particularly appealing as it provides intuitive explanations about the

nature of the problem and can be implemented in a distributed fashion by all the users.

Our problem as stated in Section 2.1.2, involves transmission over multi-user matrix

channels and the optimization is over power vectors and spreading matrices of multiple

users. The problem is discussed in the next section.

3.5.1 Both Time and Frequency Domain Spreading

We start with the basic transmission equation as given in Equation 2.7, which is repro-

duced here for convenience:

Y =

N
∑

i=1

X̃ibi + z. (3.32)

Recall that X̃i, was the matrix with the ith row containing the symbol bi times the

power factor pi modulated by the CDMA code along the ith subcarrier. Using the

argument of Section 3.2, we can stack the columns of X̃i, to form the long vector

x̃i =
[ √

hi1pi1m
T
i1

√
hi2pi2m

T
i2 · · ·

√

hinf
pinf

mT
inf

]T

. (3.33)

The matrix transmission in Equation 3.32 can thus be translated into a vector trans-

mission given by,

y =

N
∑

i=1

x̃ibi + z, (3.34)

= Xb + z. (3.35)

In this case, matrix X is of dimension N ×ndim, where ndim = nfnt is the total number

of available dimensions for signalling. In addition, X has vector x̃i as its ith column

and b is the information symbol vector of size N × 1. Recall that X depends upon the

power vectors pi(hi) and the spreading code matrices Mi for all the i users, 1 ≤ i ≤ N .

The maximum mutual information (MMI), for a given set of channel gains, is known
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to be [21]

RSUM-CSI(X) =
1

2
log
(

det
[

σ2Indim
+ XXT

])

(3.36)

=
1

2
log
(

det
[

σ2IN + XTX
])

, (3.37)

where the notation IN denotes the N ×N identity matrix. Note that the matrix XTX

is of dimension N ×N where N is the number of users. Let
[

XTX
]

ij
be the ijth term of

this matrix. This term gives the value of the cross correlation between the transmitted

signals, of user i and user j, over all subchannels and can be expressed as

[

XTX
]

ij
=















∑nf

k=1 hikpik i = j,

∑nf

k=1

√

hikhjk
√

pikpjkm
T
ikmjk otherwise.

(3.38)

The ergodic sum capacity maximization problem can now be posed as,

CSUM-CSI = max
X

∫

· · ·
∫

RSUM-CSI (X) f(X) dX (3.39)

s.t.

∫

· · ·
∫

p
1

2

i (hi)
Tp

1

2

i (hi)f (hi) dhi = P i, 1 ≤ i ≤ N (3.40)

pij (hi) ≥ 0, 1 ≤ i ≤ N, 1 ≤ j ≤ nf . (3.41)

In Equation (3.39) the optimization is shown over X for sake of brevity. What it means

is that the optimization is over the power vectors pi(hi) and spreading matrices Mi(hi)

for all the i users. However it is very difficult to find the optimal solution in analytical

closed form. It is still an unsolved problem for any general nt, nf and N . In Section

we outline some multi-user transmission schemes that are based on practical consider-

ations like ease of implementation and calculate the achievable rates. In the optimal

transmission strategy, transmitting along different subcarriers and spreading along each

subcarrier are two separate optimizations. To understand how each individually affect

the sum capacity, let us consider two special cases,

3.5.2 Only Time Domain Spreading

In this case, every user modulates their symbols with CDMA codewords and transmits

the signal over a single subcarrier. Note that value of nf = 1. Thus the optimization
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of sum capacity is over the transmitted power values and codewords of the various

users. The matrix channel of Equation (2.5) with output matrix Y reduces to a vector

channel, with vector output y. The transmission model thus becomes

y =

N
∑

i=1

√

hipimibi + z. (3.42)

This is the same model considered in [24], and hence the optimal solution is known. We

reproduce Equation (13) of [24], which states the jointly optimal power and signature

sequence allocation policy,

p∗i (h) =











(

1
λi

− σ2

hi

)

, iff i ∈ Ω

0, otherwise
(3.43)

m∗
i
T
m∗

j = 0, i 6= j, for all i, j ∈ Ω (3.44)

Ω =
{

i : γ[i] > σ2, i ≤ min{N,nt}
}

, (3.45)

where γi = hi/λi. The optimal policy states that only those users whose normalized

channel gains γi are above the threshold σ2 should be allowed to transmit in orthogonal

channels. The number of such users can’t exceed either nt, the length of the spreading

code in time or N , the total number of users in the system. The problem then reduces

to independent single user transmissions of [14] for which the optimal solution for each

user is to waterfill over the channel fading distribution.

3.5.3 Only Frequency Domain Spreading

We now consider the other extreme, when there is no CDMA spreading along the time

domain (nt = 1) and the users transmit their information along the nf subcarriers.

The matrix channel of Equation (2.5) with output matrix Y again reduces to a vector

channel, with vector output y (as in Section 3.5.2) and the transmission model becomes

y =

N
∑

i=1

H
1

2

i p
1

2

i bi + z, (3.46)

where p
1

2

i =
[√

pi1,
√

pi2, · · · ,
√

pinf

]

, the power vector of the ith user. The correspond-

ing maximum mutual information (MMI), for given channel state matrices for all the
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users, can be expressed as

RSUM-CSI(h1, · · · ,hN ) = log

(

det

[

I +

N
∑

i=1

H
1

2

i p
1

2

i (hi)p
1

2

i (hi)
T (H

1

2

i )T

])

. (3.47)

The ergodic sum capacity maximization problem can be expressed as,

CSUM-CSI = max
p1,··· ,pN

∫

· · ·
∫

R(h1, · · · ,hN )f(h1, · · · ,hN) dh1 · · · dhN (3.48)

∫

· · ·
∫

p
1

2

i (hi)
Tp

1

2

i (hi)f(hi)hi ≤ P i for all i, (3.49)

pij (hi) ≥ 0, 1 ≤ i ≤ N, 1 ≤ j ≤ nf . (3.50)

At this stage, we again consider the key subproblem of optimizing the MMI, for a

given realization of the channel state vectors h1, · · · ,hN , under a total power constraint

P , for each of the N users,

max RSUM-CSI = max
p1,··· ,pN

R(h1, · · · ,hN ) (3.51)

p
1

2

i (hi)
T p

1

2

i (hi) = P, for all i, (3.52)

pij (hi) ≥ 0, 1 ≤ i ≤ N, 1 ≤ j ≤ nf . (3.53)

However this problem is non-convex in the power vectors pi(hi), and hence a compu-

tationally efficient algorithmic solution like those proposed in [26] doesn’t exist. In fact

the problem is stated in a slightly different form in [27] where the authors claim that

due to the non-convex nature of the problem, the simultaneous single-user iterative

water-filling over the interference plus AWGN noise spectrum, need not converge to a

global optimum.

