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Abstract—A major challenge in the operation of wireless com-

munications systems is the efficient use of radio resources. One im-

portant component of radio resource management is power con-
trol, which has been studied extensively in the context of voice com-
munications. With the increasing demand for wireless data ser-
vices, it is necessary to establish power control algorithms for in-
formation sources other than voice. We present a power control so-
lution for wireless data in the analytical setting of a game theoretic
framework. In this context, the quality of service (QoS) a wireless
terminal receives is referred to as theutility and distributed power
control is a noncooperative power control gamehere users maxi-
mize their utility. The outcome of the game results in &Nash equilib-
rium that is inefficient. We introduce pricing of transmit powers in
order to obtain Pareto improvement of the noncooperative power
control game, i.e., to obtain improvements in user utilities relative
to the case with no pricing. Specifically, we consider a pricing func-
tion that is a linear function of the transmit power. The simplicity
of the pricing function allows a distributed implementation where
the price can be broadcast by the base station to all the terminals.

strategies [8], [9]. Each player in the game maximizes some
function of utility in a distributed fashion. The game settles

at a Nash equilibrium if one exists. Since users act selfishly,
the equilibrium point is not necessarily the best operating
point from a social point of view. Pricing the system resources
appears to be a powerful tool for achieving a more socially
desirable result.

In this work, we are primarily concerned with the impact
of pricing the usage of wireless services on QoS. Pricing of
services in wireless networks emerges as an effective tool
for radio resource management because of its ability to guide
user behavior toward a more efficient operating point. To that
end, we introduce a model for power control in wireless data
networks using concepts from microeconomics. We model
utility to reflect the level of satisfaction (QoS) a data user gets
from using system resources [4]. We consider the uplink power

We see that pricing is especially helpful in a heavily loaded system. control problem in a single-cell code-division multiple-access

(CDMA) wireless data system with users where each user
maximizes its own utility. While the resulting noncooperative
power control game has a Nash equilibrium, it is inefficient.
Therefore, we introduce pricing to improve efficiency. We then
show that there exist equilibria in the noncooperative power
S THE demand for wireless services increases, efficiegdntrol game with pricing and that they are Pareto superior
use of resources grows in importance. A fundamentabmpared to the equilibrium of the game with no pricing.
component of radio resource management is transmitter powswever, the game with pricing is still unable to achieve a
control. It is well known that minimizing interference usingsocially optimum power solution.
power control increases capacity [1]-[3] and also extends bat-This paper is organized as follows. In Section II, we discuss
tery life. Recently, an alternative approach to the power contiple concept of utility and develop a utility function that rep-
problem in wireless systems based on an economic model h@sents the QoS of data users. In Section I, we construct the
been offered [4]-[7]. In this model, service preferences f@loncooperative power control game. The equilibrium and its
each user are represented by a utility function. As the napgperties are discussed in Section IV. Section V is devoted to
implies, the utility function quantifies the level of satisfactiorshowing the inefficiency of the Nash equilibrium obtained as a
a user gets from using the system resources. Game-theorgsiult of the noncooperative power control game. In Section VI,
methods are applied to study power control under this neme introduce pricing as a means of remedying this inefficiency
model. Game theory is a powerful tool in modeling interactiongnd discuss the game with pricing. In Section VI-A, we define
between self-interested users and predicting their choice safpermodular games and discuss the relevance of this class of
games in the context of the present work. Comparisons of re-
sults in games with and without pricing and the significance of

Paper approved by K. K. Leung, the Editor for Wireless Network Access arf["fese results are discussed in Section VII. In Section VIII, we
Performance of the IEEE Communications Society. Manuscript received Apr, !

12, 2000; revised March 6, 2001. This work is supported in part by the Natiordleﬁne the social optimum and discuss how it relates to solutions
Science Foundation through the KDI program under Grant 11S-98-72995. Tfer the games discussed in this work. Finally, in Section IX, we

work of N. B. Mandayam was supported by the National Science Foundati ; ; ; ;
under a CAREER award CCR-9874976. This paper was presented in part a(ﬁﬁgsem an overview of the results in this paper and conclusions.
IEEE Wireless Communications and Networking Conference 1999.

