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Abstract

This exercise aims at exploring different techniques for creating
a random variable X according to a normal distribution with zero
mean and unit variance. The methods include the use of an inverse
cumulative distribution function, the Box–Muller method, the polar
technique and the application of the Central Limit Theorems to uni-
form random variables. The normal random variables generated by
these methods are then compared according to different performance
metrics, including their mean, variance and kurtosis, and conclusions
are drawn about the performance of each of the techniques.

1 Introduction

The Gaussian distribution, or normal distribution, is a continuous distribu-
tion function that is defined completely by the mean and variance of the
distribution. The probability density function (pdf) of a Gaussian random
variable X is given by:

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (1)

∗Submitted as partial fulfillment of course requirement in Stochastic Signals and Sys-
tems (ECE 330:541) to Dr. Wade Trappe, Assistant Professor, Rutgers, The State Uni-
versity of New Jersey.
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where, µ: mean of the distribution
σ2: variance of the distribution

The Gaussian distribution is real-valued and symmetric about the mean. A
standard normal distribution is obtained by putting µ = 0 and σ2 = 1 in (1)
and is typically represented as N(0, 1).

The Gaussian distribution, in the form of a bell-shaped curve, appears in
several man-made and natural phenomena and has been christened normal

as a tribute to its ubiquity. The frequent ocurrence of the distribution fol-
lows from the Central Limit Theorems, which state that the mean of a set of
variates with any distribution having a finite mean and variance tends to the
Gaussian distribution. As pointed out in [1], in nature, many macroscopic
phenomena result from the addition of numerous independent, microscopic
processes; this gives rise to the Gaussian random variable.

Historically, the normal distribution was first introduced by de Moivre
in the second edition of his Doctrine of Chances (1718), in the context of
approximations of large binomial coefficients. His result was extended by
Laplace in his book Analytical Theory of Probabilities (1812), and is now
called Theorem of de Moivre-Laplace. Around that time the analysis of
errors of experiments was pioneered by Laplace, Legendre and Gauss. The
distribution appearing in the theorem of de Moivre–Laplace was called Gaus-
sian as a result of Gauss’ work on the method of least squares, introduced by
Legendre in the context of the theory of errors. Towards the end of the 19th
century, Pearson established the priority of de Moivre, and Poincar coined
the name “normal” [2].

2 Generation of Normal Random Variables

This exercise calls for the generation of a standard normal distribution using
the following four techniques:

1. Inverse Distribution

2. Box–Muller Method

3. Polar Technique
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4. Sums of Uniform Random Variables

For all the methods, 1000 Gaussian random variables were generated and
their frequency distribution plotted in the form of a histogram. The mean
and variance of the distributions were also calculated, since a normal dis-
tribution is completely characterised by these parameters. According to the
requirements of the problem these values should be as follows:

• Mean, µ = 0

• Variance, σ2 = 1 (i.e., standard deviation, σ = 1)

The histogram technique obviously necessitates a certain amount of discreti-
sation of the data, but by selecting a sufficently small interval (0.01), a fairly
accurate distribution was obtained. It may be pointed out that although
the distribution has the classic bell-shaped form, it does not represent the
probability density function (pdf) of the Gaussian random variable.

2.1 Inverse Distribution

A random variable X can be created by computing the inverse cumulative
distribution function (cdf) of a set of uniformly distributed random numbers.
Thus, a Gaussian random variable may be generated by chossing a random
(uniformly distributed) real number between 0 and 1, since they are the lower
and upper bounds respectively of a cdf, and applying F−1

X , the inverse cdf
function, to obtain the random variable X. The inverse cdf function for a
Gaussian variable does not have a closed form expression, although there are
several approximations available in the literature. One of them is to obtain
it in terms of the Q(x) function, and which has been provided as a guide-
line in the problem statement. However, taking advantage of the freedom to
choose an equivalent approximation and by exploiting the powerful built-in
functions in matlab, a more direct approach was used to obtain the inverse
cdf, as has been described below.