Let us investigate the reason behind this phenomenon and how our scheme differs

from those in [26] [25] for which an iterative water-filling procedure was optimal. In our

proposed scheme of Chapter 2, we can view the transmitted signal vector as xi = pibi (in

absence of CDMA spreading). Note that this definition of xi restricts it to a set of posi-

tive real numbers, whereas the transmitted signals in general belong to the space of Cn.

Hence the transmitted signal in subcarrier i should be strictly expressed as
√

pie
−jφibi.

Note however that the phase part is immaterial for the capacity formulation and hence

there is no loss of information in representing xi as pibi. Thus same information symbol
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is transmitted in all the subcarriers and thus the transmitted signal is constrained to

lie in an one-dimensional space (rank(E[xix
T
i ]) = 1). This constraint is non-convex in

nature. Whereas in [26] the transmitted signal vector xi, is such that different symbols

are sent over different subcarriers, for which the transmitted covariance matrix had full

rank. Hence the main problem with our scheme is that since the transmitted signal

lies in an one-dimensional space it can’t water-fill over all the other dimensions. This

also implies that, the achievable rate performance of our scheme is going to be strictly

sub-optimal to that in [26] as we have extra constraints in transmission.

While this constraint of one dimensional signalling may seem artificial in nature, we

would like to point out that it is only so because the transmitter i was assumed to possess

complete knowledge of channel gain vector hi. In fact our scheme is an example of full-

diversity mode (as we do symbol replication in all subchannels) and diversity doesn’t

give higher rates for complete channel state information at the transmitter (CSIT).

However complete CSIT might not be possible due to reasons cited in Chapter 4. In case

of incomplete CSIT, there is always the possibility of outage when the instantaneous

mutual information of the channel falls below the transmitted rate. In such cases

diversity reduces the outage probability at the cost of lower transmitted rates. In fact

it was shown in [28] that there is always a fundamental tradeoff in using available

transmit dimensions for diversity and for multiplexing, i.e. transmitting independent

information over different dimensions. We thus expect our scheme to perform better

in cases of little or no CSIT, over transmission schemes which use all dimensions for

sending independent information.

3.5.4 Some Proposed Multiuser Transmission Strategies

For the single user case, our performance metric had been ergodic sum capacity maxi-

mization. For the multi-user case we were concerned with the subproblem of optimizing

the MMI for a given channel state h1, · · · ,hN for all the N users. In Section (3.5.3) we

showed that this is still an open problem. Since the optimal scheme is unknown, in

this section we propose some practical schemes for multi-user communications. The
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motivation is to maximize the achievable rates and also to reduce the complexity in-

volved in implementation of these schemes in practice. There is an inherent trade-off

as the optimal schemes often lead to practical difficulties (like long delays for policies

that optimize ergodic capacity). The metric for comparing these policies is the value of

MMI they yield for given channel state vectors h1, · · · ,hN . For a given policy we thus

seek to optimize the MMI

Optimal Single User Transmission

In this strategy the transmitters of the N users are aware of their individual channel

gains in all the nf subchannels and each transmitter transmits along its own best

subchannel. The motivation of this scheme is the simplicity of its implementation as

the various transmitters do not have to consider the channel gains of the other users and

formulate a joint strategy. On the other hand this may lead to increasing interference

if many users pick the same subchannel to transmit. For example let us consider the

two-user two-subchannel case for simplicity. Hence nf = N = 2 and also nt = 1, since

no spreading is considered. Let the channel gains of the ith user on the jth subchannel

be
√

hij , 1 ≤ i, j ≤ 2. The maximum mutual information, for a given set of channel

gains depend upon whether both users transmit in the same subcarrier or not. If they

transmit in different subcarriers ,the MMI is

Rd(h1,h2) =
1

2
log

(

1 +
h
∗(1)
2 P

σ2

)

+
1

2
log

(

1 +
h
∗(2)
2 P

σ2

)

, (3.54)

where h
∗(1)
2 = max[h11, h12] and h

∗(2)
2 = max[h21, h22] and the subscript 2 shows that

the maximization is over two subcarriers. This is done to make the notation consistent

with those in Section 3.2. If both users decide to transmit on the same subchannel,

then the MMI is

Rs(h1,h2) =
1

2
log

(

1 +
h
∗(1)
2 P

σ2
+

h
∗(2)
2 P

σ2

)

. (3.55)

It can be seen that Rd(h1,h2) > Rs(h1,h2) and this is due to interference. Note that

this scheme can be easily extended to incorporate more users.
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Treating Other User Interference as Noise

In this case, each user treats the signal of all other user’s as noise and waterfills over

the background noise plus interference spectrum, in an iterative way. As discussed

in Section 3.5.3 this method is the optimal policy if each user’s transmit covariance

matrix was full rank, but no comment about its optimality can be made for the present

case, when the transmit covariance matrix is rank one. Still this policy takes the

other users’ interference into account and would intuitively do better than the single

user transmission as outlined in Section 3.5.4. This is shown in the simulations of

Section 3.5.5. From a practical viewpoint, the extra complexity in the implementation

of this scheme is not substantial. The receiver which has all the received signals, can

broadcast the received spectrum, using a feedback channel and each user can subtract

his own signal from this spectrum to obtain the interference to him, from other users.

Such ideas have been proposed in [27] in the context of interference avoidance.

The optimal power vectors can be found out via the strategy outlined in Appendix C.

However in the two user case the problem is simplified as discussed in Section 3.3 as the

existence of a positive power vector is always guaranteed. The optimization problem

for the first user can be stated from Equations (3.51) and Equation (3.30) as

max
p(h1)

log

(

det

[

Szz1 + H
1

2

1 p
1

2

1 (h1)p
1

2

1 (h1)
T (H

1

2

1 )T
])

, (3.56)

where Szz1 = I2 + H
1

2

2 p
1

2

2 (h2)p
1

2

2 (h2)
T (H

1

2

2 )T . (3.57)

The optimization for the second user can be similarly expressed. This policy is imple-

mented in an iterative fashion. It can be outlined as

1. Initialize p2(h2) = p0,

2. Repeat

for i = 1 to 2, j 6= i,

Szzi = I + H
1

2

j p
1

2

j (hj)p
1

2

j (hj)
T (H

1

2

j )T ,

pi(hi) = maxp(h) log

(

det

[

Szzi + H
1

2

i p
1

2 (hi)p
1

2 (hi)
T (H

1

2

i )T
])

,

end
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until the MMI converges.

Section 3.5.5 shows that this procedure done iteratively settles down to a fixed point.

Note that this scheme too can be easily extended to incorporate more users.

Single Dimension Transmission

In this section we refine the optimal single user policy as defined in Section 3.5.4 to

take care of the issues of interference which reduce the MMI. The key idea is that users

should transmit in only one subchannel. This is motivated by single user optimization

results. The policy is to allocate a specific subchannel to a user.