C. U. Saraydar is with Bell Labs, Lucent Technologies, Holmdel, NJ 07733
USA (e-mail: saraydar@lucent.com). o . . .
N. B. Mandayam is with WINLAB, Rutgers University, Piscataway, NJ The concept of utility is commonly used in microeconomics
08854-8060 USA (e-mail: narayan@winlab.rutgers.edu). and refers to the level of satisfaction the decision-taker receives

D. J. Goodman is with the Department of Electrical Engineering, Polytechnic . . . . . .
University, Brooklyn, NY 11201 USA (e-mail: dgoodman@duke.poly.edu). as & result of its actions. Formally, a utility function is defined
Publisher Item Identifier S 0090-6778(02)01363-6. as follows [8], [9].

Index Terms—Game theory, Pareto efficiency, power control,
pricing, wireless data.

. INTRODUCTION

Il. UTILITY FUNCTION

0090-6778/02$17.00 © 2002 |IEEE



292 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 2, FEBRUARY 2002

fixed power fixed SIR TABLE |
BER AS A FUNCTION OF SIR FOR VARIOUS MODULATION SCHEMES
B 2
= | BPSK Qv2y)
g g DPSK Le=1
Coherent FSK | Q(,/7)
SIR power Non-coherent FSK | 1e~7/2

Fig. 1. The behavior of the data user satisfaction (utility) as a function of SIR ) ) ) ]
for fixed power and as a function of power for fixed SIR. packet have identical meanings. We assume fixed Rt all

terminals. Optimization assuming variable rates is treated in [6]
nd [12]. LetP. denote the probability of correct reception of a
rame at the receiver, i.e., the frame success rate (F8R$.a
function of the SIR obtained by the terminal at its base station
and depends on the properties of the system such as modulation,
égdio propagation, and receiver structure. The utility function
can be expressed as [10]

Definition 1: A function that assigns a numerical value to th
elements of the action sef(u: A — R*) is a utility function,
if, for all z,y € A, z is at least as preferred comparedtd
and only ifu(z) > u(y).

The utility function that describes a particular set of preferen
rulesis notunique. Any function that puts the elementéiofthe
desired orderis a candidate for a utility function. We firstidentify LRP. bhits
the preference relations that are specific to our problem and then w= Mp Joule @

describe a utility function that satisfies this structure. - ] . ] ] ]
Users access awireless system through the air interface wHitiflity as defined above is the number of information bits

is a common resource and they transmit information expendif@f€ived successfully per Joule of energy expended. Assuming
battery energy. Since the air interface is a shared medium, eREHfect error detection and no error correction, we can ex-
user's transmission is a source of interference for others. TRKESS the FSR aB. = (1 — P.)" where P is the bit error -
signal-to-interference ratio (SIR) is a measure of the quality Git€ (BER). In the case of an additive white Gaussian noise
signal reception for the wireless user. Typically, a user woul@WGN) channel, the BER expressions for various modu-
like to achieve a high quality of reception (high SIR) while afation techniques are given in Table I. In all cases, the BER
the same time expending a small amount of energy. Thus, itigcreases monotonically with SIR, where SIR is denoted by
possible to view both SIR and battery energy (or equivalently ConsequentlyF. is a monotonically increasing function
transmit power) as commodities that a wireless user desir@sthe SIR. Therefore/’. can be expressed as a function of
There exists a tradeoff relationship between obtaining high SIRand substituted in (1) to obtain the utility function for a
and low energy consumption. Finding a good balance betwe#ecific system. However, the utility function given in (1) has
the two conflicting objectives is the primary focus of the powe? mathematical anomaly in |ts_ formulation. In case of transmit
control component of radio resource management. This trade@@verp = 0, for all modulation schemes, the best strategy
isillustrated through the conceptual plotin Fig. 1. If the transmfr the receiver is to make a guess for each bit, resulting in
power were fixed (fixed battery drain), the terminal would exte = 27/, resulting in infinite utility. This suggests that,
perience lower error rates as the SIR increases which leaddt@rder to maximize utility, all users in the system should
increased satisfaction of the use of the system resources. For §@smit zero power and just wait for the receiver to guess the
ficiently large SIR values, the error rate approaches zero whigffrect data. To avoid this degenerate solution, we approximate
results in an asymptotic increase in utility in the high SIR rdhe FSR.F., by anefficiency functiorthat closely follows the
gion. If the SIR were to be fixed (fixed error rate), increasir;%ehav'or of the probability of correct reception while producing
the transmit power expedites the battery drain, which effectivefy = 0 atp = 0.2 The efficiency function is defined as
reduces the satisfaction of the mobile terminal.
An optimum power control algorithm for wirelessicesys- f) =@ —2p)" @

