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Abstract

The integrity of kernel code and data is fundamental to
the integrity of the computer system. Tampering with the
kernel data is an attractive venue for rootkit writers since
malicious modifications in the kernel are harder to identify
compared to their user-level counterparts. So far however,
the pattern followed for tampering is limited to hiding ma-
licious objects in user-space. This involves manipulating a
subset of kernel data structures that are related to intercept-
ing user requests or affecting the user’s view of the system.
Hence, defense techniques are built around detecting such
hiding behavior. The contribution of this paper is to demon-
strate a new class of stealthy attacks that only exist in kernel
space and do not employ any hiding techniques tradition-
ally used by rootkits. These attacks are stealthy because the
damage done to the system is not apparent to the user or
intrusion detection systems installed on the system and are
symbolic of a more systemic problem present throughout the
kernel. Our goal in building these attack prototypes was
to show that such attacks are not only realistic, but worse;
they cannot be detected by the current generation of kernel
integrity monitors, without prior knowledge of the attack
signature.

1. Introduction

Integrity of the operating system kernel is critical to the
security and integrity of a computer system. Tampering
with the kernel is traditionally performed by malware called
rootkits. The attacker uses a rootkit to hide his presence on
the compromised system. Other forms of malware such as
worms, viruses and spyware successfully evade detection
from the anti-virus software running on the system when
bundled with a rootkit. Sophisticated rootkits achieve this
hiding behavior by tampering with the kernel data. This
may involve process hiding or hiding objects by tampering
with the jump tables or file system handlers.

The challenge for the user and the intrusion detection
system (IDS) is to detect the fact that the system is com-

promised as soon as the attack happens. The rootkit on the
other hand, tries to hide this fact from the user for as long
as possible. At this point, the attacker already has obtained
root control on the system. While he has the ability to per-
form visibly damaging actions such as erase all files on the
file system or reboot the system to install a new kernel im-
age, these actions conflict with his goals of hiding his pres-
ence to retain long term control. Radical actions taken by
the attacker are quickly detected with very high probability
and the attacker loses control of the system as a result.

Monitoring the integrity of the kernel is achieved by iso-
lating the detector from the system under surveillance. The
detector either resides on a secure co-processor [18, 7] or
uses virtual machine introspection [5]. While the mech-
anisms for kernel integrity monitoring have been success-
fully designed, the policies pertaining to the data that is to
be monitored needs to be inferred manually from known
rootkit behaviors. This is an uphill battle, similar to the one
faced by anti-virus software, where traditionally attackers
hold an edge over defenders.

Petroni et al [8] developed such a specification archi-
tecture to manually specify constraints on kernel data and
monitor for violations. While this architecture allows the
specification of known attack profiles, newer and unknown
attacks, which target data structures that are not monitored
or attack monitored data structures in a different manner,
escape detection. Besides being an external asynchronous
monitor, it often finds data structures in an inconsistent
state, which limits it’s scalability and ultimately, the fea-
sibility of such a solution. A methodology to comprehen-
sively protect the integrity of all data structures in the kernel
is still a topic of active research.

The only form of kernel data tampering performed by
rootkits pertains to hiding the malicious objects. Such ob-
ject hiding deceives the user into believing that he has a
clean system. Very early rootkits achieved this goal by in-
stalling TROJANED system binaries and shared libraries
that provided doctored responses. As file integrity tools
such as Tripwire [10] and AIDE [1] were developed, at-
tackers developed methods of intercepting user requests in
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Figure 1. Hooks provided by the Linux netfil-
ter framework

the kernel. This was achieved by hooking into the system
call table and the interrupt descriptor table (IDT). Sophis-
ticated rootkits modified machine instructions in the ker-
nel code, which could redirect control to their own system
call table without modifying the original one. As kernel
integrity monitors started to monitor these immutable data
tables, rootkits found ways of hiding by modifying the file
system operation handlers and by exploiting discrepancies
in the lists used by the scheduler and the process accounting
data structures within the kernel.

While the data structures that are tampered have changed
over the years, the intent of tampering is still the same,
namely to hide the malicious files, process and network con-
nections. Hence, the data structures tampered are all related
to intercepting user-level requests and providing doctored
responses or more generally, affecting the users view of the
system. These rootkit attacks can be full detected if all hid-
ing techniques can be completely explored. In fact, tools
such as Strider Ghostbuster [4] detect the presence of rootk-
its, merely from their attempt to hide.