To understand this better let us again consider the two-user two-subchannel case.

For each given realization of channel state vectors h1 = [h11, h12] and h2 = [h21, h22],

there are four possible ways in which these two users can transmit the information, as

each of them has a choice of picking up any of the two subcarriers for transmission.

There are many possibilities depending upon the relative values of [h11, h12, h21, h22].

If both users pick different subcarriers interference is avoided, however one of the users

may experience a bad channel. Also a user might have a high gain in one subchannel

and a very low gain in the other and so it makes sense to let that user transmit in the

former subchannel, even if the other user had a higher value of channel gain in the same

subchannel. Our contention is that it is not possible to predict which method is best

and hence a brute force method which calculated the value of MMI for each of these

four possible transmission options have to be calculated and the option yielding the

highest value is to be selected. The achievable MMI values for these four schemes are

given in Equations (3.58) to (3.61). The notation Rij(h1,h2), denotes the MMI value

obtained when user 1 transmits in subchannel i and user 2 transmits in subchannel j.
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These are given by,

R11(h1,h2) =
1

2
log

(

1 +
h11P

σ2
+

h21P

σ2

)

, (3.58)

R12(h1,h2) =
1

2
log

(

1 +
h11P

σ2

)

+
1

2
log

(

1 +
h22P

σ2

)

, (3.59)

R21(h1,h2) =
1

2
log

(

1 +
h12P

σ2

)

+
1

2
log

(

1 +
h21P

σ2

)

, (3.60)

R22(h1,h2) =
1

2
log

(

1 +
h12P

σ2
+

h22P

σ2

)

. (3.61)

Thus the policy checks for the maximum value Ri∗j∗(h1,h2) and allocates first user

to subchannel i∗ and second user to subchannel j∗. In principle this is complex to

implement and the complexity increases exponentially with the number of users and

number of subchannels. Also the computation of Ri∗j∗(h1,h2) needs global knowledge

of the channel state vectors of all users and can be best performed at the receiver, who

then has to inform the transmitters by a feedback mechanism.

3.5.5 Simulation Results for Multi-Users

In this section we provide a simulation results to compare the performances of the

schemes proposed in Sections 3.5.4 to 3.5.4. We assume a system with two users and

two subchannels with no time domain spreading. The channel is assumed to be Rayleigh

fading with average value of unity. Figure 3.7 plots how the MMI values varies with time

for each of the three policies. For the iterative policy, five iterations were performed

and and the initial choice of power vector was At each time an independent realization

of all the four channel states is generated. Figure 3.7 shows that the optimal single

user policy performs worse. This isn’t surprising because this policy didn’t take into

the effect of the other users. The figure shows that the optimal single dimension policy

performs best but interestingly the iterative policy of achieves identical rates as the

optimal single dimension policy in most cases. It shows that the iterative policy for the

two user case, eventually leads to each user transmitting in a different subchannel as in

the optimal single dimension policy.

We need to specify an initial power vector p0 for the iterative policy. But it was

seen in simulations that the performance of the iterative policy is invariant to the initial
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Figure 3.7: MMI variations with time for different policies
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Figure 3.8: MMI variations with time different iterations of the

choice of p0. Similar results were reported in [26] for their iterative algorithm. However

in [26] the iterative policy maximized a concave objective over set of positive semi

definite matrices Q with convex constraints for which the invariance of the initial choice

of Q is well established. In this case there are no nice convexity properties, however

the same result hold. Also as the number of iterations increase, the performance of

the iterative policy becomes better. This is shown by plotting the MMI values for this

algorithm for two different number of iterations, namely one and five. The results are

shown in Figure 3.8. The MMI for one iteration is marginally less than for MMI five.

Note that in case the MMI values do not exhibit a large variation between one and five

iterations. This is because we are considering only two users and the iterative policy

quickly converges.
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Chapter 4

Achievable Rates for Imperfect CSI at Transmitter and

Perfect CSI at Receiver

4.1 Introduction

In Chapter 3 it was assumed that the transmitter had perfect knowledge of the instan-

taneous channel coefficients. While this leads to elegant water-filling solutions for power

allocation, perfect CSI might be a difficult to achieve at the transmitter. In most prac-

tical systems the transmitter sends a pre-determined training sequence and the receiver

estimates the channel coefficients. By transmitting symbols during the coherence time

of the channel, the channel may be estimated to any degree of accuracy. The receiver

then transmits the channel gain estimates to the transmitter, using a feedback channel.

Depending upon the quality of the feedback channel, the estimates may be received in

error at the transmitter. Also due to delay in the feedback loop and time variability

of the channel, the estimates at the transmitter at any instant may not correspond to

the actual channel gains, at that instant. In this section, we thus assume that perfect

CSI is not available at the transmitter and investigate the effects upon ergodic chan-

nel capacity, due to this cause. Quantitatively, we assume that the true channel state

is given by the random vector h and the information about the channel state at the

transmitter is given by the random vector u.

4.2 Single user transmission

The optimal solution depends on the nature of the relationship between u and h as

characterized by f (u,h) or more specifically by the conditional density f (h|u) [15].

This is illustrated as follows. From Equation (3.5) the optimization problem can be
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written as

max
p(u)

∫

· · ·
∫

R(h,u)f (h|u) dh, (4.1)

s.t.

nf
∑

j=1

∫

· · ·
∫

pj (u) f (u) du = P , pj (u) ≥ 0, (4.2)

where R(h,u) is the MMI, (defined first in Section 3.2) whose expression is given by,

R(h,u) =
1

2
log



1 +
1

σ2

nf
∑

j=1

hjpj (u)



 . (4.3)

The Lagrangian for the optimization problem can be stated in the most general form

as

J =

∫

· · ·
∫

R(h,u)f (h|u) f (u) dh du − λ

nf
∑

j=1

∫

· · ·
∫

pj (u) f (u) du. (4.4)

Differentiating with respect to pj (u) we obtain

∂J

∂pj(u)
= sj(u) − λ ≤ 0, for all j, (4.5)

where sj(u) =
1

2

∫

· · ·
∫

(

hj

σ2 +
∑nf

k=1 hkpk (u)

)

f (h|u) dh, (4.6)

for all j, with equality holding in Equation (4.5) when pj(u) 6= 0. For any revealed CSI

u solving integral equation (4.5) yields an expression for pj (u) for all j. The values of

pj (u) thus obtained, can be substituted in Equation (4.2) to solve for λ.

