
ORBIT Measurements Framework and Library (OML): Motivations, Design,
Implementation, and Features

Manpreet Singh, Maximilian Ott, Ivan Seskar, Pandurang Kamat
WINLAB, Rutgers University, 73 Brett Road, Piscataway, NJ 08854

{singh, max, Seskar, pkamat}@winlab.rutgers.edu

Abstract

In this paper we present ORBIT measurement

framework and library (OML), which is a distributed
software framework enabling real-time collection of
data in a large distributed environment. The success of
a multi-user distributed testbed facility depends largely
on the ease of use, remote access as well as on the ease
of collecting useful measurements from experimental
runs. OML provides a flexible and dynamic way in
which data is collected and made available for real-
time access to the experimenters. Application
programmers can use simple interfaces provided to
transfer measurements and other performance data to
a central repository. This paper focuses on the
motivation, requirements, design, implementation and
real world usage of OML that is designed to provide a
scalable, controllable and easy to use mechanism for
experimenters to collect useful results from the
experiments conducted on the ORBIT testbed [1].

1. Introduction

One of key challenges faced by an experimenter
using a distributed large-scale testbed is how to collect
experiment data efficiently. Traditionally, the
measurement data are locally written into log files and
are collected at the end of the experiment. A large
collection of nodes and huge amount of measurement
data generated during the experiment pertaining to
node, network and application performance, results in a
number of logging files in various formats.
Additionally many of the experiment parameters, such
as input parameters, may not be captured at all.
Another problem with logging files is that they require
some form of data serialization to a text file and back
for analysis making analysis across multiple
applications difficult. Also, the current data collection
mechanisms create excessive overhead, especially in
the maintenance of experiment results for future use.

 It is important to have a scalable, easy to use,
distributed and controllable framework to collect and
organize experiment data, and analyze the results in
real-time. A significant advantage of real-time data
collection is that it allows for interactive experiments in
which users can react to the dynamics of the
experiment immediately, saving valuable resources. It
can reduce the burden of measurement collection on
the experimenters so that they can focus on protocol
and application development without worrying about
the complexity and details to collect, transport and
store the experiment data.

We propose OML, which is a measurement data
collection and organization framework that addresses
the above challenges. It enables the experimenter to
define the measurement points and parameters, collect
and pre-process measurements, and organize the
collected data into a single database with the
experiment’s context, avoiding logging files in various
formats. The OML framework is based on a
client/server architecture and uses IP multicast for the
client to report the collected data to the server in real-
time. It defines the data structures and functions for
sending/receiving, encoding/decoding and storing
experiment data. With user-friendly and generic APIs,
it can be easily integrated into user applications. Users
can define what measurements are to be collected and
stored. The clients at the experiment nodes collect
measurements and send them to the collection server
over a multicast channel after encoding them into XDR
[2] format. OML supports multiple multicast channels
and instances of the collection server per experiment to
enhance the network scalability and provide reliability
of data collection by load balancing and redundancy.
An SQL database is used for persistent storage of
experiment data that also allows access using standard
data analysis tools like Matlab [6]. Note that although
OML is written initially with a focus on the ORBIT
testbed [1], it can be used in various wired and wireless

networking testbeds and distributed systems for data
collection.

The rest of this paper is organized as follows.
Section 2 discusses the requirements for data collection
posed by distributed large-scale network testbeds and
the key challenges in building such a collection
framework. In Section 3, the OML architecture and
implementation details are described with reference to
the requirements and features. It also discusses the
APIs provided to interface with application code and
the methods to control the collection behavior. Section
4 presents the performance of our implementation as
well as the experience gained through OML usage on
the ORBIT testbed [1]. Finally Section 5 concludes the
paper.

2. Requirements posed by a distributed
framework.

The initial goal of OML is to provide a mechanism
for large-scale testbed users the ability to transfer their
measurements into a database on a remote machine.
Traditionally, if the application is running on a number
of nodes, after the experiment concludes, users have to
log-in into all the machines and manually copy the
measurement files and system logs to a remote machine
for further analysis. This is a time consuming and
repetitive process, which delays the execution of the
next set of experiments waiting for the resources to
become available. It may also result in missing files.