In this paper, we demonstrate a new class of stealthy at-
tacks that do not try to hide but still evade detection from
current generation of integrity monitors. These attacks are
symbolic of a larger systemic problem that needs compre-
hensive analysis. We also present a classification of kernel
data tampering methods based on techniques that we have
designed as well as those already known. To the best of
our knowledge, this is the first paper that presents this new
class of attacks on kernel data and provides a classification
of the techniques used, which is a step towards developing
a comprehensive solution.

Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT tcp -- anywhere anywhere tcp dpt:ssh
ACCEPT tcp -- anywhere anywhere tcp dpt:telnet
ACCEPT tcp -- anywhere anywhere tcp dpt:24
REJECT tcp -- anywhere anywhere tcp dpt:http reject-with

icmp-port-unreachable

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Figure 2. Firewall rules deny admission to
web server port

2. Attacks
In this section, we present four stealth attacks that solely

change kernel data but do not exhibit hiding behavior. None
of these attacks can be detected by the currently known in-
tegrity monitoring approaches without prior knowledge of
the attack signatures.

2.1. Disable Firewall
This attack hooks into the netfilter framework of the

Linux kernel and stealthily disables the firewall installed
on the system. The user cannot determine this fact by in-
specting the system using iptables. The rules still appear
to be valid and the firewall appears to be in effect. In de-
signing this attack, the goal of the attacker is to disable the
network defense mechanisms employed by the target sys-
tems, thereby making them vulnerable to other attacks over
the network.

Background: Netfilter is a packet filtering framework
in the Linux kernel. It provides hooks at different points in
the networking stack. This was designed for kernel mod-
ules to hook into and provide different functionality such
as packet filtering, packet mangling and network address
translation. These hooks are provided for each protocol sup-
ported by the system. The netfilter hooks for the IP proto-
col are shown in Figure 1. Each of the hooks, Pre-routing,
Input, Forward, Output and Post-routing, are hooks at dif-
ferent points in the packets traversal. Iptables is a firewall
management command line tool available on Linux. Ipta-
bles can be used to set the firewall rules for incoming and
outgoing packets. Iptables uses the netfilter framework to
enforce the firewall rules. Packets are filtered according to
the rules provided by the firewall.

Attack Description: The pointers to the netfilter hooks
are stored in a global table called nf hooks. This is an ar-
ray of pointers that point to the handlers registered by ker-
nel modules to handle different protocol hooks. This data
structure is exported even by the latest 2.6 Linux kernel.
We modified the hook corresponding to the IP protocol and
redirected it to our dummy code, effectively disabling the
firewall. The firewall rules that we used during this exper-
iment are shown in Figure 2. The INPUT rules deny ad-
mission for incoming traffic to the web server running on
the system. Before the attack, we were unable to access this
web server externally. After we inserted the attack module,
we could access the web content hosted by the web server
running on http port (port 80). Running iptables command
to list the firewall rules still shows that the same rules are
in effect (as shown in Figure 2). The user has no way of
knowing that the firewall is disabled as the rules appear to
be in effect.

Impact: A stealthy attack such as the one described can-
not be detected by the existing set of tools. Since our attack
module is able to filter all packets without passing it to the
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firewall, it can run other commands upon receipt of a spe-
cially crafted packet sent by the remote attacker.

2.2. Resource wastage attack

This attack causes resource wastage and performance
degradation on applications by generating artificial memory
pressure. The goal of this attack is to show that it is possi-
ble to stealthily influence the kernel algorithms by simply
manipulating data values. This attack targets the zone bal-
ancing logic, which ensures that there are always enough
free pages available in the system memory

Background: Linux divides the total physical mem-
ory installed on a machine into nodes. Each node corre-
sponds to one memory bank. A node is further divided into
three zones: zone dma, zone normal and zone highmem.
Zone dma is the first 16MB reserved for direct memory
access (DMA) transfers. Zone normal spans from 16MB
to 896MB. This is the zone that is used by user applica-
tions and dynamic data requests within the kernel. This
zone and zone dma are linearly mapped in the kernel virtual
address space. Zone highmem is memory beyond 896MB.
This zone is not linearly mapped and is used for allocations
that require a large amount of contiguous memory in the
virtual address space.