The maximum value of sj(u) occur when pj (u) = 0 for all j. Let’s denote this

maximum value by s∗j(u). Thus

s∗j(u) =
1

2σ2

∫

· · ·
∫

hjf (h|u) dh. (4.7)

To understand Equation (4.7) note that λ is related to the water level. In fact, for

perfect CSI, 1/λ is the water level as shown in Equation (3.9). For a given P and λ

suppose CSI revealed is u = u0. Now given subcarrier j with associated channel state

value tuple (hj , u0j), we want to determine if transmission should take place in that

subcarrier or not. From Equation (4.7), we evaluate the value of s∗j(u), and compare it

to λ. Only if s∗j(u) > λ, there is transmission in the jth subchannel. Alternatively for
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a given λ and revealed channel state u = u0, users stop transmission below a threshold

power P Th. The value of P Th depends upon the conditional fading distribution f (h|u).

Let us consider different types of CSI at transmitter and try to evaluate the optimal

policy.

4.2.1 Perfect CSIR, No CSIT

In this case u and h are independent random variables. Hence f (u,h) = f (u) f (h).

It can be shown that [29] the capacity maximizing policy is constant power allocation

across all subchannels i.e.

pj (u) =
P

nf
. (4.8)

Thus the capacity expression in (3.5) can be upper bounded by:

CNCSI = Eh





1

2
log



1 +
1

σ2

nf
∑

j=1

hj

(

P

nf

)







 (4.9)

≤ 1

2
log



1 +
1

nfσ2

nf
∑

j=1

Eh [hj ] P



 (4.10)

=
1

2
log

(

1 +
hP

σ2

)

. (4.11)

This is the AWGN channel capacity if we consider the normalized Rayleigh channel i.e

h = 1. This capacity is achievable by assigning uniform power to each subcarrier. This

can be seen by examining the capacity expression for pj (u) = P/nf , which is,

CNCSI = Eh





1

2
log



1 +
1

σ2

1

nf

nf
∑

j=1

hjP







 (4.12)

−→ 1

2
log

(

1 +
hP

σ2

)

, (4.13)

with equality holding for large nf . The law of large numbers ensured that the capacity

is achievable for a large number of subcarriers. This can be looked upon as the diversity

advantage. Note that for a single subcarrier the corresponding expression with uniform

power allocation is log
(

1 + hP/σ2
)

/2, and there is no way to actually achieve this

bound.
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4.2.2 Perfect CSIR One Bit Quantized CSIT

Suppose uk be an one bit quantized information about the channel state at subcarrier

k [15]. The feedback simply indicates if the value of the channel gain hk is above or

below a certain threshold hTh i.e.

uk =















0 hk < hTh,

1 hk ≥ hTh.

(4.14)

The optimal transmission strategies can be derived by solving Equation (4.4). However

we can list the various possible types of feedback that can arise with such a CSIT, and

in all such cases the solution can be deduced by simpler methods, which rely upon the

symmetry of the problem. The types of possible feedbacks can be grouped into three

categories, which are listed below,

All nf subchannels receive u = 1

From such a feedback the transmitter can’t differentiate between the channel qualities

in the different subcarriers. The optimal solution is to transmit along all the subcarriers

at the same power. We shall denote this power as pnf
(the subscript denotes the nf

subcarriers receive unity feedback) The value of pnf
is determined from equation (4.5) by

solving ∂J/∂pj(u) = 0, for any j ∈ {1, · · · nf}. Without loss of generality we choose

j = 1

1

2

∫

· · ·
∫

(

h1

σ2 + pnf

∑nf

k=1 hk

)

f (h|u = 1) dh = λ. (4.15)

As discussed in Section 4.2, pnf
is non-zero if

1

2σ2

∫

· · ·
∫

h1f (h|u = 1) dh =
1

2σ2

∫

h1f (h1|u1 = 1) dh1 ≥ λ. (4.16)

Following the notation of Section 4.2 we denote the last integral by,

s∗j(u = 1) =
1

2σ2

∫

h1f (h1|u1 = 1) dh1. (4.17)

We recall at this point that if all subcarriers receive u = 1, they transmit information

only if s∗j(u = 1) > λ. Note that λ depends on the fading distribution and hTh.
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m subcarriers report that u = 1 where 1 ≤ m < nf

The transmitter, based on the feedback classifies the subcarriers into two groups, one

each for the two types of feedback. From symmetry arguments it can’t distinguish be-

tween the channel states of subcarriers within the same group and hence has to allocate

equal power to all subcarriers within the same group. It can be shown that only the m

subcarriers which report u = 1 (they correspond to the subcarriers with the best con-

ditional value of channel gains) should transmit and the rest nf −m subcarriers should

stop transmission. For a proof see Appendix A. Thus the power pm (the subscript

denotes the m subcarriers receive unity feedback) is determined from equation (4.5).

We assume without loss of generality that user 1, receives feedback, u1 = 1 and solve

∂J/∂pj(u) = 0 for j = 1.

1

2

∫

· · ·
∫ (

h1

σ2 + pm
∑m

k=1 hk

)

f (h|u = 1) dh = λ. (4.18)

In Equation (4.18) only m integrals need be evaluated as the rest integrate to one. As

discussed in Section 4.2 pm is non-zero if

1

2σ2

∫

· · ·
∫

h1f (h|u = 1) dh =
1

2σ2

∫

h1f (h1|u1 = 1) dh1 ≥ λ, (4.19)

where we recognize the last integral being s∗j(u = 1) as defined in Equation (4.17).

This means that if m subcarriers receive u = 1, they transmit information only if

s∗j(u = 1) > λ. Thus the upper bound on feasible λ which allows transmission is

s∗j(u = 1) for all m 6= 0.

All nf subcarriers report u = 0

This case (henceforth also referred to as the all zero case) is similar to case when all

subcarriers reported u = 1, in the sense that the transmitter can’t differentiate between

the subcarriers, even though it is clear that all channel states are worse than the u = 1

case. Solution is similar to first situation. All users transmit at the same power p0

which again is determined from equation (4.5) by solving for ∂J/∂pj(u) = 0 for j = 1

1

2

∫

· · ·
∫

(

hj

σ2 + p0
∑nf

k=1 hk

)

f (h|u = 0) dh = λ. (4.20)
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As discussed in Section 4.2 p0 is non-zero if

1

2σ2

∫

· · ·
∫

hjf (h|u = 0) dh =
1

2σ2

∫

hjf (hj |uj = 0) dhj ≥ λ. (4.21)

Following the notation of Section 4.2 we denote the last integral by,

s∗j(u = 0) =
1

2σ2

∫

h1f (h1|u1 = 0) dh1. (4.22)

We recall at this point that if all subcarriers receive u = 0, they transmit information

only if s∗j(u = 0) > λ.

