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Cooperative Multicast for Maximum Network
Lifetime
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Abstract— We consider cooperative data multicast in a wireless
network with the objective to maximize the network lifetime.
We present the Maximum Lifetime Accumulative Broadcast (MLAB)
algorithm that specifies the nodes’ order of transmission and
transmit power levels. We prove that the solution found by MLAB
is optimal but not necessarily unique. The power levels found by
the algorithm ensure that the lifetimes of the active relays are the
same, causing them to fail simultaneously. For the same battery
levels at all the nodes, the optimum transmit powers become the
same.

The simplicity of the solution is made possible by allowing the
nodes that are out of the transmission range of a transmitter to
collect the energy of unreliably received overheard signals. As a
message is forwarded through the network, nodes will have mul-
tiple opportunities to reliably receive the message by collecting
energy during each retransmission. We refer to this cooperative
strategy as accumulative multicast. Cooperative multicast not only
increases the multicast energy-efficiency by allowing for more
energy radiated in the network to be collected, but also facilitates
load balancing by relaxing the constraint that a relay has to
transmit with power sufficient to reach its most disadvantaged
child. When the message is to be delivered to all network
nodes this cooperative strategy becomes accumulative broadcast
[1]. Simulation results demonstrate that cooperative broadcast
significantly increased network lifetime compared to conventional
broadcast. We also present the distributed MLAB algorithm for
accumulative broadcast that determines the transmit power levels
locally at the nodes.

Index Terms— Cooperative multicast, cooperative broadcast,
maximum network lifetime, optimum transmit powers, dis-
tributed algorithm.

I. INTRODUCTION

We consider the problem of energy-efficient multicasting
in a wireless network. In the multicast problem, a message
from a source node is to be delivered efficiently to a set of
destination nodes. When the set of destination nodes includes
all the network nodes (except the source), the multicast prob-
lem reduces to the broadcast problem. When there is only
one destination node, multicast reduces to unicast and the
problem becomes that of routing to one destination node. Prior
work on this subject has been focused on the minimum-energy
broadcast problem with the objective of minimizing the total
transmitted power in the network. This problem was shown in
[2–4] to be NP-complete. Several heuristics for constructing

Manuscript received October 15, 2003; revised August 3, 2004. This work
was supported by New Jersey Commission on Science and Technology and
NSF grant NSF ANI 0338805.

The authors are with Wireless Network Information Laboratory (WIN-
LAB), Department of Electrical and Computer Engineering, Rutgers Uni-
versity, Piscataway, NJ 08854 USA (e-mail: ivanam@winlab.rutgers.edu;
ryates@winlab.rutgers.edu).

energy-efficient broadcast trees have been proposed; see [2],
[3], [5–7] and references therein.

However, broadcasting data through an energy-efficient tree
drains the batteries at the nodes unevenly causing higher drain
relays to fail first. A performance objective that addresses
this issue is network lifetime which is defined to be the
time duration until the first node battery is fully drained
[8]. Finding a broadcast tree that maximizes network lifetime
was considered in [9–11]. The problem of maximizing the
network lifetime during a multicast was addressed in [12].
Because the energies of the nodes in a tree are drained
unevenly, the optimal tree changes in time and therefore the
authors [9], [11], [12] distinguished between the static and
dynamic maximum lifetime problem. In a static problem, a
single tree is used throughout the broadcast session whereas
the dynamic problem allows a sequence of trees to be used.
Since the latter approach balances the traffic more evenly over
time, it generally performs better. For the static problem, an
algorithm was proposed that finds the optimum tree [9]. For
the special case of identical initial battery energy at the nodes,
the optimum tree was shown to be the minimum spanning tree.
In a dynamic problem, a series of trees were used that were
periodically updated [9] or used with assigned duty cycles
[11].

Wireless formulations of the above broadcast problems
assume that a node can benefit from a transmission only if
the received power is above a threshold required for reliable
communication. This is a pessimistic assumption. A node for
which the received power is below the required threshold, but
above the receiver noise floor, can collect energy from the
unreliable reception of the transmitted information.

Moreover, it was observed in the relay channel [13] that uti-
lizing unreliable overheard information is essential to achiev-
ing capacity. This idea is particularly suited for the multicast
problem, where a node has multiple opportunities to receive
a message as the message is forwarded through the network.
We borrow this idea and re-examine the multicast problem
under the assumption that nodes accumulate the energy of
unreliable receptions. We refer to this particular cooperative
strategy as accumulative multicast and in the special case
of broadcast, as accumulative broadcast [1]. The minimum
energy accumulative broadcast problem was formulated and
addressed in [1], [14], [15]. The problem was shown to be
NP-complete. An energy-efficient heuristic was proposed that
demonstrated the improvement of accumulative broadcast over
the conventional broadcast. Under a different physical model,
this problem was independently considered in [16] and again
shown to be NP-complete. Furthermore, the same idea, for a
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packet level system model with the additional constraint of a
power threshold for signal acquisition, was recently proposed
under the name Hitch-hiking [17].