Each zone is always kept balanced by the kernel memory
allocator called the buddy allocator and the page swapper
kswapd. The balance is achieved using zone watermarks,
which are basically indicators for gauging memory pres-
sure in the particular zone. The zone watermarks have dif-
ferent values for all the three zones. These are initialized
on startup depending on the number of pages present in
the zones. These three watermarks are called pages min,
page low and pages high respectively as shown in Figure
3. When the number of free pages in the zones, drops be-
low pages low pages, kswapd is woken up. kswapd tries
to free pages by swapping unused pages to the swap store.
It continues this process until the number of pages reaches
pages high and then goes back to sleep. When the num-
ber of pages reaches pages min, the buddy allocator tries to

synchronously free pages. Note that sometimes the number
of free pages can go below the pages min, due to atomic
allocations requested by the kernel.

Attack Description: The zone watermarks for each
zone are stored in a global data structure called zone table.
Zone table is an array of zone t data structures that corre-
spond to each zone. Zone watermarks are stored inside this
data structure. This symbol is exported even by the 2.6 ker-
nel. The location of this table can be found by referring to
the System.map file. We wrote a simple kernel module to
corrupt the zone watermarks for the zone normal memory
zone. The original and new values for these watermarks
are shown in Table 1. We push the pages min and the
pages low watermarks very close to the pages high water-
mark. We also make the pages high watermark very close
to the total number of pages in that zone. This forces the
zone balancing logic to maintain the number of free pages
close to the total number of pages in that zone, essentially
wasting a big chunk of the physical memory. Table 1 shows
that 210065 (820.56 MB) pages are maintained in the free
pool. This attack can be similarly carried out for other zones
as well, wasting almost all memory installed on the system.
The table indicates that only about 60MB is used and the
rest is maintained in the free pool, causing applications to
constantly swap to disk. This attack also imposes a perfor-
mance overhead on applications as shown in Table 2. The
three tasks that we used to measure the performance over-
head are file copy of a large number of files, compilation of
the Linux kernel and file compression of a directory. The ta-
ble shows the time taken when these tasks were carried out
on a clean kernel and after the kernel was tampered. The
performance degradation imposed by this attack is consid-

Watermark Original Value Modified Value
pages min 255 210000
pages low 510 215000
pages high 765 220000
total free pages 144681 210065

Total number of pages in zone: 225280

Table 1. Watermark values and free page
count before and after the resource wastage
attack for the normal zone

Application Before After Degradation (%)
Attack Attack

file copy 49s 1m, 3s 28.57
compilation 2m, 33s 2m, 56s 15.03
file compression 8s 23s 187.5

Table 2. Performance degradation exhibited
by applications after the resource wastage at-
tack



File # bday operm binrnk6x8 cnt1s parkinglot mindist sphere squeeze osum craps

1 0.765454 0.497607 0.197306 0.000000 0.159241 0.000000 0.893287 0.423572 0.641313 0.147407
2 0.044118 0.180747 0.143452 0.000000 0.012559 0.000000 0.055361 0.769919 0.002603 0.066102
3 0.079672 0.999996 0.467953 0.000000 0.132155 0.000000 0.001550 0.190808 0.032007 0.468605
4 0.009391 0.000334 0.010857 0.000000 0.400118 0.000000 0.000258 0.573443 0.051299 0.057709
5 0.059726 0.996908 0.754544 0.000000 0.065416 0.000000 0.212797 0.276961 0.009343 0.389614
6 0.384023 0.975071 0.003450 0.000000 0.004431 0.000000 0.021339 0.047575 0.139662 0.082087
7 0.002450 0.458676 0.014060 0.000000 0.002061 0.000000 0.000010 0.044232 0.068223 0.836221
8 0.001195 0.840548 0.115478 0.000000 0.192544 0.000000 0.001535 0.024058 0.000078 0.214631
9 0.427721 0.553566 0.138635 0.000000 0.311526 0.000000 0.071177 0.296367 0.003107 0.679244
10 0.654884 0.106287 0.212463 0.000000 0.072483 0.000000 0.212785 0.338967 0.122016 0.710536

Table 3. Results of running the Diehard battery of tests after contamination of the entropy pool

erable.
Impact: This attack resembles a stealthier version of

the resource exhaustion attack, which traditionally has been
carried out over the network [17, 12, 11]. We try to achieve
a similar goal i.e to overwhelm the compromised system
subtly by creating artificial memory pressure. This leads to
a considerable performance overhead on the system. This
also causes a large amount of memory to be unused all
the time to maintain the high number of pages in the free
pool, leading to resource wastage. The attacker could keep
the degradation subtle enough to escape detection over ex-
tended periods.