The matlab function normcdf can calculate the normal cdf with a par-
ticular mean µ and standard deviation σ corresponding to a particular x.
Thus, taking advantage of the fact that the cdf is a monotonically increas-
ing function, the inverse cdf corresponding to a random number y can be
obtained by calculating normcdf(x) starting at −3 (where the cdf is 0.0013)
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Figure 1: matlab plot of frequency distribution (histogram) of random vari-
ables generated by the inverse cdf method. The abscissa represents the value
of the random variable and the ordinate represents the number of correspond-
ing occurrences.

and progressively increasing the value of x until the following condition is
satisfied within a very small error:

y =
1√
2π

e−
x
2

2 (2)

This gives x =cdf−1(y) and forms the basis for the method used to generate
the Gaussian random variable. It may be pointed out that while this tech-
nique is computationally inefficent, it can obtain the inverse cdf with a high
degree of accuracy since it is equivalent to a look-up table method whose
precision depends on the increment value of the variable.

In the execution of the algorithm (matlab source code in Appendix A.1),
the variable was incremented by 0.01, which is quite a conservative value,
since standard cdf tables use the same increment, and a mean interpolation
was performed for the final value. Fig. 1 displays a typical frequency distri-
bution obtained for a generated set of 1000 Gaussian random variable. The
average parameters of the distribution obtained from 10 successive simula-
tions (with different random number seeds) were found to be:
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Figure 2: matlab plot of frequency distribution (histogram) of random vari-
ables generated by the Box–Muller method. The abscissa represents the value
of the random variable and the ordinate represents the number of correspond-
ing occurrences.

• Mean, µ = 0.0232

• Variance, σ2 = 1.03001

2.2 Box–Muller Method

The Box–Muller method makes use of the fundamental transformation law
of probabilites to convert from a two-dimensional continuous uniform dis-
tribution (uniformly and independently distributed between 0 and 1) to a
two-dimensional Gaussian bivariate distribution. Thus the method gives a
set of random numbers which have a Gaussian distribution with zero mean
and unit standard deviation. The result may be proved by solving for the
uniform random variables in terms of the normal random variables and taking
the Jacobian which yields the desired result [3].

y1 =
√

−2 ln(x1) cos(2πx2) (3)

y2 =
√

−2 ln(x2) cos(2πx1) (4)

5



Thus,

x1 = e−
(y2

1+y
2
2)

2 (5)

x2 =
1

2π
tan−1(

y2

y1

) (6)

Taking the Jacobian yields,

δ(x1, x2)

δ(y1, y2
= −[

1

2π
e−

y
2
1
2 ][

1

2π
e−

y
2
2
2 ] (7)

In the execution of the algorithm (matlab source code in Appendix A.2),
the frequency distribution that was obtained for a typical set of 1000 gener-
ated Gaussian random variable is shown in Fig. 2. The average parameters
of the distribution obtained from 10 successive simulations (with different
random number seeds) were as follows:

• Mean, µ = 0.01233

• Variance, σ2 = 0.99126

2.3 Polar Technique

Another form of the Box–Muller method is called the polar technique. This
improves over the previous technique in being quicker (since it makes fewer
calls to the mathematical library and uses only one transcendental function,
instead of three) as well as numerically more robust (the previous method
has numerical stability problems when x1 or x2 is very close to zero) [2].

The algorithm can be summarised as follows:

1. Let U1 and U2 be independent and identically distributed (iid) uniform
random variables.

2. Vi = 2Ui − 1 and define W = V 2
1 + V 2

2 .

3. If W > 1 then go back to step 1, else let y =
√

−2 ln(W )
W

.

4. Then, X1 = V1Y and X2 = V2Y are iid N(0, 1).
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Figure 3: matlab plot of frequency distribution (histogram) of random vari-
ables generated by the polar technique. The abscissa represents the value of
the random variable and the ordinate represents the number of corresponding
occurrences.

This method is advantageous of this method over the first form of Box–
Muller’s method in spite of the fact that the algorithm discards 21% of the
values of W in step 3.

The algorithm (matlab source code in Appendix A.3) was executed for
1000 iterations in each of its runs and a typical frequency distribution of the
Gaussian random variables that was obtained is shown in Fig. 3. The average
parameters of the distribution obtained from 10 successive simulations (with
different random number seeds) were found to be:

• Mean, µ = 0.0034

• Variance, σ2 = 0.99908

2.4 Sum of Uniform Random Variables

As was briefly touched upon in the Introduction, the Central Limit Theo-
rems are a set of weak convergence results that express the fact that any
sum of many small independent random variables is approximately normally
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Figure 4: matlab plot of frequency distribution (histogram) of random vari-
ables generated by the sum of random variables method. The abscissa rep-
resents the value of the random variable and the ordinate represents the
number of corresponding occurrences.

distributed.