In this paper, we address the problem of maximizing the
network lifetime by employing the accumulative multicast. As
in the conventional broadcast problem, we impose a reliable
forwarding constraint that a node can forward a message only
after reliably decoding that message.

We show that the maximum lifetime multicast problem has
a simple optimal solution and propose the Maximum Lifetime
Accumulative Broadcast (MLAB) algorithm that finds it. The
solution specifies the order of transmissions and transmit
power levels at the nodes. The power levels given by the
solution ensure that the lifetimes of relay nodes are the same
and thus, their batteries die simultaneously. As shown later,
this is due to the accumulative multicast that naturally allows
for load balancing. Assigning the powers such that all the
nodes fail at the same time has its equivalent in the problem of
maximizing network lifetime during routing. In that problem,
the network lifetime is maximized when the data is sent over
multiple routes all with the same minimum lifetime [18].
Moreover, the simplicity of the solution allows us to formulate
a distributed MLAB algorithm for the accumulative broadcast
that uses local information at the nodes and is thus better suited
for networks with large number of nodes.

The paper is organized as follows. In the next section, we
give the network model and in Section III, we formulate the
problem. In Section IV we present the MLAB algorithm that
finds the optimal solution and in Section V we show the benefit
of accumulative broadcast to the network lifetime compared
to the conventional broadcast. In Section VI we present the
distributed MLAB algorithm. Proofs of all theorems are given
in the Appendix.

II. SYSTEM MODEL

We consider a wireless network of N nodes such that from
each transmitting node k to each receiving node m, there
exists an AWGN channel of bandwidth W characterized by
a frequency non-selective link gain hmk. We further assume
large enough bandwidth resources to enable each transmission
to occur in an orthogonal channel, thus causing no interference
to other transmissions. Each node has both transmitter and
receiver capable of operating over all channels.

A receiver node j is said to be in the transmission range of
transmitter i if the received power at j is above a threshold
that ensures the capacity of the channel from i to j is above
the code rate of node i. We assume that each node can use
different power levels, which will determine its transmission
range. The nodes beyond the transmission range will receive
an unreliable copy of a transmitted signal. Those nodes can
exploit the fact that a message is sent through multiple hops
on its way to other nodes. Repeated transmissions act as a
repetition code for all nodes beyond the transmission range.

After a certain message has been transmitted from a source,
labeled node 1, sequence of retransmissions at appropriate
power levels will ensure that eventually every destination node
has reliably decoded the message. Henceforth, we focus on

the multicast of a single message and say that a node is
reliable once it has reliably decoded that message. Under the
reliable forwarding constraint, a node is permitted to retransmit
(forward) only after reliably decoding the message. During
the multicast, the message is repeatedly transmitted until the
set of destination nodes D becomes reliable.

The constraint of reliable forwarding imposes an ordering
on the network nodes. In particular, a node m will decode a
message from the transmissions of a specific set of transmitting
nodes that became reliable prior to node m. Starting with
node 1, the source, as the first reliable node, a solution to
the cooperative multicast problem will be characterized by
a reliability schedule, which specifies the order in which
the nodes become reliable. Since the multicast stops after
the message has been delivered to D destination nodes, a
reliability schedule will not necessarily contain all the network
nodes. In general, a multicast reliability schedule is an ordered
subsequence of the list of nodes of length M , D < M ≤ N ,
that starts with node 1, and contains all destination nodes and a
subset a network nodes that relay the message. In the broadcast
case, a reliability schedule [n1, n2, n2, . . . , nN ] is simply a
permutation of [1, 2, . . . , N ] that always starts with the source
node n1 = 1.

For a given reliability schedule, we refer to the ith node
in the schedule as simply node i. After each node k ∈
{1, . . . , m− 1} transmits with average power pk, the rate in
bits per second that can be achieved at node m is [19]

rm = W log2

(
1 +

∑m−1
k=1 hmkpk

N0W

)
bits/s, (1)

where N0 is the one-sided power spectral density of the
additive white Gaussian receiver noise.

Let the required data rate r be given by

r = W log2

(
1 +

P

N0W

)
bits/s. (2)

From (1) and (2), achieving rm = r implies that the total
received power at node m has to be above the threshold P ,
that is,

m−1∑
k=1

hmkpk ≥ P . (3)

After the data has been successfully delivered to the desti-
nation nodes, all those nodes are reliable and the feasibility
constraint (3) is satisfied at every destination node m. When
communicating at rate r, the required signal energy per bit
is Eb = P/r Joules/bit. This energy can be collected at
a node m during one transmission interval [0, T ] from a
transmission of a single node k with power pk = P/hmk,
as commonly assumed in wireless broadcasting problems [2],
[3], [5], [9–12]. However, using the accumulative strategy, the
required energy Eb is collected from m−1 prior transmissions.