2.3. Entropy Pool Contamination

This attack contaminates the entropy pool and the poly-
nomials used by the Pseudo-Random Number Generator
(PRNG) to stir the pools. The goal of this attack is to de-
grade the quality of the pseudo random numbers that are
generated by the PRNG. The kernel depends on the PRNG
to supply good quality pseudo random numbers, which are
used by all security functions in the kernel as well as by
applications for key generation, generating secure session
id’s, etc. All applications and kernel functions that depend
on the PRNG are in turn open to attack.

Background: The PRNG provides two interfaces to user
applications namely /dev/random and /dev/urandom. The
PRNG depends on three pools for its entropy requirements:
the primary pool, the secondary pool and the urandom pool.
The /dev/random is a blocking interface and is used for very
secure applications. The device maintains an entropy count
and blocks if there is insufficient entropy available. Entropy
is added to the primary pool from external events such as
keystrokes, mouse movements, disk activity and network
activity. When a request is made for random bytes, bytes
are moved from the primary pool to the secondary and the
urandom pools. The /dev/urandom interface on the other
hand is non-blocking. The contents of the pool are stirred
when the bytes are extracted from the pools. A detailed

analysis of the Linux random number generator is available
in [6].

Attack Description: This attack constantly contami-
nates the entropy pool by writing zeroes into all the pools.
This is done by loading an attack module that consists of a
kernel thread. The thread constantly wakes up and writes
zeroes into the entropy pools. It also attacks the polynomi-
als that are used to stir the pool. Zeroing out these polyno-
mials nullifies a part of the extraction algorithm used by the
PRNG. The location of the entropy pool is not exported by
the Linux kernel. We can find the location by simply scan-
ning kernel memory. Entropy pool has the cryptographic
property of being completely random [15]. Since we know
the size of the entropy pools, this can be found by running
a sliding window of the same sizes through memory and
calculating the entropy of the data within the window. Ker-
nel code and data regions are more ordered than the entropy
pools and have a lower entropy value. The pool locations
can therefore be successfully located.

We measured the quality of the random numbers gener-
ated by using the diehard battery of tests [2]. The results are
summarized in Table 3. Diehard is the suite of tests used to
measure the quality of random numbers generated. Any test
that generates a value extremely close to 0 or 1 represents a
failing sequence. More about the details of these tests can
be found in [2]. We run the tests over ten different 10MB
files that were generated by reading from the /dev/random
device. The table shows that the sequence that is generated
after attack, fails miserably in two of the tests: cnt1s and
mindist and partially in the others. A failure in any one of
the tests means that the PRNG is no longer cryptographi-
cally secure.

Impact: After the attack, the generated pseudo random
numbers are of poor quality, leaving the system and appli-
cations vulnerable to cryptanalysis attacks.



2.4. Disable Pseudo-Random Number Gen-
erator (PRNG)

This attack overwrites the addresses of the device func-
tions registered by the PRNG with the function addresses of
the attack code. The original functions are never invoked.
These functions always return a zero when random bytes are
requested from the /dev/random or /dev/urandom devices.
Note that though this appears similar to the attack by tra-
ditional rootkits that hook into function pointers, there is a
subtle difference. Since this particular device does not af-
fect user-level view of objects, this is not a target for achiev-
ing hiding behavior and hence, not monitored by kernel in-
tegrity monitors.

Attack Description: The kernel provides functions for
reading and writing to the /dev/random and /dev/urandom
devices. The data structures used to register the device func-
tions are called random state ops and urandom state ops
for the devices /dev/random and /dev/urandom respectively.
These symbols are exported by the 2.4 kernel but are not
exported by the 2.6 kernel. We could find this data structure
by first scanning for function opcodes of functions present
within random state ops and urandom state ops. We then
used the function addresses in the correct order to find the
data structure in memory. Once these data structures are
located in memory, the attack module replaces the genuine
function provided by the character devices with the attack
function. The attack function for reading from the device
simply returns a zero when bytes are requested. After the
attack, every read from the device returns a zero.

Impact: All security functions within the kernel and
other security applications rely on the PRNG to supply
pseudo random numbers. This attack stealthily compro-
mises the security of the system, without raising any sus-
picions from the user.