Further, if the experimenter wishes to change the
collection behavior, he/she needs to recompile and re-
deploy the application, which itself is an error-prone
and time consuming process. Hence a framework,
which simplifies the data collection process, scales with
the size of the distributed system and allows dynamic
control over the measurement collection process, is
required in such a distributed networking environment.

The motivation behind OML is to hide the
complexity of data collection from the experimenters
so that they can focus on application development and
logic. Principle requirements of a data collection
framework in a distributed environment include
• User friendly:
Provide simple and user friendly APIs for the
application developer to collect and transport the
experiment data. This includes handling any threading
issues related to data collection, data-type safety and
minimal configuration and instantiation complexity on
the part of the application developer.
• Controllability and Management
It is time-consuming and complex to re-write,
recompile and re-deploy the application each time one

wants to change the collection behavior. There should
be a simple way to control and change this behavior in
real-time.
• Accountability
Framework should provide a way to correlate
application measurements and related data, in time (e.g.
timestamp) and context (e.g. sequence numbers, name
of the machine running the application and other
hardware/software characteristics).
• Collocation of information
Traditionally, in a large distributed environment, all the
information related to the experiment is not available at
a central point, making it difficult to correlate events in
an experiment with its configuration options and other
variable parameters associated with the execution
environment. The collection framework should provide
a central point where experimenters can look for data
related to the distributed environment in which
experiments are run.
• Scalability
The framework should not introduce network traffic
large enough to have a detrimental effect on the regular
application/control performance. It should make sure
that the processing load caused by the collection
framework on the machines running the application is
minimal.
• Flexible and Generic Solution
The collection framework should be generic enough
that it can be used to collect not only application
measurement’s data; but also any other data like system
and network statistics, application parameter and debug
logging etc.

3. OML Architecture and Implementation.

OML aims at reducing the burden of measurements
collection on application developers. It defines the
framework, data structures and functions for
transporting and storing experiment data. Data filters
form another sub-component of this library that allows
testbed users to compress/reduce the measurements by
applying various averaging, linear and non-linear
algorithms. From an operational perspective OML is
based on a client server paradigm, where clients are the
nodes running application code that dispatch the
measurements; and the server is a machine that
receives, decodes and stores this data in the SQL
database.
 Figure 1 shows the high level architecture of OML,
with client side and server side components
communicating through IP multicast. If the
environment consists of a large number of nodes
generating massive amounts of measurement traffic,

multiple multicast channels can be used in conjunction
with virtual lans (vlans) to distribute the network load.
Multiple collection servers may subscribe to the same
multicast address to provide runtime redundancy to the
collection mechanism. Thus using multicast in OML
serves to improve both scalability and reliability of the
collection framework.

XDR Encoded data over multicast channel .

Collection server

SQL DB

OML transport layer

OML XDR decoder

OML SQL module

User application

OML interface to user application

OML transport layer

OML data filter , id = xx

OML data filter , id = yy

p
lu

g
g
a
b
le

 f
ilt

e
rs

Experiment node

Berkeley Queues

Figure 1. OML component architecture

3.1. Client side components

3.1.1. API interface. This interface provides user
applications with the ability to transport collection data
through the OML framework. It also provides a type
safe way of transferring data over the network and
handling the threading issues if any.

3.1.2 OML data filters. These are pluggable
components that provide a standard way of reducing
the amount of collectable data to be stored for further
analysis. More the amount of data we capture, the more
we have to transport and store; hence exhausting the
disk and network resources. On the other hand, filtering
too aggressively might "throw away" details which turn
out to be crucial in understanding certain phenomena,
resulting in re-run of the experiment with different
filter settings.

 Filters can be configured and used without re-
writing the application code and hence provide a
flexible and efficient way to change the data collection
behavior. OML supports time triggered filtering, where
filters are fired after certain amount of time; and
sample triggered filtering in which case filters are fired
based on the number of data values collected.
3.1.3 OML XDR Encoding and transport layer. This
module is responsible for encoding the filtered

measurements data into XDR format and sending it to
the OML server over a multicast channel. Each
encoded packet corresponds to a measurement point
and contains its name thus helping the server to identify
the measurement point the packet belongs to. This
module provides a memory and network efficient way
of transferring experiment data.