III. PROBLEM FORMULATION

A lifetime of a node i transmitting with power pi is given
by Ti(pi) = ei/pi where ei is initial battery energy at node i.
The network lifetime is the time until the first node failure,

Tnet(p) = min
i

Ti(pi) (4)
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where p is a vector of transmitted node powers. The problem is
to maximize the network lifetime under the constraints that all
destination nodes become reliable. For the multicast problem,
broadcasting until the subset of destination nodes becomes
reliable will solve the problem.

In the conventional multicast problem, the multicast tree
uniquely determines the transmission levels; a relay that is the
parent of a group of siblings in the multicast tree transmits with
the power needed to reliably reach the most disadvantaged
sibling in the group. Hence, the arcs in the multicast tree
uniquely determine the power levels for each transmission.

In the accumulative multicast, however, there is no clear
parent-child relationship between nodes because nodes collect
energy from the transmissions of many nodes. Furthermore,
the optimum solution may require that a relay transmits with
a power level different from the level precisely needed to reach
a group of nodes reliably; the nodes may collect the rest of the
needed energy from the future transmissions of other nodes.
In fact, the optimum solution often favors such situations
because all nodes beyond the range of a certain transmission
are collecting energy while they are unreliable; the more such
nodes, the more efficiently the transmitted energy is being
used.

The differences from the conventional multicast problem
dictate a new approach. The optimum solution must specify the
reliability schedule as well as the transmit power level at each
node. Given a schedule, we can formulate a linear program
(LP) that will find the optimum solution for that schedule.
Such a solution will identify those nodes that should transmit
and their transmission power levels. A schedule is an ordered
subsequence of M nodes from a network of N nodes,

x = [x1, . . . , xM ] , (5)

with x1 = 1. We say that the length of the subsequence x in
(5) is ‖x‖ = M . Let

{x} = {x1, . . . , x‖x‖} (6)

denote the set of nodes in a schedule x and let ΠN denote the
set of all variable-length ordered subsequences of {1, . . . , N}.
It follows that the family of all possible schedules is

XN (D) = {x ∈ ΠN |D ∈ {x}, x1 = 1} (7)

Given a schedule x, we define a gain matrix G(x) to have
i, jth element

[G(x)]ij =

{
hxixj i > j,

0 otherwise,
(8)

for 1 ≤ i, j ≤ M. When a node j does not participate in the
retransmission of the message, reliable reception by that node
is unnecessary and that node can be omitted from the problem
formulation. Thus, channel gains corresponding to any node
j that is not in schedule x are not included in G(x). We can
define the problem of maximizing the network lifetime for
schedule x in terms of the vector p of transmitted powers as

min max
p

pi

ei
(9)

subject to G(x)p ≥ 1P , (9a)

p ≥ 0. (9b)

The inequality (9a) contains M − 1 constraints as in (3),
requiring that the accumulated received power at all nodes
in schedule x (except the source) is above the threshold P .
It should be apparent that power pi in p corresponds to the
transmit power of node xi in the schedule x. Alternatively, we
can define the problem in terms of normalized node powers
pi = pie1/ei that account for different battery capacities
at the nodes; the lifetime at every node i in terms of the
normalized power is as if all the batteries were the same:
Ti = ei/pi = e1/pi. In terms of normalized node powers,
Problem (9) can be defined as

min max
p

pi (10)

subject to G(x)p ≥ 1P ,

p ≥ 0

where each column gi of the normalized gain matrix G(x) is
obtained from the corresponding column gi of matrix G(x)
as gi = giei/e1.

For any schedule x, we can formulate Problem (10) as a
linear program in terms of transmit power levels p,

p̂∗(X) =min
p

p̂ (11)

subject to G(x)p ≥ 1P , (11a)

p ≤ 1p̂ (11b)

p ≥ 0. (11c)

If p̂ = p̂∗(x), then there exists a power vector p such that
(8b) and (8c) are satisfied. It follows that for any p > p̂,
p ≤ 1p. Thus, for any power p̂ ≥ p̂∗(x), we say that power
p̂ is feasible for schedule x. Over all possible schedules, the
optimum power is

p∗ = min
x∈XN (D)

p̂∗(x). (12)

Equation (12) is a formal statement of the problem from which
finding the best schedule corresponding to p∗ is not apparent.
We will see that the power p∗, may, in fact, be the solution to
(11) for a set of schedules, X ∗. In the rest of the paper, we
will consider only normalized powers and we therefore drop
the overline notation; H will denote the ordinary gain matrix,
G(x) will denote the gain matrix permuted for schedule x,
and the power vector will be simply p, with pi representing
either the power of node i or node xi, as appropriate for the
context.

