
A Content Integrity Service For Long-Term Digital Archives
Stuart Haber, HP Labs, New Jersey U.S.A.
Pandurang Kamat, Rutgers University, New Jersey U.S.A.

Abstract
We present a content integrity service for long-lived digi-

tal documents, especially for objects stored in long-term digital
archives. The goal of the service is to demonstrate that informa-
tion in the archive is authentic and has not been unintentionally or
maliciously altered, even after its bit representation in the archive
has undergone one or more transformations. We describe our de-
sign for an efficient, secure service that achieves this, andour im-
plementation of the first prototype of such a service that we built
for HP’s Digital Media Platform. Our solution relies on one-way
hashing and digital time-stamping procedures.

Our service applies not only to transformations to archival
content such as format changes, but also to the introductionof
new cryptographic primitives, such as new one-way hash func-
tions. This feature is absolutely necessary in the design ofan
integrity-preserving system that is meant to endure for decades.

Introduction
Information in a digital archive can include complex multi-

part documents. In a long-term archive these documents may be
expected to undergo multiple transformations during theirlife-
time, including, for example, format changes, modifications to
sub-parts and to accompanying metadata. Skeptical users ofa dig-
ital archive may desire, or in some case may be legally required,
to verify the integrity of records that they have retrieved from the
archive.

All typical algorithmic techniques for verifying the integrity
of a digital object begin with a representation of the objectin ques-
tion as a sequence of bits. When digital objects are transformed in
any nontrivial way, their bit representations are changed as well,
so that these algorithmic techniques no longer apply to the trans-
formed object. In fact, it is the usual aim of a cryptographictech-
nique for proving integrity that it ”fail”—more precisely,that it
correctly succeed in proving lack of integrity—when even a sin-
gle bit in the object’s representation is changed.

In this work we describe an efficient and secure Content
Integrity Service (CIS) that solves this problem, which we de-
signed and implemented as a service on the Digital Media Plat-
form (DMP) [1].

Background
The basic building blocks of our solution are cryptographic

hash functions and time-stamping procedures. Throughout this
article we refer to the objects of concern in a digital archive or
repository simply as “documents”.

Hash functions
A cryptographic hash functionis a fast procedureH that

compresses input bit-strings of arbitrary length to outputbit-
strings (calledhash values) of a fixed length, in such a way that it

is computationally infeasible to find two different inputs that pro-
duce the same hash value. (Such a pair of inputs is called acolli-
sion for H.) For any digital documentx, its hash valuev = H(x)
can be used as a proxy forx, as if it were a characteristic “finger-
print” for x, in procedures for guaranteeing the bit-by-bit integrity
of x [2].

Time-stamping
A digital time-stamping scheme is a procedure that solves

the following problem: given a digital documentx at a specific
time t, produce atime-stamp certificate cthat anyone can later
use (along withx itself) to verify thatx existed at timet. Cer-
tificates that will pass the verification test should be difficult to
forge [3]. There are two different families of time-stamping al-
gorithms, those using digital signatures (hash-and-sign)and those
based entirely on cryptographic hash functions (hash-linking).

In what is sometimes called ahash-and-signtime-stamping
scheme, the time-stamp certificate for a document consists of a
digital signature computed by a Time-Stamping Authority (TSA)
for the document and the time of signing. In practice the TSA
usually digitally signs the hash of the document rather thanthe
document itself, and hence the name. This has two major draw-
backs as a tool for long-term archives:

(1) It requires the assured existence of trustworthy archived
key-validity history data, in order to check the validity ofthe
TSA’s public key. It is a problem for any TSA to manage such
a key-validity database over extended periods of time, let alone
integrating it with currently deployed commercial PKIs (public-
key infrastructures). (See [4] for a proposed solution.)

(2) The trustworthiness of the certificate depends entirelyon
an assurance that the TSA’s private signing key has never been
compromised. This is an unacceptable premise for long-term
archives. The combination of increasing computational resources
with advances in cryptanalytic techniques can be expected to ren-
der current digital-signature algorithms ineffective andsuscepti-
ble to attacks. More simply, the private key of a TSA may leak
or be stolen. Either way, an adversary would have the abilityto
produce certificates for any document, with an arbitrary claimed
time, past or future.