tems maximizes the number of conversations that can simiepjacep, in (1). The resulting utility function will be exam-
taneously achieve a certain quality of service (QoS) objectiMEe( in the remainder of this paper. It is given as
Typically, the QoS objective for a voice terminal is to achieve

a minimum acceptable SIR. However, this approach is not ap- u LEf(vy) bits 3)

propriate for the efficient operation of a wireless data system Mp Joule

[4], [10]. This is because the QoS objective for data signals d;ﬂ“ . . _ _
fers f h iactive f lenh K e efficiency function yields the desirable propertfés) = O.
ers from the QoS objective for telephones. In a data syste Bt p = 0 and f(0) = 1. At any other value of the SIR, its

error-free communication had high priority. The SIR is an im-
portant quantity since there is a direct relationship between i
SIR and the probability of transmission errors. €

Consider a single-cell system where each user transinit
information bits in frames (packets) af > L bits at a rate
R bls usingp W of power! In this work, the term frame and

ape follows that of’.. Fig. 2 demonstrates how closely the
iciency function follows the FSR in case of BPSK and nonco-
gwerent FSK modulation schemes. In the remainder of the paper,
we consider power control schemes where each data user tries
to maximize its individual utility. A thorough discussion on the

2An interpretation of this modification is the implicit inclusion of a delay
1A multi-cell system is studied in [11]. constraint in the utility function.
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. . . . Fig. 3. Shape of the utility as a function of the user transmit power for fixed
Fig. 2. The FSR and efficiency as a function of terminal SIR for BPSK angterference.

noncoherent FSK modulation schemes. Efficiency is an approximation to FSR.

efficiency function for different types of modulation techniqueg’ = [0,7,]. The utility function takes the generic form given
can be found in [13]. in Fig. 3 for fixed interference.

Note that (4) demonstrates the strategic interdependence be-
tween users. The level of utility each user gets depends on its
own power level and also on the choice of other players’ strate-

Let G = [N,{P;}.{v;(-)}] denote the noncooperativegies, through the SIR of that user. The efficiency function can be
power control game (NPG) wher® = {1,2,..., N} is the chosen to represent any given modulation technique consistent
index set for the mobile users currently in the cél, is the with the approximation rule described in Section II.
strategy set, and;(-) is the payoff function of usej. Each  In the power control game, each user maximizes its own
user selects a power levg] such thap; € P;. Let the power uitility in a distributed fashion. Formally, the NPG is expressed
vectorp = (p1,...,pn) € P denote the outcome of the gameas
in terms of the selected power levels of all the users, wiitre
is the set of all power vectors. The resulting utility level for (NPG) max u;(p;,p—;), forallj e N (6)
the jth user isu; (p). We will occasionally use an alternative Pi€l;
notationu;(p;, p_;) wherep_; denotes the vector consisting L . .
of elemenjt(s éi) otjh)er than théth element. The latter notationWher?“j ISgiven |n.(4) and’; = [O’Pﬂ'] s thg st_ra_ttegy space of
emphasizes that thigh user has control over its own powe, userj. The transm|t power that optimizes |nd'|V|du:.;1I utility de-
only. The strategy space of all the users excludingjtheuser pgnds on transmit powers qf allthe other terminals in the system.
is denoted byP_;. Itis necessary to characterize a set of powers where the users are

The utility user; obtained by expending; can be expressed satisfied with the utility they receive given the power selections
more formally as v of other users. Such an operating point is calleéauilibrium

I1l. N ONCOOPERATIVEPOWER CONTROL GAME

LR bits IV. NASH EQUILIBRIUM IN NPG
wj(pjs i) = 300 1o0a 4)

Mp; joule The solution that is most widely used for game theoretic prob-
lems is theNash equilibriun16].