Rather than identifying X ∗, we employ a simple procedure
that for any power p, determines a collection of schedules
for which power p is feasible. In particular, to distribute a
message, we let each node retransmit with power p as soon
as possible, namely as soon as it becomes reliable. We refer
to such a distribution as the ASAP(p) distribution. During the
ASAP(p) distribution, the message will be resent in a sequence
of retransmission stages from sets of nodes Z1(p), Z2(p), . . .
with power p where in each stage i, a set Zi that became
reliable during stage i−1, transmits and makes Zi+1 reliable.

Let Si(p) and Ui(p) denote the reliable nodes and unreliable
nodes at the start of stage i. UD,i(p) ⊂ Ui(p) is the set
of unreliable destination nodes at the start of stage i. Then,



4

Z1(p) = 1 and Si(p) = Z1(p) ∪ . . . ∪Zi(p). The set Zi+1(p)
is given by

Zi+1(p) = {z ∈ Ui(p) : p
∑

k∈Si(p)

hzk ≥ P}. (13)

Note that if power p is too small, the ASAP(p) distribution
can stall at stage i with Si+1(p) = Si(p) and UD,i(p) �= ∅,
the empty set. In this case, ASAP(p) fails to distribute the
message to all destination nodes. When UD,i(p) = ∅ at a
stage i, the ASAP(p) distribution terminates successfully. We
will say that ASAP(p) distribution is a feasible multicast if it
terminates successfully.

The partial node ordering, Z1(p), Z2(p), . . ., specifies the
sequence in which nodes became reliable during the ASAP(p)
distribution. In particular, any schedule x that is consistent
with this partial ordering is a feasible schedule for power p.
Nodes that become reliable during the same stage of ASAP(p)
can be scheduled in an arbitrary order among themselves since
these nodes do not contribute to each other’s received power.
The following theorem verifies that in terms of maximizing
the network lifetime it is sufficient to consider only schedules
consistent with the ASAP(p) distribution.

Theorem 1: If p̃ is a feasible power for a schedule x̃, then
the ASAP(p̃) distribution is a feasible multicast.

In particular, Theorem 1 implies that for optimum power
p∗, the ASAP(p∗) distribution is feasible.

We next present the Maximum Lifetime Accumulative
Broadcast (MLAB) algorithm, that determines the optimum
power p∗. Once the power p∗ is given, broadcasting with
ASAP(p∗) will maximize the network lifetime.

IV. THE MLAB ALGORITHM

We label node 1 as the source and 2 as its closest neighbor
(more precisely, the node with the highest link gain to the
source). The MLAB algorithm finds the optimum power p∗

through a series of ASAP(p) distributions, starting with the
smallest possible candidate broadcast power, p = P/h21.
Whether ASAP(p) stalls or terminates successfully, we define
τ(p) as the terminating stage. When p = p∗, the ASAP(p∗)
distribution will terminate in τ∗ = τ(p∗) stages. When the
ASAP(p) distribution stalls at stage τ(p), we determine the
minimum power increase δ for which ASAP(p + δ) will not
stall at stage τ(p), in the following way. The increase in
broadcast power δj needed to make a node j ∈ Uτ(p)(p)
reliable must satisfy

P = (p + δj)
∑

k∈Sτ(p)(p)

hjk. (14)

We choose δ = minj∈Uτ(p)(p) δj . We then increase p to p + δ
and restart the MLAB algorithm. The algorithm stops when
an ASAP(p) distribution terminates successfully.

The pseudocode of the algorithm is given in Figure 1. The
MLAB algorithm ends after at most N−1 restarts. There exists
a set of feasible schedules that are consistent with the partial
ordering given by the ASAP(p) distribution. The normalized
transmit power at all nodes in Sτ(p)(p) is p. Note that the last
transmitting set Zτ(p) could in fact, transmit with power less

Initialize: p = P/h21

Start: Set S1(p) = {1}; U1(p) = Sc

apply the ASAP(p) distribution;
If ASAP(p) stalls at stage τ(p):

for all j ∈ Uτ(p)(p) calculate:
δj = P/

∑
k∈Sτ(p)(p) hjk − p;

Set: δ = minj∈Uτ(p)(p) δj; p← p + δ;
go to Start;

end

The cardinality of S is given by |S|. Sc denotes the
complement.