3. Categorizing Attacks

We have identified several attack categories based on the
tampering techniques employed. The categories are derived
from the techniques used by rootkits in existence as well as
the new class of attacks that we have designed. These at-
tacks span across static as well as dynamic data in the ker-
nel. The first two categories described, namely control hi-
jacking and control interception, involve directly changing
the control path in the kernel by manipulating jump tables
or function pointers. The last three categories, namely con-
trol tapping, data value manipulation and inconsistent data
structures, work solely by manipulating non-control data.

Our motivation behind creating these categories is to
identify the broader systemic problem in the kernel, rather
than the individual attacks themselves. This helps in build-
ing defense techniques that are generic and that can be ap-
plied comprehensively throughout the kernel to protect all

data structures that are vulnerable to a given category of at-
tacks.

3.1. Control Hijacking

Control hijacking attack is a form of manipulating the
control flow within a kernel control path. This attack redi-
rects the control flow to the attack code and the original
code is never actually invoked. The attacks that we designed
in this category are (a) disable firewall attack and the (b) dis-
able PRNG attack. All layers in the kernel, originally put in
for extensibility and to provide a common interface, can be
abused to perform such an attack. All jump tables and func-
tion pointers are also susceptible to this form of attack.

3.2. Control Interception

Control interception was the technique used by most tra-
ditional rootkits that changed the system call table, IDT and
the kernel code. These attacks intercept the kernel control
path in such a way that control first flows to the attack code.
The attack code then calls the original code. This way, the
attacker is able to filter requests to and responses from the
original code. Control interception is typically used for hid-
ing the attacker’s files, processes and network connections.
All layers, jump tables and function pointers are susceptible
to this form of attack as well.

3.3. Control Tapping

Control tapping ensures that the attack code is invoked
en route to the original function. In other words, the inter-
ception takes place in such a way that the attack code is not
able to manipulate the arguments and results of the original
function being called. The only assurance for this type of
interception is that the attack code will be invoked on every
call to the original function. One example of this form of
attack is the attack hooking to the execve system call done
by registering a new binary format. This attack is discussed
in [3].

3.4. Data Value Manipulation

These attacks rely on manipulating values of critical
variables, which in turn directly or indirectly influence the
algorithms used by the kernel. Defending from such an at-
tack requires a close analysis of data structure values and
some form of value based monitoring. The attacks that we
developed that fall in this category are (a) resource wastage
attack and (b) entropy pool contamination attack.

3.5. Inconsistent Data Structures

This class of attacks makes kernel data structures incon-
sistent, which are otherwise supposed to be consistent dur-
ing normal operation. Two common known methods used



are process hiding and module hiding. Process hiding is
achieved by the fact that the kernel uses separate lists for
scheduling and accounting. The malicious process is re-
moved from the accounting list but not from the scheduler
list, so the process is still scheduled. Module hiding is done
by removing the module entry from the module list after the
module is loaded in memory, making it invisible accounting
commands.

4. Related Work
Garfinkel et al [5] proposed to use virtual machine based

introspection. Zhang et al [18] proposed the use of a se-
cure coprocessor that can verify the integrity of the ker-
nel. Petroni et al [7] demonstrated a prototype that could
successfully monitor the integrity of kernel code and static
tables from a secure coprocessor. In another recent work
[8], they also built a specification based compiler that could
compile high-level manually specified constraints and mon-
itor for those constraints within kernel dynamic data. This
work however requires the user to either know the attack
signature or anticipate it and generate a specification. Sev-
eral attestation based approaches have been proposed to ver-
ify the integrity of running code [14, 9, 16, 13]. These ap-
proaches use a secure chip as the trusted computing base
to bootstrap trust. The verification procedure is based on
comparing hashes with known good values or timing calcu-
lations. While these approaches work well for checking the
integrity of code, they cannot check the integrity of data.

5. Conclusion and Future Work
In this paper, we have demonstrated a new class of stealth

attacks that do not employ the traditional hiding behavior
used by rootkits. We have designed attack prototypes to
demonstrate that such attacks are realistic and indicative
of a more systemic problem in the kernel. Furthermore,
they cannot be detected by currently known monitoring ap-
proaches without prior knowledge of the attack signatures.
We have also classified the data tampering techniques used
by all known kernel tampering malware. As part of future
work, our goal is to design an automated comprehensive in-
tegrity monitor for kernel data.
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