More formally, this result can be expressed as follows [4]: Let Wn =
X1 + · · ·+Xn be an iid random sum with E[X] = µX and Var[X] = σ2

X . The
cdf of Wn may be approximated by

FWn
(w) ≈ Φ(

w − nµX
√

nσ2
x

) (8)

where Φ(·) represents the cdf of a Gaussian distribution.

For a uniform random variable in the range (0, 1), the mean and variance
are given by 1 and 1

12
respectively. Hence, the normal random variable may

be approximated as:

Y =
Σn

i=1Xi − n
2

√

n
12

(9)

for a sufficiently high value of n.

8



In the execution of the algorithm (matlab code in the Appendix), 1000
uniformly distributed random variables were used to generate each Gaussian
random variable. The frequency distribution for 1000 of these Gaussian
random variables in a typical run is shown in Fig. 4. The average parameters
of the distribution obtained from 10 successive simulations (with different
random number seeds) were calculated to be:

• Mean, µ = −0.00377

• Variance, σ2 = 1.00722

3 Results

As has been mentioned earlier, a Gaussian distribution is completely defined
by its mean and variance. It follows, therefore, that a natural choice of per-
formance metrics would involve the mean and variance obtained for each of
the simulations. Since the exact values of the mean and variance for a stan-
dard normal distribution are known (namely, η = 0 and σ2 = 1 respectively),
it is possible to treat the deviation of the obtained values from the expected
values as an error and consequently calculate the following error estimates:

• mean square error,

• mean absolute error, and

• maximum absolute error.

However, the use of error estimates to compute the discrepancy in the
mean and variance does not address the more central issue about the gaus-

sianity of the distribution. To take an extreme example, a standard Lapla-
cian distribution with zero mean and unit variance would return a zero error
estimate, and yet would be a far cry from the expected Gaussian curve. To
overcome this shortcoming, use is also made of other standard measures for
the nongaussianity of a distribution. These performance metrics, like kurto-

sis and negentropy, are discussed in the following subsection.

The table above summarises the results obtained for mean, variance and
kurtosis for ten runs of each of the four algorithms discussed in Section II.
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1 2 3 4 5 6 7 8 9 10 Average
µ1 .037 .048 .069 .055 .026 .032 .003 -.014 .021 -.045 0.02320
σ2

1 1.101 1.044 .987 .998 .978 1.057 .997 1.011 1.043 1.085 1.03001
K1 -.045 -.074 -.027 -.018 .101 -.218 -.034 -.163 .073 -.180 -0.05841
µ2 .008 .034 .032 -.006 .045 .042 -.004 .036 -.033 -.032 0.01233
σ2

2 .985 1.011 .970 .955 1.026 .935 .978 1.031 1.010 1.011 0.99126
K2 -.029 .079 .009 -.033 -.032 .010 .096 .059 -.078 .029 0.01096
µ3 -.007 .039 .024 -.004 -.004 .014 .024 -.016 -.051 .015 0.00340
σ2

3 .993 1.032 .991 1.006 .970 1.002 .997 .996 .999 1.003 0.99908
K3 -.032 -.074 -.027 -.097 -.028 -.053 -.137 .174 .035 -.161 -0.04009
µ4 -.043 .037 -.038 -.064 .027 .028 .027 -.020 -.013 .022 -0.00377
σ2

4 .946 1.015 .973 .953 1.041 .988 1.073 1.037 1.001 1.045 1.00722
K4 .018 .073 .012 -.097 -.025 -.292 -.266 -.079 -.107 -.027 -0.07912

3.1 Measures of Nongaussianity

Certain standard performance metrics are used in Independent Component
Analysis to reveal hidden patterns underlying sets of random variables. Com-
mon metrics for measuring the degree of nongaussianity in a distribution in-
clude kurtosis and negentropy [5]

The classical measure of nongaussianity is the kurtosis or the fourth order
cumulant, and is defined by [6]:

K(x) =
E[(x − µ)4]

σ4
(10)

where, x: random variable
µ: mean (first moment) of the distribution
σ4: fourth moment of the distribution