Fig. 1. MLAB algorithm.

than p if it is enough for the last set of unreliable destination
nodes, UD,τ(p)(p), to become reliable. Thus, choosing the
power level at all nodes to be p is not necessarily a unique
solution. While this won’t change the network lifetime, the
latter solution will reduce the total transmit power in the
network. Next we show that the power found by MLAB is
in fact the optimum power, that is, p = p∗.

Theorem 2: The MLAB algorithm finds the optimum power
p∗ such that the ASAP(p∗) distribution maximizes the network
lifetime.
Finally, we note that the full restarts of the MLAB algorithm
are used primarily to simplify the proof of Theorem 2.
In fact, when MLAB stalls, it is sufficient for the reliable
nodes to offer incremental retransmissions at power ∆∗. This
observation will be the basis of distributed algorithm proposed
in Section VI.

V. PERFORMANCE

We now evaluate the benefit of accumulative broadcast
to the network lifetime and compare it to the conventional
network broadcast that discards overheard data in a network.
In particular, networks with randomly positioned nodes in a
10 x 10 square region were generated. The transmitted power
was attenuated with distance d as dα for different values
of propagation exponent α = 2, 3, 4. The received power
threshold was chosen to be P = 1. Results were based on
the performance of 100 randomly chosen networks.

Figure 2 shows the power p for different values of propaga-
tion exponent in networks with different node densities. The
observed power decrease is due to shorter hops between nodes
in denser networks. For equal battery capacities at the nodes,
the corresponding network lifetime is shown in Figure 3.

Figures 4 and 5 show the benefit of accumulative broadcast
as compared to conventional broadcast in terms of network
lifetime. For conventional broadcast, the authors in [9], [10]
proposed two algorithms, MSNL and MST, that maximize
the static network lifetime as well WMSTSW, a greedy
algorithm that increases the dynamic lifetime. We compare
the performance of these algorithms for three different battery
energy distribution as given in [9], [10], to the network lifetime
found by the MLAB algorithm. We first assume that all the
nodes have identical batteries. Then, we consider two different
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node battery scenarios in which the initial battery energies
at the nodes are independent uniform (0, 1000) or uniform
(500, 1000) random variables. Several other algorithms to
increase the dynamic network lifetime were evaluated in [10]
with similar performance to WMSTSW. As expected, we see
that solution found by MLAB considerably increases network
lifetime. Typically, MLAB increased the network lifetime by
a factor of 2 or more. The reason is twofold: first, because the
broadcast uses the energy of overheard information enabling
for more radiated energy to be captured. And second, because
the accumulative broadcast enables MLAB to distribute the
load more evenly among the nodes than does the dynamic
load balancing in conventional broadcast.

VI. DISTRIBUTED MLAB ALGORITHM

We next describe a distributed MLAB algorithm for accu-
mulative broadcast that determines broadcast power locally
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Fig. 4. Network lifetime of accumulative broadcast and conventional
broadcast.

at each node. Nodes are assumed to have no knowledge
of link gains (distances) to other nodes at the beginning of
the algorithm. The distributed algorithm will be run at the
beginning of a broadcast session during the broadcast of the
first message. Let q denote the broadcast power determined by
the distributed MLAB. Once the power q is determined, data
will be broadcasted through ASAP(q) distribution. In a static
network where the same power q is used throughout a long
broadcast session, the initial overhead to determine q will be
small compared to the amount of broadcast data.

The distributed implementation of MLAB algorithm has to
resolve the following:

1) When should a reliable node decide to increase the
broadcast power?

2) How much should a reliable node increase the broadcast
power?

When the ASAP(p) distribution stalls, determining the neces-
sary power increase δ, requires global knowledge of network
gains and cannot be computed locally at a node. In the
distributed MLAB algorithm, the broadcast power will be
increased in steps of size ∆, for some small fixed power ∆.
Further, during the initial broadcast phase while the algorithm
is run to determine q, we let ∆ be the transmit power of
every transmission. A reliable node intending to transmit with
power n∆ for some n > 1 will instead repeatedly transmit for
n times, each time with power ∆. A transmission from a node
i with power ∆ will be overheard by a number of nodes that
define a ∆-neighborhood Ni(∆) of node i. Nodes will belong
to N∆(i) if they can detect the presence of a signal sent at
node i, although their received power may not be sufficient
for reliable decoding.

Overhearing a broadcast from a node k will enable node i to
determine the link gain hik and identify node k as its reliable
neighbor. During the algorithm, node i will keep track of its
set of reliable neighbors, Ri ⊂ Ni(∆). From the number of
repeated transmissions at node k, node i will also be able to
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determine the current transmit power at node k. Because the
transmit power will not necessarily be the same at all nodes
all the time, node i will keep track of transmit power pi(k) =
ni(k)∆ for every k ∈ Ri, where ni(k) is a number of repeated
broadcasts by node k. In addition, once reliable, node i will
keep track of its unreliable neighbors, Ui. An unreliable node j
will send NACKj control messages to identify itself. As node
i becomes reliable, it will broadcast with maximum power
among its reliable neighbors in Ri,

p(Ri) = ∆ max
k∈Ri

{ni(k)}.