For the CIS, we chose a time-stamping technique called
hash-linking. In this technique, the hash value of the document
to be time-stamped is combined with other hash-values received
during the same time period to create awitness hash value. This
witness value is then stored by the TSA or published as a widely
witnessed event. This kind of linking makes it computationally
infeasible for an adversary to back-date a document, since that
would entail computing hash collisions for the witness values (or
their hash preimages). This technique relies only on the collision-
resistance properties of hash functions, and does not have any se-
crets or keys that need to be securely protected over extended pe-

riods of time [5, 6, 7].
In one implementation of hash-linking, the witness hash val-

ues themselves are linked in a hash chain, and hash values within
each time period are combined using a Merkle hash tree [8]. For
example, Figure 1 illustrates this process for an interval during
which the requestsy1, . . . ,y4 were received. In this diagram,H12

Wi−1 :: Wi

H14

OO

H12

OO

H34

hhPPPPPPPPPPPPPP

y1

OO

y2

aaBBBBBBBB
y3

OO

y4

aaBBBBBBBB

Figure 1. Hash-Linking using a Merkle hash tree

is the hash of the concatenation ofy1 andy2, H14 is the hash of the
concatenation ofH12 andH34, and similarly for the other nodes,
andWi andWi−1 are the respective witness hash values for the cur-
rent and the previous intervals. The time-stamp certificatefor the
third request (the one containing hash valuey3), for example, is
[ti ;(y4,R),(H12,L),(Wi−1,L)], whereti is the time of the current
interval. One validates the claim that this is a correct time-stamp
certificate for a digital document by hashing the document, taking
the resulting hash value (presumablyy3), combining it on the right
with y4 from the certificate, and hashing the concatenation; tak-
ing the resulting hash value (presumablyH34) and combining it on
the left withH12, and so on, finally obtaining a putative witness
value. This value is then checked against the published witness
value,Wi , that is associated with the timeti .

Design of the Content Integrity Service
The Content Integriy Service is only one piece of the daunt-

ing engineering project of designing a large-scale long-lived dig-
ital archiving system [9].

The essence of our solution is to use a secure digital time-
stamping system, first to time-stamp every document at ingestion
into the archive, storing the resulting time-stamp certificate in the
archive with the document; and second to produce an auditable
record of every transformation to a document in the archive,in
such a way as to verifiably link the time-stamp certificate forthe
transformed version of the document to its original form. Let us
first look at why we need renewable integrity certificates andhow
to produce an auditable transformation history.

Renewing integrity certificates
In order to explain our solution, we first describe the pro-

cess of “renewing” digital time-stamps [6]. The need for this
is motivated by the fact that—as noted above for the particu-
lar case of keys for digital signatures—with advances in com-
putational power and resources, as well as the discovery of en-
tirely new cryptanalytic algorithms, particular instances of crypto-
graphic primitives that were secure when they were first deployed
may become insecure several years later. In the last couple of

years, the cryptographic community has been surprised by pow-
erful new attacks on the hash functions MD5 and SHA-1, among
others [10, 11]. The question of how best to introduce a new and
presumably more secure hash function into a system that now uses
an older hash-function design that may soon be subject to devas-
tating compromise is no longer the merely academic questionit
was when it was first raised (and incorrectly solved) by the au-
thors of [5].

Suppose that an implementation of a particular time-
stamping system is in place, and consider the pair(d,c1), where
c1 is a valid time-stamp certificate (in this implementation) for
the bit-stringd. Now suppose that some time later an improved
time-stamping system is implemented and deployed—by replac-
ing the hash function used in the original system with a new hash
function, or even perhaps after the invention of a completely new
algorithm. Is there any way to use the new time-stamping system
to buttress the guarantee of integrity supplied by the certificate,
c1, in the face of potential later attacks on the old system?

One could simply submitd as a request to the new time-
stamping system; but this would lose the connection to the orig-
inal time of certification. Another possibility is to submitc1 as
a request to the the new time-stamping system. But that would
be vulnerable to the later existence of a devastating attackon the
hash function used in the computation ofc1, as follows: if an ad-
versary could find another documentd′ with the same hash value
asd, then he could use this renewal system to back-dated′ to the
original time.

Suppose instead that the pair(d,c1) is time-stamped by the
new system, resulting in a new certificatec2, and that some time
after this is done (i.e. at a definite later date), the original method
is compromised. The certificatec2 provides evidence not only
that the document contentsd existed prior to the time of the new
time-stamp, but that it existed at the time stated in the original
certificate,c1; prior to the compromise of the old implementa-
tion, the only way to create a valid time-stamp certificate was by
legitimate means.