The kurtosis for a standard normal distribution is 3. For that reason,
some authors prefer to represent kurtosis as the excess value over 3, and
define it as follows:

K(x) =
E[(x − µ)4]

σ4
− 3 (11)

This second definition is used in the analysis that follows since it leads to a
more natural interpretation of nongaussianity.
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Random variables that have a negative kurtosis are called subgaussian,
and those with positive kurtosis are called supergaussian. In statistical lit-
erature, the corresponding expressions platykurtic and leptokurtic are also
used. Supergaussian random variables typically have a “spiky” pdf with
heavy tails, i.e., the pdf is relatively large at zero and at large values of
the variable, while being small for intermediate values. Subgaussian random
variables, on the other hand, have typically a “flat” pdf, which is rather con-
stant near zero, and very small for larger values of the variable.

A second very important measure of nongaussianity is given by negen-
tropy, and is defined by J(y):

J(y) = H(ygauss) − H(y) (12)

H(y) = −
∫

f(y) log(f(y))dy (13)

where, ygauss: a Gaussian random variable of the same covariance matrix as y

Negentropy is always non-negative, and is zero if and only if y has a
Gaussian distribution.

Because of the complexities involved in the evaluation of the negentropy,
only the kurtosis was used in measuring the nongaussianity of the generated
random variables in this study. It may also be pointed out that since the
Statistical Toolbox of matlab 6 defines the kurtosis of a standard normal
distribution as 3, a modified version of the function kurtosis was used in
the simulations.

Applying the definitions of kurtosis to the data summarised in the table,
it becomes obvious that the kurtosis for the four methods are within 8% of
the expected values and may be considered Gaussian to quite a high degree
of accuracy. Moreover, while the random variables obtained from the first
Box–Muller method were supergaussian, the random variables generated by
the other three methods were subgaussian. At the same time, the Box–Muller
distribution is closest to having an average kurtosis of zero, and is therefore
nearest to a standard normal distribution. This also agrees with the fact
that visually, the Box–Muller histogram has the “most pleasing” bell-shape,
with the least number of spikes.
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The use of kurtosis in the comparison of the different normal random vari-
able generation schemes is motivated by the fact that although a Gaussian
random variable is completely characterised by its mean and variance, the
converse is not true– namely, other distributions can have the same values
for these parameters as the standard normal distribution. Thus, given that a
distribution is normal, the mean and variance may be used to check whether
it is a standard normal distribution with excellent results. But when the
distribution itself may not be Gaussian with a high degree of accuracy, the
kurtosis becomes more effective as it contains information about the shape

of the curve in a way that is not provided be merely the mean and variance.

3.2 Mean Square Error

The mean square error is one of the most commonly used performance metrics
for the estimation of error or population variance. It is the average of the
square of the difference between the desired response and the actual system
output. One of the reasons for its popularity is that it lends itself easily to
mathematical evaluation and derivations. It is defined as:

ε = E[(X − x̂)2] (14)

where, X: true value
x̂: estimated value

Once the kurtosis values have established that the random variables ob-
tained are very close to a Gaussian random distribution, the mean square
error metric may be used to obtain a better idea of how close the generated
distributions are to the requirements of being standard normal distributed
(η(0, 1)). To that end, the mean square error in the mean, variance and kur-
tosis (assuming the deviation of the values of the mean, variance and kurtosis
from 0, 1 and 0 to be their respective “errors”) were evaluated for the four
methods based on a sample space of size 10 (assuming each of them to be
equiprobable). The results that were obtained are listed below:

1. Inverse Cumulative Distribution

• εµ = 0.001582

• εσ2 = 0.002531
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• εK = 0.01317

2. Box–Muller Method

• εµ = 0.00095

• εσ2 = 0.000984

• εK = 0.002875

3. Polar Technique

• εµ = 0.000612

• εσ2 = 0.000215

• εK = 0.009639

4. Sums of Uniform Random Variables

• εµ = 0.001199

• εσ2 = 0.001676

• εK = 0.019034

3.3 Mean Absolute Error

The mean absolute error is a performance metric that is easy to understand,
but sometimes difficult to implement mathematically. It is the average of
the absolute difference between the desired response and the actual system
output. It is often used in image processing applications in lieu of the mean
square error estimator because it requires much less memory to calculate.
The mean absolute error is defined as:

ε = E[|X − x̂|] (15)

where, X: true value
x̂: estimated value

Once the kurtosis values have established that the random variables ob-
tained are very close to a Gaussian random distribution, the mean absolute
error metric may be used to obtain a better idea of how close the generated
distributions are to the requirements of being standard normal distributed
(η(0, 1)). To that end, the mean absolute error in the mean, variance and
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kurtosis (assuming the deviation of the values of the mean, variance and
kurtosis from 0, 1 and 0 to be their respective “errors”) were evaluated for
the four methods based on a sample space of size 10 (assuming each of them
to be equiprobable). The results that were obtained are listed below:

1. Inverse Cumulative Distribution

• εµ = 0.03498

• εσ2 = 0.03813

• εK = 0.09325

2. Box–Muller Method

• εµ = 0.02723

• εσ2 = 0.02668

• εK = 0.04522

3. Polar Technique

• εµ = 0.02

• εσ2 = 0.00968

• εK = 0.08185

4. Sums of Uniform Random Variables

• εµ = 0.03181

• εσ2 = 0.0353

• εK = 0.09962

3.4 Maximum Absolute Error

The maximum absolute error is a performance metric that gives the worst-
case error, but its practicality is again limited by the difficulty in imple-
menting the absolute function. It is the maximum of the absolute differences
between the desired response and the actual system output. Mathematically
it is defined as:

ε = max{|X − x̂|} (16)
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where, X: true value
x̂: estimated value

Once the kurtosis values have established that the random variables ob-
tained are very close to a Gaussian random distribution, the maximum ab-
solute error metric may be used to obtain a better idea of the deviation of
the generated distribution from the requirements of being standard normal
distributed (η(0, 1)). To that end, the maximum absolute error in the mean,
variance and kurtosis (assuming the deviation of the values of the mean,
variance and kurtosis from 0, 1 and 0 to be their respective “errors”) were
evaluated for the four methods based on a sample space of size 10 (assuming
each of them to be equiprobable). The results that were obtained are listed
below:

1. Inverse Cumulative Distribution

• εµ = 0.0689

• εσ2 = 0.1014

• εK = 0.2182

2. Box–Muller Method

• εµ = 0.0452

• εσ2 = 0.0648

• εK = 0.0956

3. Polar Technique

• εµ = 0.0514

• εσ2 = 0.0322

• εK = 0.1735

4. Sums of Uniform Random Variables

• εµ = 0.0637

• εσ2 = 0.0542

• εK = 0.2925
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4 Conclusion

This section attempts to draw a comparison between the different perfor-
mance metrics employed to evaluate the gaussianity of the generated distri-
butions. These measures range from subjective metrics that return qualita-
tive (for instance, visual cues) information about the distribution, to more
quantitative measures that summarise the same statistics in the form of a
well-defined function.

Although not glorified to the same extent as the other metrics, the hum-
ble histogram that was used to plot the distribution of the random variables
is itself an important tool in determining how close the distribution is to a
Gaussian curve. Gaussian random variables are distributed such that the
incidence of the variables is high near the mean of the distribution and falls
off when moving away from the mean. Thus, the random variables generated
by each of the techniques were plotted according to their frequency of occur-
rence, and it was seen that within limits of the resolution accuracy, the mean
was equal to the mode, which is a property of a normal distribution. Thus,
the histogram, or frequency distribution curve, serves an important role in
giving a visual qualitative measure of the generated random variables.

The most important metric for determining the inherent gaussianity of
the distribution is arguably the kurtosis. As has been explained in Section
3.1, this returns a quantitative measure for how close a distribution satisfies
the properties of a normal distribution. In this case, the average kurtosis val-
ues for all the random variable generation techniques come within 8% of the
desired value (K = 0) for a standard normal distribution. This result sug-
gests that all the four methods are acceptable as legitimate means to create
Gaussian random variables. It may be pointed out that the first Box–Muller
method (K = 0.01096) comes closest to meeting the Gaussian requirement
of zero kurtosis, despite its tendency to have numerical stability problems
near zero.
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Method Mean Sq. Error Mean Abs. Error Max. Abs. Error
Inverse εµ 0.001582 0.03498 0.0689
Distribution εσ2 0.002531 0.03813 0.1014
Box–Muller εµ 0.000950 0.02723 0.0452
Method εσ2 0.000984 0.02668 0.0648
Polar εµ 0.000612 0.02000 0.0514
Technique εσ2 0.000215 0.00097 0.0322
Sum of εµ 0.001199 0.03181 0.0637
Uniform RVs εσ2 0.001676 0.03530 0.0542