While reliable, whenever it overhears a transmission that
increases the power p(Ri), node i will repeat the broadcast
to meet it. In that way, the current maximum transmit power
in the network q will propagate until all reliable nodes have
transmitted with that power. A reliable node that overhears
no transmissions for time To > τ(∆) and has unreliable
neighbors, will decide to increase its transmit power. At the
end of the algorithm, power q will determine the broadcast
power q. A detailed description of the algorithm is given in
pseudocode in Figure 6.

Constraining the power of each transmission to ∆ defines
∆-neighborhoods and allows nodes to determine the link gains
within their ∆-neighborhoods. Therefore, power ∆ defines the
network topology and has to be high enough to guarantee
network connectivity [20]. In the distributed MLAB algorithm,
it is sufficient that under power ∆, the network is connected
in the overheard sense. That is, in the underlying graph, a
link between two nodes exists if they can overhear each other.
During MLAB, we assume that the network is connected under
power ∆.

This assumption is not essential for the algorithm and can
be relaxed by letting MLAB algorithm rely on preexisting
network topology. Different distributed algorithms for deter-
mining network topology have been proposed (see [21], [22])
and typically employ short HELLO control packets exchanged

At each node i do:
initialize Ri = ∅, pR = 0;
while (pR < P) do:

when data received with P from k:
collect data; pR ← pR + P;
if k �∈ Ri:

hik = P/∆, ni(k) = 0, Ri ← Ri ∪ {k};
send NACKi reliably to k;

end %if
ni(k) = ni(k) + 1;

end % while
as (pR ≥ P) do once:

decode the message;
set ni(i) = maxk∈Ri{ni(k), 1};
broadcast the decoded message once;
Ui = {j : j that responded with NACKj};
broadcast ni(i)− 1 times;

while (pR ≥ P) do:
when data received from node k:

update ni(k) = ni(k) + 1;
if ni(k) > ni(i):

ni(i)← ni(i) + 1, broadcast;
if k �∈ Ri: Ri ← Ri ∪ {k}, Ui ← Ui \ {k};

if no data received for To and Ui �= ∅:
broadcast;
ni(i)← ni(i) + 1;

end %if
end % while

Received power at a node is denoted pR.

Fig. 6. Distributed MLAB algorithm.

at the nodes. Given the power Pc and rate rc of control
packets, HELLO packets define one-hop neighborhood Ni(Pc)
for node i as all nodes that can reliably receive a HELLOi

packet sent at node i. A version of the distributed MLAB
algorithm can then be run on the top of the topology defined
by neighborhoods Ni(Pc) instead of Ni(∆).

Note that decreasing the rate rc reduces the power Pc neces-
sary for network connectivity by reducing the receiver power
threshold needed for reliable communication. Connectivity in
overheard sense, required for ∆-neighborhoods, reduces this
threshold to its minimum value necessary to acquire a signal
or decode a packet header and thus reduces necessary power
for connectivity. Therefore, it may be reasonable to assume
that under power ∆, network is connected. The next theorem
shows that the algorithm is correct and finishes in finite time.

Theorem 3: The distributed MLAB algorithm makes every
network node reliable in finite time.
The running time and performance of the algorithm are
dependent on value of parameters ∆ and To. In fact, we have
the following theorem.

Theorem 4: For large enough To, To > τ(∆), power q
found by the distributed MLAB is within ∆ of the optimum
solution; that is, q ∈ [p∗, p∗ + ∆).
Thus, by choosing smaller ∆, solution found by the distributed
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MLAB approaches the optimum, at the expense of longer
running time due to the larger To and smaller step size ∆.
When the distributed MLAB does not rely on a preexisting
topology, there is a lower bound on ∆ to guarantee network
connectivity. At the other extreme, for ∆ large enough to
guarantee full connectivity (every node can overhear every
transmission), To can be chosen to be 0. The optimal tuning
of the algorithm parameters has yet to be determined.

VII. CONCLUSION

In this paper, we addressed the cooperative multicast net-
work lifetime problem and proposed the Maximum Lifetime
Accumulative Broadcast (MLAB) algorithm that finds an op-
timum solution. The constant power levels found by the
algorithm ensure that the lifetimes of the active relays are
the same, causing them to fail simultaneously. Furthermore,
the MLAB algorithm solves both the cooperative broadcast
and cooperative unicast problem that are useful for many
applications. In sensor networks, for example, the unicast
problem arises in any scenario where the data collected at
the sensors is gathered by a central station.