Auditable transformation history
Now suppose that we are interested in the long-term preser-

vation of a particular digital document. For this description, sup-
pose that we are only interested in enabling the authentication of
the entire document (as opposed to making this possible as well
for parts of the document). In its original form, letd denote the
bit-string representation of the document in file formatf , and let
us suppose thatd is time-stamped at timet, with resulting time-
stamp certificatec. We will write c = TS(d; t) to indicate that the
certificate is for input consisting of the documentd, and it was
computed at timet.

Now suppose that at some later timet ′, it is decided to make
a format change to formatf ′, using a particular conversion or
migration procedure. Letd′ denote the bit-string representation
of the resulting document. Simply computing a new time-stamp
certificate ford′ would lose the connection betweend′, the new
representation or rendition of the document, and its original ver-
sion. The aim rather is to memorialize—and enable later verifi-
cation of—this format conversion, while preserving the assurance
of integrity all the way back to that of the original form of the
document. We can do this by adapting the procedure for renew-
ing time-stamps described above. Leti denote a standard format

for describing an invocation of the migration procedure used to
convert from formatf to format f ′, perhaps including file-names
and other useful meta-data for input and output filesd andd′, re-
spectively. Then, immediately after performing the conversion, a
new time-stamp request for[d,d′, i,c] is submitted, and the result-
ing time-stamp certificatec′ = TS(d,d′, i,c; t ′) is stored with the
document in the archive. The new certificatec’ can be used to
verify the integrity of the latest form of the original document.

Assuming the integrity ofi as a description of the transfor-
mation, the only way to compromise the security of our solution
is to compute collisions for the hash functions that we use.

Document Transformations
The description of our algorithm in the previous section was

couched in terms of a simple transformation to a single entire doc-
ument. But variations on the same technique can be applied to
complex transformations to one or more pieces of a multi-part
document, including format conversions, annotations, additions
of metadata, and later modifications of the document. Naturally,
transformations can follow one another, and each one can be cer-
tified by a CIS certificate. Transformations include:

• Business workflow:A document may undergo several trans-
formations one after the other as part of a business workflow.
Each step of the workflow instance can be regarded as a sin-
gle transformation that CIS can certify.

• Document redaction:Sensitive parts of a document may be
redacted (i.e. removed or blacked out) before it is made pub-
lic, for reasons of security, privacy, or protection of trade se-
crets. By applying CIS, the integrity of the redacted version
can be linked to the integrity of the original.

• Integrity metadata:The process of renewing a document’s
time-stamp certificate as described above can be regarded as
a special case of CIS, as applied to a particular modifica-
tion of an item of metadata corresponding to the document
(namely, its time-stamp certificate). But similar logic ap-
plies to other sorts of accompanying metadata related to in-
tegrity, including digital signatures, public-key certificates,
and key-validity information such as CRLs (certificate revo-
cation lists) and the like.

A particularly interesting case is provided by the extraction
of subdocuments from a complex multi-part document that can
be represented hierarchically in a graph. (For a concrete example,
the US Congressional Record is a sequence of “volumes”, each
consisting of “daily issues” that in turn contain “sections” con-
taining “items of business”; a typical item of business is a Sena-
tor’s speech, which might be broken up into paragraphs.) By an
algorithmic technique analagous to the Merkle-tree methodillus-
trated in Figure 1 above (and described in greater detail below),
it is possible to combine hash values for individual subdocuments
so as to compute a single summary hash value that depends on
the entire document. Furthermore, the hash value for any subdoc-
ument can be linked to the summary hash value by a succinct list
of hashing instructions; this list can be used to extend a CIScer-
tificate for the entire document (represented by its summaryhash
value) to form a CIS certificate for the subdocument.

Returning to the example of the Congressional Record, such
an extracted subdocument could be a single paragraph of a Sena-
tor’s speech, or it could be an entire daily issue. In any case, the

act of compiling a collection of subdocuments extracted from the
archive, each accompanied by its extended integrity certificate, is
yet another well-defined transformation to which the CIS applies.

If this compilation is chosen in response to a query to a suit-
ably designed search engine for the archive, such a CIS certificate
can even be computed on the fly to accompany the response to the
query.

Note that it is not necessary for the archivist to choose, at the
moment a document is ingested into the archive, exactly how it
will turn out to be convenient later to break up the document into
subdocuments. This choice can be made later, at which point the
computation of hash values for subdocuments and their grouping
into an appropriate hierarchical structure is simply another well-
defined transformation.