Let us investigate Equation (4.5) and see how the computation of the m integrals

1 ≤ m ≤ nf might be simplified. Let us first consider the case when at least one

subcarrier reports unity feedback and lets assume without loss of generality that the

first subcarrier is one of them. Hence if m subcarriers report unity feedback, (where

m 6= 0), Equation (4.5) can be written as

λ =
1

2

∫

· · ·
∫ (

h1

σ2 + pm
∑m

k=1 hk

)

f (h|u = 1) dh, (4.23)

=
1

2

∫

· · ·
∫
(

h1

σ2 + pmh1 + pm
∑m

k=2 hk

)

f (h|u = 1) dh, (4.24)

=
1

2

∫

· · ·
∫ (

h1

σ2 + pmh1 + pmhS

)

f (h1|u = 1) f (hS |u = 1) dh1 dhS , (4.25)

where the terms hS and f (hS |u = 1) denote the random variable
∑m

k=2 hk and its PDF

respectively.

Finally we can make a simple observation from Equations (4.16), (4.19) and (4.21) re-

garding the thresholds values s∗j(u = 1) and s∗j(u = 0) which determine if the powers

pm,m 6= 0 and p0 are positive. We observe that,

s∗j(u = 1) =

∫ ∞

hTh

hf(h|u = 1) dh > hTh

∫ ∞

hTh

f(h|u = 1) dh = hTh, (4.26)

s∗j(u = 0) =

∫ hTh

0
hf(h|u = 0) dh < hTh

∫ hTh

0
f(h|u = 0) dh = hTh. (4.27)

This shows that s∗j(u = 1) > s∗j(u = 0). This can be explained as follows: Recall that

transmitted powers pj(u) are positive only if s∗j(u) > λ. Consider a value of λ = λ0

higher than s∗j(u = 0). A high value of λ0 implies that the water level is low and hence

the total power P is low. So the transmitter should be more prudent in allocating power
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and hence there is no transmission in the all zero case as this corresponds to the worst

channel state among all types of feedbacks. However if λ0 < s∗j(u = 1), then there is

transmission over the subcarriers that receive u = 1 feedback.

Let us consider specific fading distributions and evaluate the various expressions

developed in this Section.

Uniform Fading Distribution

A simple closed form expression for f (hS |u) does not exist. Hence let us consider the

two subcarrier case for simplified analysis. Fading is uniform in the range [0, A]. Let

{u1, u2} be the feedbacks in the two subcarriers, where u1, u2 ∈ {0, 1}. Let the threshold

hTh of Equation (4.14) be a. Let the power transmitted in the subcarriers 1 and 2, under

feedback = {u1, u2} be p1(u1, u2) and p2(u1, u2) respectively. The following conditions

hold

p1(0, 0) = p2(0, 0) = p0, Pr[p0] = (a/A)2, (4.28)

p1(1, 0) = p2(0, 1) = p1, Pr[p1] = a(A − a)/A2, (4.29)

p1(1, 1) = p2(1, 1) = p2, Pr[p2] = (A − a/A)2, (4.30)

p1(0, 1) = p2(1, 0) = 0. (4.31)

The total power equation, Equation (4.2) can be expanded as,

2p0

( a

A

)2
+ 2p1

a(A − 1)

A2
+ 2p2

(

A − a

A

)2

= P . (4.32)

The values of p0, p1 and p2 can be found by evaluating Equations (4.15), (4.18) and (4.20)

and the results are

1

2p0
2a2

[

a2

2
log
(

σ2 + 2ap0

)

− a2

2
log
(

σ2 + ap0

)

]

= λ, (4.33)

1

2p1(A − 1)

[

(A − a) − σ2

p1

{

log
(

σ2 + Ap1

)

− log
(

σ2 + ap1

)}

]

= λ, (4.34)

1

2p2
2(A − a)2

[

A2

2
log
(

σ2 + 2Ap2

)

− a2

2
log
(

σ2 + ap2 + Ap2

)

(4.35)

− A2

2
log
(

σ2 + ap2 + Ap2

)

+
a2

2
log
(

σ2 + 2ap2

)

]

= λ. (4.36)
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We can also evaluate Equations (4.16), (4.19) and (4.21) to obtain the thresholds

for λ for which the transmitted powers are positive. The results are

• p1 and p2 are positive for λ ≤ s∗(u = 1) = (A + a)/4 = 0.375.

• p0 is positive for λ ≤ s∗(u = 0) = a/4 = 0.125.

Note that s∗(u = 1) > s∗(u = 0) as predicted earlier in this Section. Simulation results

for this case will be provided in Section 4.3.

Rayleigh Fading

Unlike the case of uniform fading, there exists a closed expression for f (hS |u), for most

types of feedback. Assume the mean of the Rayleigh fading to be unity, ie γa = 1.

Now hS is dependent on the number of terms in the summation, so let us denote hS

by Sk which means that it is the sum of k i.i.d. exponential random variables, where

1 ≤ k ≤ nf . The following expression for the PDF of Sk|u = 1 holds

fSk|u=1(s) =
(s − ka)n−1e−(s−ka)

(n − 1)!
. (4.37)

However for the all zero case, fSnf
|u=0(s) does not have a closed form expression.

4.3 Simulation Results

In this section we take the uniform and rayleigh fading scenarios and numerically evalu-

ate the achievable rates. In this section we plot the quantity maximum mutual informa-

tion (MMI) as defined in Section 3.2. At each time instant an independent realization

of the channel is generated, and the transmitter goes through the steps mentioned in

Section 3.2. At this juncture it is appropriate to recall two key definitions which would

help us to interprete the numerical results correctly.

• P as defined in Equation (4.2) is the total average power into the system, i.e. the

sum of the average powers in all the subcarriers, where the averaging operation is

done over different realizations of channel states information variable u, available

at the transmitter.
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Figure 4.1: MMI for no CSI
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# Subcarriers nf 5,100

Figure 4.2: Simulation Parameters for
Fig 4.1

• λ is inversely related to the water-filling level. Hence λ and P are also inversely

related to each other.

4.3.1 Uniform Fading

Figure (4.1) plots the MMI as a function of time for two different values of nf , namely

nf = 5 and nf = 100. The MMI sequence obtained with perfect CSI is also plotted to

give a basis for comparison. Since more number of subcarriers leads to better averaging

effect (refer Equation (4.9)), the MMI sequence for nf = 100 has less fluctuations. In

fact, its value is close to 0.3522, which is the theoretical value obtained from substituting

parameters from Table 4.2 in Equation (4.9).

Figure 4.3 plots the powers p0, p1 and p2 as derived in Equation (4.33) for two

subcarriers. The simulation parameters are listed in Table 4.4. It is seen that for the

same value of λ, which corresponds to the same total average power P , the ordering

in the magnitudes of the three power values are: p1 ≥ p2 > p0. Let us recall the

definitions of these power levels to understand the results. p0 is the power allocated

to each subcarrier in the all zero state and hence has the least value. p1 corresponds

to power in subcarrier 1 in case of (1, 0) feedback or power in subcarrier 2 in case of

(0, 1) feedback. In both cases, power is transmitted in only one channel. p2 corresponds

to individual power in both channels for the (1, 1) feedback. Intuitively p1 should be

greater than or equal to p2, since there are 2 subcarriers transmitting power p2 and 1

subcarrier transmitting power p1. This is verified by the simulations and Figure 4.3
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Figure 4.6: Simulation Parameters for
Fig 4.5

shows that for a range of λ values p1 ∼ 2p2. These simulations match closely with the

predicted cut-off values of λ as discussed under the uniform fading of Section 4.2.2,

namely λ = 0.375 for p1 and p2 and λ = 0.125 for p0.