The ASAP(p∗) solution found by MLAB is static since it
stays constant throughout the multicast session. In conven-
tional broadcast, the constraint that a node is made reliable by
the transmission of a single relay, causes the relay with the
most disadvantaged child to drain its battery fastest. Conse-
quentially, the optimality of a spanning tree that maximizes the
network lifetime for a given initial battery levels is temporary
and dynamic tree updates [10], [11] are needed for load
balancing. In a cooperative multicast using the ASAP(p∗)
distribution, all relays will be draining their batteries evenly;
however, a set of leaf nodes Uτ∗(p∗) will never transmit and
will have full batteries even when the relay nodes die. An
significant question is whether the undepleted batteries of these
leaf nodes can be exploited by a dynamic multicast strategy.

After multiple uses of the ASAP(p∗) distribution, re-
examination of the maximum lifetime problem (12), as ex-
pressed in terms of normalized powers, will show for each
non-relay node j ∈ Uτ∗(p∗) that the outgoing normalized
link gains hkj have increased by the ratio of the full battery
energy of node j to the depleted battery of node 1. Although
one can show that reconfiguring the multicast distribution to
maximize the residual network lifetime results in the very
same ASAP(p∗) distribution, it would be mistake to conclude
that ASAP(p∗) policy is an optimal dynamic policy. In fact,
similar to the conventional broadcast, a dynamic strategy with
time varying powers can extend the network lifetime. For
example, in the four node network shown in Figure 7, the
source node 1 wishes to send messages to the destination
node 4. With initial battery powers ei = 1 and required
received power P = 1, the ASAP solution use transmissions
by nodes 1, 2 and 3, each with power p∗ = 2/3. The lifetime
of each node is ei/p∗ = 3/2. On the other hand, alternating
between schedule x = [1, 2] with power vector p = [1/3, 1, 0]
and schedule x′ = [1, 3] with power vector p′ = [2/3, 0, 1]
results in a system which has average transmit power of
1/2 for each node and resulting network lifetime 2. In this

1

2

3

4

h =3
21

h =1
42

h =1
43h =1.5

31

Fig. 7. Four node network example.

case, dynamic switching between schedules, corresponding to
routing packets along multiple routes, yields a network lifetime
larger than that of the ASAP distribution, the optimal static
policy. A general solution for the optimal dynamic cooperative
multicast remains an open problem at this time.

In this paper, the cooperative multicast was proposed for
the AWGN channel with constant link gains. However, the
cooperation between the nodes in the fading channel offers
the additional benefit as a form of diversity [23–25]. It would
also be interesting to consider the implications of time varying
channels to the accumulative multicast problems.

VIII. APPENDIX

Proof: Theorem 1

The proof is by induction on k, where k is the index to a
sequence of stages during the ASAP(p̃) distribution. We prove
by induction that at the start of stage k, nodes {x1, . . . , xk} ⊂
Sk(p̃). In case that the number of stages is τ̃ = τ(p̃) < M ,
we define Sk(p̃) = Sτ̃ (p̃) for all τ̃ < k ≤M . The idea is that
ASAP(p̃) makes nodes reliable at least as soon as the schedule
x̃.

Case k = 1 is obvious since S1(p̃) = {1} for any p̃. Next
we assume that {x1, . . . , xk} ⊂ Sk(p̃). This implies

p̃
∑

xj∈Sk(p̃)

gk+1,j ≥ p̃
∑

xj∈{x1,...,xk}
gk+1,j ≥(a) P (15)

where (a) follows from the feasibility of power p̃ for schedule
x̃, because under schedule x̃, node xk+1 is made reliable
by transmissions of {x1, . . . , xk}. We conclude that xk+1 ∈
Sk+1(p̃) and since {x1, . . . , xk} ⊂ Sk(p̃) ⊂ Sk+1(p̃), it fol-
lows that {x1, . . . , xk+1} ⊂ Sk+1(p̃). Thus, {x1, . . . , xM} ⊂
SM (p̃), implying the ASAP(p̃) distribution makes all the
nodes in a schedule x̃, and thus all destination nodes, reliable.
�

Proof: Theorem 2

Suppose the last restart of the MLAB algorithm occurs when
the power is p0 and the ASAP(p0) distribution stalls at stage
τ0 = τ(p0). This implies

p0

∑
k∈Sτ0 (p0)

hjk < P, j ∈ Uτ0(p0). (16)

In this case, we restart MLAB with broadcast power p0 + δ0

where δ0 = minj∈Uτ0 (p0) δj and δj satisfies

(p0 + δj)
∑

k∈Sτ0 (p0)

hjk = P . (17)
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This implies

(p0 + δ0)
∑

k∈Sτ0 (p0)

hjk ≤ P , j ∈ Uτ0(p0). (18)

Since this is the last restart of MLAB, the ASAP(p0 + δ0)
distribution is a feasible multicast. It follows that p∗ ≤ p0+δ0

since p∗ is the optimal broadcast power. To show that p∗ =
p0 + δ0 requires the following lemma.