In all of these cases, CIS can be used to verifiably prove that
the new document was produced by applying the particular trans-
formation(s) to the original document(s). CIS does not put any
restriction on the way transformations are represented in the sys-
tem, so long as the representation is consistent.

The CIS can also be useful outside the context of a large digi-
tal archive. To give one example, it is common practice in discov-
ery requests in litigation in the US court system that large batches
of Microsoft Office files and email messages are converted to tiff
image files before being turned over to opposing counsel. CIS
could be used to buttress the integrity of these files, especially
(but not exclusively) in cases where the original files were signed
or time-stamped in their original format.

Prototype Implementation

Content Processing
Workflow
Service

Application
Service

Repository
Service

Repository
Service

Content Services Network

Content
Processing

ServiceInteraction
PatternsSecurityManagement

Content
Integrity
Service

Application
Service

Application
Service

Content
Processing

Service

Content Processing
Workflow
Service

Application
Service

Repository
Service

Repository
Service

Content Services Network

Content
Processing

ServiceInteraction
PatternsSecurityManagement

Content
Integrity
Service

Application
Service

Application
Service

Content
Processing

Service

Figure 2. Content Integrity Service on HP Digital Media Platform

We have implemented a prototype of the Content Integrity
Service within HP’s Digital Media Platform (DMP). This is a
modular, service-oriented architecture that was designedas a plat-
form for building and maintaining an enterprise-scale suite of
content storage and processing operations [1]. DMP presents an
XML-based interface for service interaction, and the CIS isimple-
mented as a service within this framework, as shown in Figure2.

As we implemented the CIS in DMP, it handles complex doc-
uments stored in the DMP Repository, and consists of the follow-
ing set of operations:

• Certifyoperates on documents alone, producing for any doc-
ument a time-stamp certificate and storing it with the docu-
ment in the Repository.

• Validatetakes a document and its integrity certificate (in the
format in which they would be stored in the Repository, and
checks the validity of the certificate for the given document.

• Transform-certifyoperates on a document and a transforma-
tion, expressed as described below, and computes the corre-
sponding CIS certificate.

• Transform-validateis used to check the validity of a trans-
formed document and its CIS certificate.

CIS was built as a proof of concept, but we did not integrate itinto
a full document management system.

In the DMP architecture, transformations on content are ex-
pressed asworkflow instancesthat can be serialized in XML.
OurTransform-certifyandTransform-validateoperations use this
XML representation of the workflow instance as their standard
format for describing a transformation. In our notation above,
this is the invocationi of the transformation.

In principle, an instance of the CIS can use any time-
stamping service that is available, and even with a digital-
signature system (preferably one with a well-engineered PKI).
Our prototype was built so that it could make calls tocertify
and validate functions provided by any service. We chose to
use the time-stamping service provided by Surety, LLC, whose
hash-linking technique is the preferred method for long-lived doc-
uments [12].

In 2004, when we built our prototype, Surety’s service used
MD5 and SHA-1, evaluated in parallel, as its hash function. Since
then, in light of recent attacks on both of these functions, Surety’s
service uses SHA-256 and RIPEMD-160 (also evaluated in paral-
lel), and offers the renewal capability desribed above for records
that were originally time-stamped with the older version ofthe
service.

Graph data model for documents
DMP stores all content in a repository that models its data as

a directed graph. According to this DMP Repository Abstraction,
a document is agraph whose points arenodes, resources, and
literals, joined by labelled directed edges calledproperties. All
documents are stored as graphs. Nodes are typically used to repre-
sentative hierarchical structure within a complex multi-part docu-
ment. Components of the document are represented as resources,
which are leaves in the graph. Literals are strings that may be used
to represent metadata. Properties belong to a node, linkingit to
other nodes, resources or literals. Nodes and resources arenamed
using Uniform Resource Identifiers (URIs). Figure 3 shows a sim-
ple graph consisting of a single nodeN, joined by propertyp to
resourceRand by propertyq to literalL.

N
p

����
��

��
�

q

��?
??

??
??

R L
Figure 3. A simple graph

The DMP Repository Abstraction is especially convenient
for handling the integrity metadata used by the CIS. When a time-
stamp or CIS certificate is computed for a documentd, the service
constructs anauth-nodefor d, linked via itsauth property tod,
via itshash property tod’s hash value, and via itscert property

to the certificate. Figure 4 shows the result of applying the CIS to
the document represented by nodeN in Figure 3.