Once the above two measures established that the generated distributions
were indeed Gaussian, both qualitatively and quantitatively, error functions
were defined to evaluate the deviation of the mean and the variance from
the expected values (0 and 1 respectively, in the case of a standard normal
distribution). These measures indicate that the parameters were well within
an acceptable error margin. The mean absolute error, which is probably the
most popular error estimate, was within 1% for the mean and variance, while
the mean absolute error was around 3% for all the four techniques. Finally,
the maximum absolute error, which gives an estimate about the worst-case
deviation, suggests that the errors are of the order of 10% in mean and vari-
ance for the four techniques compared to a standard normal distribution. It
is worth noting, however, that since mean square error and mean average
error are averaging metrics, they tend to balance out variations in a distri-
bution provided they occur sufficiently infrequently. So, depending on the
degree of precision required, the maximum absolute error may be a better
measure of the quality of the generated random variables. It may also be
pointed out that, once again, the Box–Muller methods outperform the other
techniques for generating Gaussian random variables.

In conclusion, there is no single performance metric that encapsulates in-
formation about the gaussianity of the distribution as well as the closeness
to the standard normal distribution. However, it has been established that
it would be foolhardy to design a metric that is based solely on the mean
and variance of the distribution. A good metric could combine information
from the kurtosis with an estimation of the error provided by the maximum
absolute error, to assess the quality of a generated Gaussian random vari-
able. Based on this metric, the Box–Muller method for generating Gaussian
random variables seems to provide the best performance.
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A Appendix

The appendix lists the source codes used for simulating the four algorithms
discussed in this report. The programs were written in matlab version
5.2.0.3084, and were executed in a Microsoft Windows 98SE environment.

A.1 Inverse Distribution

% This generates normal random variables

% and calculates their mean and variance

% using inverse CDF of uniform RVs

for i=1:1000

z=rand(1);

j=-3;

while normcdf(j)<z

j=j+0.01;

end

rv(i,1)=j-0.05;

end

x=-4.0:0.01:4.0;

hist(rv,x)

avg=mean(rv)

var=(std(rv))*(std(rv))

kurt=kurtosis(rv)

A.2 Box–Muller Method

% This plots and calculates the mean and

% variance for the distribution generated

% by the Box-Muller method (proj0102.m)

for i=1:1000

u1=rand(1);

u2=rand(1);
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x1=sqrt(-2*log(u1))*cos(2*pi*u2);

x2=sqrt(-2*log(u2))*cos(2*pi*u1);

rv1(i,1)=x1;

rv2(i,1)=x2;

end

rv=[rv1;rv2];

x=-4.0:0.1:4.0;

hist(rv,x)

avg=mean(rv)

var=(std(rv))*(std(rv))

kurt=kurtosis(rv)

A.3 Polar Technique

% This plots and calculates the mean and

% variance for the distribution generated

% by the polar technique (proj0103.m)

for i=1:1000

w=2;

while w>1

u1=rand(1);

v1=2*u1-1;

u2=rand(1);

v2=2*u2-1;

w=v18v1+v2*v2;

end

y=sqrt((-2*log(w))/w);

x1=v1*y;

x2=v2*y;

rv1(i,1)=x1;

rv2(i,1)=x2;

end

rv=[rv1;rv2];

x=-4.0:0.1:4.0;

hist(rv,x)

avg=mean(rv)

var=(std(rv))*(std(rv))
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kurt=kurtosis(rv)

A.4 Sums of Uniform Random Variables

% This generates normal random variables

% and calculates their mean and variance

% using sums of uniform random variables

for i=1:1000

for j=1:1000

x(j,1)=rand(1);

end

y=sum(x(:,1));

z=(y-(j/2))/sqrt(j/12);

rv(i,1)=z;

end

x=-4.0:0.1:4.0;

hist(rv,x)

avg=mean(rv)

var=(std(rv))*(std(rv))

kurt=kurtosis(rv)
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