Lemma 1: For any power p′ < p0 + δ0, the ASAP(p′)
distribution stalls at stage τ ′ = τ(p′) with Sτ ′(p′) ⊂ Sτ0(p0).

Lemma 1 implies that if p∗ < p0 + δ0, then the ASAP(p∗)
distribution will stall, which is a contradiction of Theorem 1.
Thus, at the final restart of the MLAB algorithm, the power
is p0 + δ0 = p∗.

Proof: Lemma 1

Let F = Sτ ′(p′) \Sτ0(p0). First, we show by contradiction
that F is an empty set. Suppose F is nonempty. Let τF denote
the first stage in which a node j′ ∈ F was made reliable by
the ASAP(p′) distribution. Thus,

P ≤ p′
∑

k∈SτF (p′)

hj′k. (19)

Moreover, SτF (p′) ⊂ Sτ0(p0) since up to stage τF , all nodes
that were made reliable by ASAP(p′) belong to Sτ0(p0).
Hence,

P ≤ p′
∑

k∈Sτ0 (p0)

hj′k (20)

<(a) (p0 + δ0)
∑

k∈Sτ0 (p0)

hj′k (21)

≤(b) P (22)

since (a) follows from p′ < p0 + δ0 and (b) follows from
Equation (18). Thus we have the contradiction P < P and we
conclude that F is empty, Sτ ′(p′) ⊂ Sτ0(p0), and Uτ0(p0) ⊂
Uτ ′(p′). Second, we observe that ASAP(p′) stalls at stage τ ′

since for all j ∈ Uτ ′(p′),

p′
∑

k∈Sτ′ (p′)

hjk ≤ p′
∑

k∈Sτ0 (p0)

hjk (23)

< (p0 + δ0)
∑

k∈Sτ0 (p0)

hjk ≤ P . (24)

�

Proof: Theorem 3

In a network that is connected under power ∆, there is a
path from the source node to every other node in the network.
Consider a path from node 1 to some node K. We relabel
the nodes such that the path is given by [1, 2, . . . K]. For any
reliable node 1 ≤ k ≤ K − 1 such that k + 1 is unreliable,
it holds that k + 1 ∈ Uk. By distributed MLAB, node k
will increase its transmit power whenever it overhears no
transmissions for To, until k + 1 is reliable. Thus, eventually

all the nodes on the path will be reliable. This holds for any
path for any node K.

We next find an upper bound on Ti, time it takes for a node
i to make all of its neighbors reliable. An upper bound on
the number of transmissions needed at a node i to make node
j ∈ Ni(∆) reliable, neglecting the energy node j may have
collected from transmission from other nodes, is 
P/hji∆�.
In the worst case, node i will wait for To between any two
consecutive broadcasts. Thus,

Ti ≤ max
j∈Ni(∆)

{
To

⌈
P

∆hji

⌉}
(25)

= To

⌈
P

∆ minj∈Ni(∆){hji}

⌉
. (26)

Since j ∈ Ni(∆), it follows that hji �= 0 and therefore Ti is
finite for every node i. Since there is only a finite number of
nodes, all nodes will be made reliable in finite time. �

Proof: Theorem 4

To prove Theorem 4, we next upper bound the time T (k)
it takes for maximum transmit power q = k∆, k > 0 to
propagate through the network.

Lemma 2: Let T be the duration of a single transmission
and let τ(k) = N(k + 1)T . Then, T (k) < τ(k).

Proof: Lemma 2

The time it takes for one node to transmit with q is upper
bounded by kT , the case when the node never previously
transmitted. Since the node may have to wait for NACKs for
additional time T , the total time at a node is upper bounded
by (k + 1)T , Since the propagation cannot take more than N
hops, the total time is upper bounded by N(k + 1)T . �

To prove Theorem 4, we first observe that power q is lower
bounded by p∗: before the power p∗ is reached, there are
always nodes that are unreliable and the distributed MLAB
does not stop at the reliable nodes. The power p∗ is reached
for q = 
p∗/∆�∆ < p∗ + ∆ and no further increase in power
is neccessary. By Lemma 2, q will propagate in less than
τ(∆) = N(
p∗/∆� + 1)T time. If To ≥ τ(∆), no node
will increase q before all reliable nodes transmitted with q.
However, at that point all network nodes will be reliable and
distributed MLAB will stop at all nodes with q = q. �
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