3.2. Server side components.

3.2.1. Berkeley database queue (bdb queue).
SleepyCat’s Berkeley database [3], which is an
embedded database that supports key based fast access
persistent queues, is used to store the received packets.
The logic behind such a design is the fact that XDR
decoding and SQL insert process is much slower than
the data receiving process. Using a queue significantly
improves the scalability of OML by providing a buffer
to avoid packet loss when dealing with experiments
that generate bursty data. Since bdb queues are used as
a pluggable component, OML transport layer can feed
into multiple bdb queues to accommodate data load
dynamically.

3.2.2. XDR Decoder. Decoder reads out of the bdb
queue and decodes the XDR packet according to the
server configuration file. Both, the client and the server
configuration files are generated from the same
application and experiment definition files; this ensures
that decoding is done in a type safe manner.

3.2.3. SQL Module. This module is responsible for
storing the decoded values in the SQL server for post
experiment analysis and data persistency. Since each
OML packet contains the name of the measurement
point, which in turn is mapped to a unique database
table; it is used to identify the correct table where the
measurement values are to be stored. OML currently
uses MySQL server [4], but any SQL compliant
database is supported. Popular data analysis tools like
Matlab and Microsoft Excel can directly import data
from an SQL database, hence significantly enhancing
the usability of OML.

3.3. OML configuration and setup

3.3.1 Code generation for OML client API. Client
API provides clean interfaces for the application
developers making it easy for the users to integrate
measurement collection capabilities into their
applications. Application developers also don’t have to
worry about the threading issues as they are handled by
the OML.

An application developer can define the
measurement points and parameters for his/her
application through a web interface. As shown in
Figure 2, the definition is saved into an XML-based
configuration file. Based on the definition, the source
code for the measurement client is automatically
generated by an XSLT based code generator. At the
client side, this automatically generated code contains
application specific methods that handle type safe data
collection, which can be compiled and linked with the
application.

<measurement-points>
 <measurement-point id="group1">
 <metric id="rssi" type=“float"/>
 <metric id=“noise" type=“float"/>
 </measurement-point>
 <measurement-point id="group2“>
 <metric id=“lost_packets" type="float"/>
 </measurement-point>
<measurement-points>

int oml_group1 (float rssi,
 float noise

) {…}

int oml_group2 (float lost_packets
) {…}

Code Generation

Compile Application
code against Client APIs

OML Ready Application

Figure 2. Generating client APIs

Figure 2 shows application definition containing
radio parameters (rssi, noise and throughput) that a user
wants to collect. The XML definition file shows two
measurement points, “group1” & “ group2” defined by
the application programmer. Based on the definition,
the source code is automatically generated with the API
functions oml_group1 (...) and oml_group2 (...).

The application then calls the measurement point
APIs to transport the measurements data to the
collection server. OML handles the threading issues
involved with the data filtering, encoding and
transmission. Following the example of application
definition shown in Figure 2, the OML API calls from
the application are shown in Figure 3.

if(r_data->send_option == 1) {
buffer->rssi = recv_packet_params.rssi ;
buffer->noise = recv_packet_params.noise;

oml_group1(buffer->rssi, buffer->noise);
} else {
 syslog(LOG_ERR, "Unknown receive option!!! \n");
}

lost_packets = (int) (pck_id.seqnum - old - 1);
oml_group2(lost_packets);

Figure 3. Calling OML API from application

code

3.3.2 OML data filter configuration. Filter
configuration is done as a part of experiment definition.
As shown by a snippet of sample experiment definition
in figure 4, a filter “example_filter” is chosen to be
applied on measured rssi values, and fired using a
“time trigger”. The experiment definition file also
defines a trigger property for the measurement point.
The value element of this property determines when all
the filters included in the measurement point get
triggered. The refid attribute of filter element gives the
name of the filter, and the properties specify any
required filter parameters that are need for its
operation.