N
p

����
��

��
�� q

��=
==

==
==

= auth(N)
authoo

hash

||yy
yy

yy
yy

y

cert

��
R L h c

Figure 4. The graph of Figure 3, certified

Computing the hash value of a graph
For our implementation of CIS, a document is represented

by a graph (or subgraph) in the DMP Repository. Specifically,a
document is named by giving the URI of a node in the repository,
and the document consists of the subgraph spanned by a breadth-
first search of the repository beginning at the given node.

To compute a hash value for a document, we need to compute
hash values for every node or resource in the document, mirroring
the structure of the graph as we do so. Our algorithm is inspired
by the sort-hash approach described in [13]. Pseudo-code for the
two main functions that make up our algorithm is shown as Algo-
rithm 1 and Algorithm 2 below.

input : URI uri
output: Hash as a byte array

if (uri.type == RESOURCE)then
return ResourceHash(uri);

else
return NodeHash(uri);

end

Algorithm 1: Function URIHash

input : URI nodeURI
output : Hash as a byte array
description: Hash the set of (property,URI) tuples that make up

the node

buffer = NodeMapHash (URI nodeURI);
foreach property in lexicographic orderdo

if (the property points to a URI) &&

(this URI has not been hashed before)then
buffer = concat(buffer, URIHash(URI));

end

end
return buffer;

Algorithm 2: Function NodeHash

The URIHash function simply checks to see whether the URI
points to a resource or a node. If it is a resource, then we sim-
ply hash the bit-string representation of the resource. If the URI
points to a node, then we call theNodeHashfunction to hash the
hierarchical structure in the repository with this node as its root.
TheNodeHashfunction first hashes the lexicographically ordered
set of (propertyname, uri) pairs that is part of the node. It then
begins to traverse the graph, following the edges given by the out-
going properties of the node. Specifically, ourNodeHashalgo-
rithm hashes the graph in a lexicographically ordered depth-first

traversal, beginning at the root, to recursively hash all the nodes,
resources and literals that form the graph. At each level, inter-
mediate hash values capture the bit-string representationof the
resources and literals as well as the structure of the graph itself.
The NodeHashalgorithm avoids any cycles while traversing the
graph. The hash value and the resulting time-stamp certificate are
stored in the repository, linked to the document graph.

We illustrate our algorithm by showing what it computes,
given the graph shown in Figure 5. We start with the URI ofN1.

N1

P1

~~}}
}}

}}
}

P2

��

P3

 A
AA

AA
AA
oo

R1 N2

P4

~~}}
}}

}}
}

P5

��

P6

''OOOOOOOOOOOOOOO L1

R2 L2

OO

Figure 5. A cyclic graph

Since the URI points to a node, we invoke theNodeHashfunction
and mark the node as “traversed”. The first step inNodeHash
is to serialize and hash the property-map of the node using the
NodeMapHashfunction. As part of this step, the literalL1 iss
hashed along with the propertyP3; this is because the literal is
stored as a part of the nodeN1 and not stored as a separate entity
in the DMP Repository. Then we traverse the document graph,
by lexicographic order of properties. (Let’s say thatP1 < P2 < P3,
andP4 < P5.) SinceP1 points to a resourceR1, we simply hash the
bit-string representation ofR1. Next, we examine propertyP2 and
find that it too points to a node,N2. Hence the functionNodeHash
is called recursively on nodeN2. In this step, the resourceR2
and literalL2 are handled in the same way as wereR1 and L1,
respectively, when we visitedN1. By contrast, by following the
edge with propertyP6, pointing to nodeN1, the function detects
that nodeN1 has been traversed and therefore does not invoke
NodeHashon it again. However, we have captured the fact that
nodeN2 does have a propertyP6 that points toN1, as part of the
computation ofNodeMapHashonN2. Thus no information is lost
in this process.

The complete calculation of NodeHash(N1) is shown here:
NodeHash(N1)
= Hash(NodeMapHash(N1)||Hash(R1)||NodeHash(N2))

NodeMapHash(N1) = Hash([P1, r1], [P2,n2], [P3,L1]),
wherer1 = URI(R1),n2 = URI(N2), etc.