Figure 4.5 refers to the all one feedback case when the number of subcarriers are

nf = 1, 2 and 3. It is seen that, for a fixed λ, which corresponds to a fixed P , the high

the value of nf corresponds to low value of power, pnf
. The intuitive explanation is

that the same power P is getting divided into more subcarriers.

Finally Figure 4.7 plots the MMI variations with time for all the three types of CSI

discussed till now. We observe that for nf = 2, the achievable rates with 1 bit per

subcarrier feedback is close to the perfect CSI case. This suggests that the 1 bit per

subcarrier scheme is a good practical scheme for transmitter feedback.
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4.3.2 Rayleigh Fading

In this section the simulation results for Rayleigh Fading are presented. Figure (4.9) per-

tains to the power allocation when all subcarriers receive unity feedback. It plots the

variation of λ with power pn, the power allocated in each subcarrier as the number of

subcarriers n is increased. Note that similar results for uniform fading were shown in

Figure (4.5). For a fixed value of λ, which corresponds to a fixed P , increasing the

number of subcarriers, reduced the power allocated in each subcarrier.
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Chapter 5

Conclusions and Future Work

This report provides a comprehensive information theoretic analysis a two dimensional

spreading scheme which was motivated by the VSF-OFCDM system. It develops the

transmission model for single user, and studies optimal power allocation and transmis-

sion schemes, under three different cases of channel state knowledge at the transmitter.

For perfect CSI at transmitter the optimal single user policy is to transmit in the best

subcarrier and the transmit power is obtained by waterfilling over the distribution of

the channel state in the best subcarrier. For no CSI the optimal policy is equal power

allocation in all subcarriers. For 1 bit per subcarrier feedback the optimal policy turned

out to be to transmit in all the subcarriers that are above the threshold. The work also

looks at the multi-user scenario and proposes some practical transmission schemes and

investigates the achievable sum rates of these schemes.

There are several future directions of research in this area. The multiuser scenario,

especially for the imperfect transmitter CSI case, needs to be addressed. Also outage

behavior and delay aspects of the proposed model have to be carefully investigated. On

a more practical note, since the transmission spans both time and frequency dimensions,

scheduling between various transmissions has to be studied, in order to implement the

best subchannel or best user policies which were shown to be theoretically optimum.
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Appendix A

Transmission Policy for 1 bit Quantized CSIT

Consider the case when nf = 2. The proof can be easily generalized for higher nf . Now

f (h|u) =
∏2

i=1 f (hi|ui) from assumptions about the channel and the CSIT. Thus

∂J

∂p1(u)
=

1

2

∫ ∫

h1

σ2 + h1p1(u) + h2p2(u)
f(h1|u1)f(h2|u2) dh1 dh2 − λ (A.1)

∂J

∂p2(u)
=

1

2

∫ ∫

h2

σ2 + h1p1(u) + h2p2(u)
f(h1|u1)f(h2|u2) dh1 dh2 − λ, (A.2)

Equivalently,

∂J

∂p1(u)
=

1

2

∫ ∫

h1g (h1, h2, u1, u2) dh1 dh2 − λ (A.3)

∂J

∂p2(u)
=

1

2

∫ ∫

h2g (h1, h2, u1, u2) dh1 dh2 − λ. (A.4)

Note that the function g (h1, h2, u1, u2) is same for the integrals. Now consider

u1 = 1, u2 = 0. Then

∂J

∂p1(u)
=

1

2

∫ ∞

hTh

∫ hTh

0
h1g (h1, h2, u1, u2) dh2 dh1 − λ (A.5)

>
hTh

2

∫ ∞

hTh

∫ hTh

0
g (h1, h2, u1, u2) dh2 dh1 − λ. (A.6)

Similarly, it can be shown that

∂J

∂p2(u)
<

hTh

2

∫ ∞

hTh

∫ hTh

0
g (h1, h2, u1, u2) dh2 dh1 − λ. (A.7)

Hence,

∂J/∂p1(u) > ∂J/∂p2(u). (A.8)

But from the following basic conditions

∂J

∂pk(u)
= 0 when pk(u) > 0 (A.9)

∂J

∂pk(u)
≤ 0 when pk(u) = 0, (A.10)

It can be stated that p1(u) > 0 and p2(u) = 0.
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Appendix B

Properties of the Max function of n Exponentials

Let X∗
n be the random variable denoting the maximum of n iid random variables

Xi, i = 1, 2, · · · , n, each with probability distribution function fX(x) and cumula-

tive distribution function FX(x). Let the pdf and cdf of X∗
n be denoted as fX∗

n
(x) and

FX∗

n
(x) respectively. From probability theory,

fX∗

n
(x) = n [FX(x)]n−1 fX(x), (B.1)

FX∗

n
(x) = [FX(x)]n−1 . (B.2)

Let X = h, be an exponentially distributed random variable. The pdf of h is given by

fh(γ) =
1

γa
e−(γ/γa) Fh(γ) = 1 − e−(γ/γa) (B.3)

From Equations (B.1) and (B.3), the distribution of h∗
n, the maximum of n iid

exponentials can be written down as

fh∗

n
(γ) =

n

γa

(

1 − e−(γ/γa)
)n−1

e−(γ/γa), (B.4)

Fh∗

n
(γ) =

(

1 − e−(γ/γa)
)n−1

. (B.5)

Lemma 1 Fh∗

m
(γ) is stochastically greater than Fh∗

n
(γ) for m > n

Proof :

Fh∗

m
(γ) =

(

1 − e−(γ/γa)
)m−1

(B.6)

Fh∗

n
(γ) =

(

1 − e−(γ/γa)
)n−1

(B.7)

Fh∗

m
(γ) < Fh∗

n
(x) forall γ [∵ abscissa < 1 and m > n] (B.8)

This implies that P[h∗
m > γ] > P[h∗

n > γ]
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Lemma 2 Let E[h∗
n], E

[

h∗
n
2
]

and Var[h∗
n] denote the mean, second moment and vari-

ance of h∗
n respectively. Then

E [h∗
n] = γa

n
∑

k=1

1

k

E
[

h∗
n

2
]

= 2γ2
a

n
∑

k=1

1

k

k
∑

l=1

1

l

V ar [h∗
n] = γ2

a

n
∑

k=1

1

k2

Proof :