 <measurement-point refid="group2" type="time_triggered">
 <properties>
 < property name="trigger">
 < value units="sec">5</value>
 < /property>
 < /properties>
 <metric name="lost_packets">
 < filter refid="example_filter">

<properties>
 <property name="param1" value="10.5"/>
</properties>

 < /filter>
 < /metric>
 </measurement-point>

Figure 4. Filter configuration using experiment

definition

An experimenter can either use one of the default
filters or write a custom filter using the APIs provided
by OML and integrate it with the framework. A base
filter class OMLFilter is provided as part of OML. A
custom filter class must be derived from this base class
and the function get_filtered_values overridden. In
addition to this, the filter definition, conforming to the
OML filter schema, should be provided in XML
format. This definition should list the input and output

parameters of the filter along with their data types.
Sample code for a simple filter is shown in figure 5.

class example_filter: public OMLFilter {
 int filter_param1;

 example_filter (Hashtable filter_params)
 { … }

 vector <void *> get_filtered_values (
 vector <void *> measurement_values
 int value _data_type

)
 { … }
};

Figure 5. Data filter API

It requires, as input, the measurement values that
need to be processed and the data type of the values (0,
1, 2 for integer, float, long respectively) and returns a
void pointer to the results. Filters are applied per metric
in a measurement point. Filter parameters are passed
using a hash table in the filter constructor. These filter
parameters are derived from the experiment definition,
as shown in Figure 4.
3.3.3 Client Side Operation. As and when a set of
measurement values are available, the application calls
OML client API functions such as oml_group1 and
oml_group2 to pass these values to “measurement
points”.

User Application

Measurement point
(group1)

Sample triggered
(100 samples)

Measurement point
(group2)

Time triggered
(5 seconds)

rssinoise

Filter
sample_mean

Filter
min_max

Filter
example_filter

noise rssi lost_packets

OML XDR encoding and transport layer

+

lost_packets

Figure 6. Client side measurement data flow

A “measurement point” accumulates all the incoming
values until the trigger condition (time or sample
based) is met, in which case the “measurement point”
fires all the filters associated with all the metrics. The
results are then combined into one outbound message

and sent to the XDR encoding layer, which eventually
multicasts the encoded values to the collection server.
As seen in Figure 6, metrics can be filtered using
various filter types, by associating with different
measurement points.

3.3.4 Database configuration. At the collection server
side, the application definition is used to create
database schema for the experiment. OML uses XSLT
to convert the application definition to a database
schema file.
 As shown in Figure 7, a database table is created
corresponding to each measurement point; and the
table names are derived from the id attribute of the
group element, i.e. the names of the measurement
points. Each table has sequence number, timestamp and
the OML client’s name/id as mandatory fields; in
addition to the columns which correspond to the id
attribute of each “metric” element. Once the testbed
user defines the experiment, the application definition
is used in conjunction with the experiment definition to
create OML client and server configuration files.

<measurement -points>
 <measurement -point id="group1">

<metric id="rssi" type=“float"/>
 <metric id=“noise " type=“float"/>

 </measurement -point>
</measurements -points>

Figure 7. Database schema generation

4. Deployment and evaluation experience

This section talks about the real-world OML usage
in ORBIT [1], which is a distributed wireless testbed.
The ease of collecting and analyzing data, real-time
experiment control and performance analysis is
discussed.

4.1. Example experimental setup

A traffic generator application was written to get the
rssi (received signal strength) for each packet, in
addition to the offered load values for the senders, and
throughput values for the receivers. OML interface was

used to input the information about the measurement
points leading to the generation of an application
definition file. This file served as an input to the XSLT
based code generator to automatically generate the
client API, which in turn was integrated with the
application code. The application definition file was
also used to generate the database schema.
 In the second step, the user defined the experiment by
choosing the data filters for each measurement point
defined in the application definition. This experiment
definition was used in conjunction with the application
definition to generate configuration files for the client
nodes and the OML server. Both, the application and
the experiment definition were stored in the database
with the experiment results.

Four runs of the same experiment were done by
simply changing the filter parameters to gradually
increase the amount of OML data generated by the
experiment nodes running the application. Each time
the filter parameters were changed, only the experiment
definition was modified, hence avoiding the re-
compilation and redeployment of the application code
on the experiment nodes.