NodeHash(N2) = Hash(NodeMapHash(N2)||Hash(R2))

NodeMapHash(N2) = Hash([P4, r2], [P5,L2], [P6,n1])

Given all these pieces, ourTransform-certify operation
works as follows. As mentioned above, DMP transformations
are represented in XML. An invocation ofTransform-certify
takes as inputs the URId and d′ for the original and trans-
formed documents, the XML representationt of the transfor-
mation, and and the auth-nodea of the original document.
The CIS certificate is a time-stamp certificate computed for
a request consisting of the hash valueh computed ash =

Hash[NodeHash(d) |NodeHash(d′) |NodeHash(a) |Hash(i)].
It is clear that the same technique can be used to compute

a hash value, and then a CIS certificate, for any digital object
that is constructed according to an edge-labeled graph datamodel
similar to that used in W3C’s Resource Description Framework
[14]. Recent applications of such data models include work in
biological research [15].

Conclusion and Future Work
In this paper we presented the design requirements for a Con-

tent Integrity Service for long term digital archives. We then de-
scribed the architecture of such a service as a solution and dis-
cussed the implementation of a protoype version of the same.This
imlementation uses the highly modular and extensible repository
and content services framework provided by HP’s Digital Media
Platform.

Our prototype of the CIS can be extended to implement the
capability (1) to renew integrity certificates for documents; (2) to
certify parts of a document, using the certificate of the maindoc-
ument; (3) to handle complex versioning scenarios for the reposi-
tory; and (4) to process optional attributes that may be associated
with node properties in the future.

References
[1] “HP Digital Media Platform White Paper,” Available at

http://www.hp.com/., 2006, To appear.
[2] Alfred Menezes, Paul van Oorschot, and Scott Vanstone,Handbook

of Applied Cryptography, chapter 9, CRC Press, 1996.
[3] Stuart Haber and Henry Massias, “Time-stamping,” inEncyclopedia

of Cryptography and Security, H.C.A. van Tilborg, Ed. Springer,
2005.

[4] Petros Maniatis and Mary Baker, “Enabling the archival storage of
signed documents,” inFAST ’02: Proceedings of the 1st USENIX
Conference on File and Storage Technologies, 2002.

[5] Stuart Haber and W. Scott Stornetta, “How to time-stamp adigital
document,”Journal of Cryptology, 1991.

[6] Dave Bayer, Stuart Haber, and W. Scott Stornetta, “Improving
the efficiency and reliability of digital time-stamping,”Sequences

II: Methods in Communication, Security and Computer Science,
Springer-Verlag, 1993.

[7] J. Benaloh and M. deMare, “Efficient broadcast time-stamping,”
Tech. Rep. TR-MCS-91-1, Clarkson University Department of
Mathematics and Computer Science, 1991.

[8] R. Merkle, “Protocols for public key cryptosystems,” inProceedings
of the 1980 Symposium on Security and Privacy. 1980, pp. 122–133,
IEEE Computer Society Press.

[9] R. Sproull, H. Besser, J. Callan, C. Dollar, S. Haber, M. Hed-
strom, M. Kornbluh, R. Lorie, C. Lynch, J. Saltzer, M. Seltzer, and
R. Wilensky, Building an Electronic Records Archive at the Na-
tional Archives and Records Administration: Recommendations for
a Long-term Strategy, National Archives and Records Administra-
tion, 2005.

[10] Xiaoyun Wang and Hongbo Yu, “How to break MD5 and other hash
functions,” EUROCRYPT, 2005.

[11] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu, “Finding collisions
in the full SHA-1,” CRYPTO, 2005.

[12] “Surety,” http://www.surety.com.
[13] J. Carroll, “Signing RDF graphs,”Lecture Notes in Computer Sci-

ence, volume 2870, Springer-Velag, 2003.

[14] “Resource description framework (RDF),”
http://www.w3.org/RDF/.

[15] Frank Olken, “Biopathways graph data manager (bgdm),”
http://hpcrd.lbl.gov/staff/olken/graphdm/graphdm.htm.

Author Biography
Stuart Haber is a researcher at Hewlett-Packard Laboratories, spe-

cializing in cryptography and computer security, with a particular interest

in problems associated with the integrity of digital objects. Before joining
HP, he worked at Bellcore (now Telcordia), Surety (which he co-founded),
and InterTrust STAR Lab.

Pandurang Kamat is a Ph.D. student in the Computer Science de-
partment of Rutgers University specializing in security and privacy re-
search.