1. The expression for mean of h∗
n is

E [h∗
n] =

∫ ∞

0
nγ
(

1 − e−(γ/γa)
)n−1 1

γa
e−(γ/γa) dγ. (B.9)

Substituting for x = 1 − e−(γ/γa) the integral becomes

E [h∗
n] = nγa

∫ 1

0
−log(1 − x)xn−1 dx. (B.10)

Using Taylor Series Expansion −log(1 − x) = x + x2/2 + x3/3 + · · ·∞, and

evaluating the series of integrals we obtain

E [h∗
n] = nγa

[

1

n + 1
+

1

2(n + 2)
+

1

3(n + 3)
+ · · ·∞

]

(B.11)

= γa

[

n

n + 1
+

n

2(n + 2)
+

n

3(n + 3)
+ · · ·∞

]

. (B.12)

Note that the kth term is n/k(n + k) = 1/k − 1/(n + k). Regrouping the terms,

we obtain,

E [h∗
n] = γa

[(

1 +
1

2
+ · · ·∞

)

−
(

1

n + 1
+

1

n + 2
+ · · ·∞

)]

(B.13)

= γa

n
∑

k=1

1

k
, Hence Proved. (B.14)

2. The expression for the second moment of h∗
n is

E [h∗
n] =

∫ ∞

0
nγ2

(

1 − e−(γ/γa)
)n−1 1

γa
e−(γ/γa) dγ. (B.15)

Substitute x = −γ/γa and use the binomial expansion

(

1 − e−x
)n−1

=
n−1
∑

k=0

(

n − 1

k

)

(−1)ke−kx. (B.16)
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This expression becomes

E
[

h∗
n
2
]

= nγ2
a

∫ ∞

0
x2

n−1
∑

k=0

(

n − 1

k

)

(−1)ke−kxe−x dx (B.17)

= nγ2
a

n−1
∑

k=0

(

n − 1

k

)

(−1)k
∫ ∞

0
x2e−(k+1)x dx. (B.18)

Evaluating the inner integral by parts, we obtain

E
[

h∗
n

2
]

= 2nγ2
a

n−1
∑

k=0

(

n − 1

k

)

(−1)k
1

(k + 1)3
. (B.19)

To simplify the RHS of Equation (B.19) consider the following approach:

n−1
∑

k=0

(

n − 1

k

)

(−1)kvk = (1 − v)n−1 (B.20)

Integrating both sides wrt v from the limits 0 to u and then dividing both sides

by u, yields,
n−1
∑

k=0

(

n − 1

k

)

(−1)k
uk

k + 1
=

1

n

[

1 − (1 − u)n

u

]

. (B.21)

Integrating both sides wrt u from the limits 0 to x and then dividing both sides

by x, yields

n−1
∑

k=0

(

n − 1

k

)

(−1)k
xk

(k + 1)2
=

1

x

∫ x

0

1

n

[

1 − (1 − u)n

u

]

du. (B.22)

Integrating both sides wrt x from the limits 0 to 1 yields

n−1
∑

k=0

(

n − 1

k

)

(−1)k
1

(k + 1)3
=

1

n

∫ 1

0

1

x

(
∫ x

0

1 − (1 − u)n

u
du

)

dx. (B.23)

The inner integral can be evaluated by substituting 1 − u = v and using the

summation formula for a geometric progression and a similar procedure can be

adapted for the outer integral. The result is

1

n

∫ 1

0

1

x

(∫ x

0

1 − (1 − u)n

u
du

)

dx =
1

n

n
∑

k=1

1

k

k
∑

l=1

1

l
. (B.24)

From Equations (B.19),(B.23) and (B.24), it follows that

E
[

h∗
n
2
]

= 2γ2
a

n
∑

k=1

1

k

k
∑

l=1

1

l
Hence Proved. (B.25)
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3. The variance of h∗
n can be calculated as

Var[h∗
n] = E

[

h∗
n
2
]

− (E [h∗
n])2 (B.26)

= 2γ2
a

n
∑

k=1

1

k

k
∑

l=1

1

l
− γ2

a

n
∑

k=1

n
∑

l=1

1

k

1

l
From Parts 1 and 2 (B.27)

= γ2
a

n
∑

k=1

1

k

(

k
∑

l=1

1

l
−

n
∑

l=k+1

1

l

)

. (B.28)

Let us denote Var[h∗
n]/γ2

a by the shortened notation V (n). Now note that

V (n + 1) =

n+1
∑

k=1

1

k

(

k
∑

l=1

1

l
−

n+1
∑

l=k+1

1

l

)

(B.29)

=

n
∑

k=1

1

k

(

k
∑

l=1

1

l
−

n+1
∑

l=k+1

1

l

)

+
1

n + 1

(

n+1
∑

l=1

1

l

)

(B.30)

=
n
∑

k=1

1

k

(

k
∑

l=1

1

l
−

n
∑

l=k+1

1

l
− 1

n + 1

)

+
1

n + 1

(

n+1
∑

l=1

1

l

)

(B.31)

= V (n) +
1

n + 1

(

n+1
∑

l=1

1

l
−

n
∑

k=1

1

k

)

(B.32)

= V (n) +
1

(n + 1)2
. (B.33)

This gives a simple recursive formula of V (n). Since V (1) = 1, the recursion can

be solved to yield

V (n) =

n
∑

k=1

1

k2
. (B.34)

From Equation (B.34) and the definition of V (n), it follows that

Var[h∗
n] = γ2

a

n
∑

k=1

1

k2
Hence Proved. (B.35)

Let us now discuss the implications of the Lemma 2.

• The mean E[h∗
n] is directly proportional to the nth partial sum of the Harmonic

Series, denoted by Hn. It is known to diverge albeit very slowly. It can be shown

that

log(n) +
1

2
+

1

2n
≤ Hn ≤ log(n) + 1. (B.36)

Or Hn ∼ log(n). Hence as n → ∞, E[h∗
n] → ∞.
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Figure B.1: Plot of 1/x2 and 1/k2

• The variance Var[h∗
n] is a convergent sequence of n. This is made clear by Fig-

ure B.1. Note that

Var[h∗
n] = γ2

a

n
∑

k=1

1

k2
(B.37)

< γ2
a

(

1 +

∫ ∞

1

1

x2
dx

)

(B.38)

= γ2
a

(

2 − 1

n

)

. (B.39)

Thus as n → ∞,Var[h∗
n] < 2γ2

a.

Let us now investigate the variation of the PDF fh∗

n
(x) with n. We have already

established (Lemma 2), the mean and variance of h∗
n. It can be shown by differentiating

fh∗

n
(γ) that it achieves a global maxima at γn,max = γalog(n) with the maximum value

(1 − 1/n)n−1. The following observations can be made

• As n increases γn,max → E[h∗
n]

• The maximum value (1 − 1/n)n−1 is a decreasing function of n and as n → ∞

this tends to the finite limit 1/e.