4.2. Real-time data availability and control.

The experimenter wrote a simple Perl script, shown
in Figure 8, to keep track of the number of packets loss,
one of the measurement data metrics reported by the
application using OML. User kept increasing the data
rate till the number of packets lost went beyond a
threshold of 150, when the user stopped the
experiment. This shows the controllability which is
achievable by real-time data collection using OML
framework.
#!/usr/bin/perl
use Mysql;
...
$dbh = Mysql->connect($hostname, $database, $user, $password);
$sql_query="select lost_packets from group 2 where node_id='node3-4' order by
sequence_no desc limit 1";

for(;;) {
 sleep(1);
 $sth = $dbh->query($sql_query);
 while(@record = $sth->FetchRow) {
 print "$record[0]\n";
 if ($record[0] == 150) {
 quitExperiment ();
 } else {
 increaseDataRate (10);
 }
 }
}

Figure 8. Real-time data analysis and

application control

4.3. Collocation of Information and Ease of
Data Analysis

All the information pertaining to a particular
experiment is stored in the database along with the
experimental results. The application definition that
defines what is being measured, the experiment
definition that defines how it is being measured, the
experiment results and the OML performance metrics
are all available to the user at a single point. This
allows quicker analysis and correlation of experiment
results; as well as quick and easy repeatability of the
same experiment. It also enables dynamic
controllability of experiment by providing near real-
time access to the data.

Figure 9. Import data from MySQL into Excel

Storing experimental and OML performance results
in the SQL database allows the use of standard analysis
tools like Matlab and Excel. Importing data into these
tools is an easy and user friendly process.

Figure 9 shows the ease with which experimental
results can be imported and plotted in Microsoft Excel.

First the data source is selected and then the fields to be
viewed and analyzed are imported in the Excel sheet.

4.4. OML performance measurements.

OML uses itself to collect the measurements data
pertaining to its own performance. The OML server
collects various statistics like the number of packets
received; packets dropped, XDR decoding errors, SQL
errors and the bdb queue size, and store this data along
with the experiment data.

Figure 10. OML performance analyses

Figure 10 shows the performance of the OML
server, which was running on a dual Xeon processor
with 1 GB of memory and a gigabit network card.
Performance analysis is done as a function of
measurements traffic load. These results represent the
average packet rate, for four different data filter
configurations, from eight client nodes reporting
measurements using OML. As we can see the average
queue size remains small, even though the maximum
queue size can be quite large due to bursty
measurements traffic. No OML packet loss, XDR
decoding errors and SQL errors were found.

5. Future work

The current version of OML does not allow
changing filter configurations during the execution of
the experiment. In future versions, we plan to support
this feature as well as extend the library of data filters
to provide more functionality for the same. Extensions
with built-in measurements, like Ganglia [5], are also in
the future roadmap. We are hopeful of deploying this

framework on larger, distributed and diverse
environments to further study its performance and
enhance its usability.

6. Conclusion

This paper presents a generic, scalable and flexible
framework for the collection of application generated of
data in a distributed environment. This framework
reduces the burden of data collection on application
developers by providing simple APIs for transport of
data in a reliable manner. Usability of the framework is
significantly enhanced by use of technologies like SQL,
hence allowing the use of standard tools for data
analysis. Use of multicasting and Berkeley database
enables a reliable and flexible framework; and provides
network and computational scalability. The results show
the benefits, usability and the performance of the
framework.

The OML framework has been successfully
deployed as part of the ORBIT testbed and has been in
extensicve use over the last few months. Besides
measuring experimental data, OML is being used for
data collection from a third-party wireless network
monitoring tool. The ORBIT [1] hardware monitoring
system also uses OML to collect and report various
health parameters associated with the testbed nodes.

7. References

[1] I. S. D. Raychaudhuri, M. Ott, S. Ganu, K.
Ramachandran, H. Kremo, R. Siracusa, H. Liu, M. Singh,
"Overview of the ORBIT Radio Grid Testbed for Evaluation
of Next-Generation Wireless Network Protocols," submitted
to the IEEE Wireless Communications and Networking
Conference, New Orleans.

[2] "RFC 1014 - XDR: External Data Representation
Standard," http://www.faqs.org/rfcs/rfc1014.html

[3] Sleepycat software Berkeley DB product website,
http://sleepycat.com/products/db.shtml

[4] MySQL product website, http://www.mysql.com

[5] Matthew L. Massie, Brent N. Chun, David E. Culler,
 “The Ganglia Distributed Monitoring System: Design,
Implementation, and Experience”

[6] Matlab product website, http://www.mathworks.com

500 1000 2000 4000
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Received Packets Per Second

Q
u
eu
e
S
iz
e

Min Queue Size
Average Queue Size
Max Queue Size

CPU: 0.7%
Mem: 25MB

CPU: 2%
Mem: 70MB

CPU: 3.5%
Mem: 100MB

CPU: 6.5%
Mem: 200MB