Definition 2: A power vectorp = (p1,...,pn) is @aNash
equilibriumof the NPGG = [NV, {P;}, {u;(-)}] if, for every
J€ N, uj(pj,p_j) 2 uj (p/j, p_j) for all p;» € p;.

At a Nash equilibrium, given the power levels of other
andW is the available spread-spectrum bandwidth [HZ]js players, no user can improve its utility level by making in-
the AWGN power at the receiver [W], aq@; } is the set of path dividual changes in its power. The power level chosen by a
gains from the mobile to the base station. It should be noteational self-optimizing user constituteskaest responsto the
that the derivation of the SIR expression given in (5) assumpswers actually chosen by other players. Formally, termiizal
conventional matched filter receivers and pseudorandom sigbast response;: °_; — P; is the correspondence that assigns
ture sequences [14], [15]. We assume that the strategy $pacéo eachp_; € P_; the set
of each user is a compact, convex set with minimum and max-
imum power constraints denoted pyandp;, respectively. For 7;(p—;) = {p; € P;:u;(p;, p—;)

NPG, we Ietgj = 0 for all j which results in the strategy space > (p;,7 p_j) for all p;, c pj} (7)

where; is the SIR of usey defined as

w hip;

S A b | 5
K sz;éihjpj-i-OQ ©)
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1 T T T

conditions, an equilibrium iguaranteedo exist. Such a state-
mentdoes notimply, however, that if the same conditions are
notmet, there exists no equilibrium. Next, we discuss the prop-
erties of the equilibrium itself. First, we derive the best-response
correspondence of a terminal in NPG.

Proposition 1: In NPG, terminalj’s best response to a given
interference vectop_; is given as

— 1,(p,)
- T,®)

0.8r

bt
=3
T

Nash equilibrium

Py TPy

r;(p—y) = min (5, p) (®)

(=4
'S
T

wherep; = argmax, er, u;(p;, P—;) iS the unconstrained
o emmm = maximizer of the utility in (4). Furthermorg; is unique.
027 icmsmem e m T T Proof: In the proof of Theorem 1 given in Appendix A, it
is shown that the unconstrained maximization of the utility func-
tion results in¥y as the solution for terminal where¥ solves
o 0.2 0.4 0.6 0.8 1 fG)A; = f(#) for all 4. For given interferencey corre-

Py 1 (@) sponds to the transmit powgy given by

Fig. 4. Best response correspondences in a game with two players. The point ~ 2
of intersection is a Nash equilibrium. v Zk;éj hipx +0

j = - 9
! Thi ©

With the notion of a terminal’s best response correspondeng@mce&
the Nash equilibrium definition can be restated in a compagt
form as follows: the power vect@s = (p1,...,py) IS a Nash

equilibrium of the NPGG' = [N, {P;}, {u;()}] if and only jyerterence is also unique. ff; ¢ P; for some usep, then

if pj € r;(p—;) forall j € N. Fig. 4 illustrates how the Nash gj . it is not a feasible poing, cannot be a best response to

equilibrium is determined by using the best response corresp ﬂ/'enp .. In this case, we observe that; /dp;) < 0 for any
dences in a game with two players. In this fictitious exampl%,j < fy’,_Jand therefore for any; < p. This ir;]pﬁes that the

the strategy space for both players is [0, 1] and bathersus ity function is increasing in that region. Sinpes the largest

p2 andr versusp, are plotted on the same figure. The Interseqsg ver in the strategy space, it yields the highest utility among
tion po!nt of th? two plots f_u|f|||s the_cp_ndltlomj < Tj(p—j)__ all p; < p and thus it is the best response to the gipenp. W
forall j € A given above in the definition of a Nash equilib- \5te that, at any equilibrium of the NPG game, a terminal

rum. N?te that :fforeverry]),j € P_j,ri(p—;)is comfposgd of either attains the utility maximizing SIR or it fails to do so
precisely one element, thep(-) can be viewed as a function in 4 transmits at maximum powgr

the usual sense. Thusprrespondences a generalized concept Theorem 2: The NPG has a unique equilibrium.