These findings are consistent with the fact that the mean tends to ∞ but the variance

is finite for n → ∞. Finally Figure (B.2), shows how the PDFs change with n.
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Appendix C

Maximization of xTAx with xTx = 1 and x ≥ 0

The optimization problem, we seek to solve is

max
xT x=1
x≥0

xT Ax, (C.1)

where A ∈ Rn×n and x ∈ Rn. Note that without the positivity constraint x ≥ 0, the

solution is given by the maximization of the classical Rayleigh Quotient expression [20].

The solution is to choose x as the eigenvector of A which has the highest eigenvalue

(henceforth referred to as the maximum eigenvector). With the addition of the posi-

tivity constraint this may no longer be true as the maximum eigenvector might have

negative components.

There are specific matrices A for which the optimal x is again the maximum eigen-

vector. One such case is when A is positive, which means that all the entries of A

are positive (this is different from positive definiteness). For this matrix the Perron-

Frobenius theorem, [20] states that the maximum eigenvector has all positive compo-

nents and hence the positivity constraint is automatically satisfied. Another case is

when A ∈ R2×2, in which case due to the orthogonality of the eigenvectors in a two

dimensional space, one of the eigenvectors will always have both entries as positive (or

both negative) and that would correspond to the maximum eigenvector.

To solve the problem for any arbitrary A, we write the Lagrangian for the problem

in Equation (C.1) as,

L = xT Ax + λxTx + µ
Tx, (C.2)

µ ≥ 0 (C.3)

λ is unconstrained, (C.4)
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where λ is a scalar and µ ∈ Rn. Taking the partial derivative w.r.t. x yields,

∂L

∂x
= 2Ax + 2λx + µ = 0, (C.5)

µixi = 0, 1 ≤ i ≤ n, (C.6)

xT x = 1, (C.7)

x ≥ 0,µ ≥ 0. (C.8)

A broad outline of the solution is provided here. Note that for the purposes of

the solution, each individual entry of x can be thought of being in binary state i.e.

either zero or positive. The number of zero elements in the optimal x can range from

0 to n − 1. We now introduce some new definitions. Let all vectors having k zeros be

said to belong to the kth class. Each n dimensional vector will have to satisfy certain

constraints depending on which class it belongs to. To solve, we first assume that x

belongs to the first class. We then then solve Equation (C.5) and find the vectors

which are the stationary points of the Lagrangian. We check if these solutions satisfy

the required constraints. If a vector does so, we term it feasible. We form the the set of

all feasible vectors and call it the feasible solution set. We then repeat the procedure for

all the k classes. At each class, we potentially keep on adding to the feasible solution

set. At the end we calculate the value of the objective xT Ax for all vectors in the

feasible solution set and select the vector which maximizes the objective. These are

explained in detail below, by considering the different classes.

Class 1: x has no zero element

In this case the constraints are:

xi > 0, 1 ≤ i ≤ n (C.9)

µi = 0, 1 ≤ i ≤ n, from Equation (C.6) (C.10)

For these constraints, Equation (C.5) yields,

Ax = −λx. (C.11)
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Hence the stationary points of the Lagrangian are given by the eigenvectors of the orig-

inal matrix A. The eigenvectors are assumed to be of unit-norm. Amongst these sta-

tionary points the feasible vectors are those, for which constraints in Equation (C.9) are

satisfied. We add these to the feasible solution set.

Class 2: x has one zero element

Note that the zero element can occur in any of the n places. We consider all these

sub-classes one by one. Let us begin with x1 = 0. The constraints become

xi > 0, 2 ≤ i ≤ n, (C.12)

µ1 > 0, (C.13)

x1 = 0 and µi = 0, 2 ≤ i ≤ n. (C.14)

For this parameters the Equation (C.5) can be expresses as,

Ax + λx = −1

2
µ, (C.15)



















a11 a12 · · · a1n

a21 a22 + λ · · · a2n

...
...

an1 · · · ann + λ





































0

x2

...

xn



















= −1

2



















µ1

0

...

0



















. (C.16)

This can be rewritten into an eigenvalue problem and a linear equation as follows,

aT
1 x1 = −1

2
µ1, (C.17)

A1x1 = −λx1, (C.18)

where,

a1 = [a12, a13, · · · , a1n] , (C.19)

x1 = [x2, x3, · · · , xn] , (C.20)

A1 =













a22 · · · a2n

...
...

an2 · · · ann













. (C.21)
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Note that A1 ∈ R(n−1)×(n−1) and a1,x1 ∈ R(n−1). The procedure is now simple. Solve

Equation (C.18) and calculate the unit-norm eigenvectors x1. Then,

1. Check if all elements of x1 are positive. This is the constraint in Equation (C.12).

2. Calculate µ1 from Equation (C.17) and check if it is positive. This is the constraint

given in Equation (C.13).

If x1 satisfies both these constraints then form x = [0,x1] and add x to the feasible

solution set.

Now consider xk = 0, k 6= 1. Then µk > 0 and µj = 0, j 6= k. Flip the first and the

kth rows of A and first and the kth elements of both the vectors x and µ. The resulting

system of equations has the same structure as the x1 = 0 case, and can be solved.

Cases 3 − n: x has k zero elements, 2 ≤ k ≤ n

The procedure outlined in Section C can be easily generalized to consider all the remain-

ing cases. For any k, there are
(

n
k

)

ways in the k zeros can be distributed. in x. Consider

all these sub-classes one at a time. Start with the case when x1 = x2 = · · · = xk = 0

and hence µ1 > 0, µ2 > 0, · · · , µk > 0. Define the vector [xk+1, · · · , xn] ∈ Rn−k as xk.

Then it can be shown that the problem reduces to an eigenvalue problem of the matrix

Ak ∈ R(n−k)×(n−k) and a system of k linear equations as follows,

Akxk = −λxk, (C.22)

aT
1k+1xk = −1

2
µ1, (C.23)

... (C.24)

aT
kk+1xk = −1

2
µk, (C.25)

where the matrix Ak is formed by deleting the first k rows and columns of matrix A and

ajk+1 = [ajk+1, · · · , ajn] , 1 ≤ j ≤ k. The unit-norm eigenvalues of Ak are computed

and the positivity constraints of the elements of xk and the values of µ1 · · ·µk are

checked. The vectors which satisfy these constraints are appended initially by k zeros

to form feasible xs. Now for the remaining
(n
k

)

− 1 sub-classes, we can use the flipping
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argument as used in Section C and get a similar structure of equations as considered

above, which can be solved

After this having formed the feasible solution set, we compute the value of the

objective xTAx for each vector in this set and select the vector which maximizes the

objective.

Note that this method solves the optimization problem for any arbitrary matrix A.

However the complexity of the algorithm increases exponentially with n.
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