of afunction[8]. Proof: By Theorem 1, we know that there exists an equi-
_ . o librium in NPG. Letp denote the Nash equilibrium in the NPG.
A. Existence and Uniqueness of NPG Equilibrium By definition, the Nash equilibrium has to satigfy = r(p)

The Nash equilibrium concept offers a predictable, stable ojfPerer(p) = (r1(p),r2(p), ..., 7~ (p)). Note thatr;(p) and
come of a game where multiple agents with conflicting interests(P ;) are equivalent. The key aspect of the uniqueness proof
compete through self-optimization and reach a point where !0 realize that the best-response correspondefeg is a
player wishes to deviate. However, such a point does not nedgg_ndardfuncno_n [1]. A fun<_:t|on is said to be standard if it sat-
sarily exist. First, we investigate the existence of an equilibriufffies the following properties;

is the unique maximizer of the utility and since there
a one-to-one correspondence between the transmit power and
the SIR, the transmit power; that maximizes utility for fixed

in NPG. * positivity: r(p) > 0;
Theorem 1: A Nash equilibrium exists in the NPG; =  monotonicity: ifp > p’ thenr(p) > r (p’);
WL AP {w; (O} « scalability: for allps > 1, ur(p) > r(up).

The proof of the above theorem can be found in Appendix At is shown in [1] that the fixed poinp = r(p) is unique for
The analysis presented in the proof uses the efficiency furestandard function. Therefore, the Nash equilibrium of NPG is
tion that approximates the probability of correct reception afmique. |
noncoherent FSK as an example. However, the resultthist A special case is when the user configuration is such that all
quasi-concave ip; applies to a fairly general class of modemserminals are able to achieve the utility maximizing SiRat
It is shown in [13] that the efficiency functions that corresponthe Nash equilibrium. We already mentioned that the equilib-
to the modulation schemes listed in Table | are all quasi-corium SIR, %, of NPG is derived from the efficiency function
cave in each user’'s own power. The above theorem establisge®n in (2). If all the wireless terminals use the same modu-
the existence of a Nash equilibrium in NPG where the utilitiation technique and the same packet lengththey have the
function is quasi-concave in transmit power. At this point, it isame efficiency function. Therefore, the valuedothat each
important to make a note of equilibrium existence statementsterminal tries to achieve at equilibrium is the same for all termi-
general. An equilibrium existence proof states that under certaals. It is worth noting that the power control solution obtained
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at the equal-SIR NPG equilibrium is similar to the solutions of- u, Pareto-optimal
fered by power control algorithms for speech communications W

[1], [2], [17]. In fixed-target type power control algorithms for e Region of
voice systems, users adjust powers in order to satisfy a min- -1 ™ Pareto improvement
imum target SIR constraint. The algorithm terminates at a set ;
of powers where each terminal has exactly the target SIR. The !
Nash equilibrium SIR ofy can be thought of as the target SIR ; ‘
in voice systems with one important distinction: the common i
target SIR for voice systems is determined by subjective mea- ay) \
sures of speech quality. Howevérjs derived from the partic- \
ular efficiency function and therefore is dictated by system prop- ; '
erties such as modulation technique, channel model, and packet i o i Epasipni 1 U/ 1
length. / :
Notice that, at the utility maximizing SIR, the utility of a Utility possibility set
user increases with decreasing interference. Such behavior can
be observed by substituting (9) into the utility expression. COEL')gti'n?él.
sequently, one might consider a scheme where the terminals are
scheduled to transmit one at a time: only one terminal transmits )
at the utility maximizing SIR while the others do not transmi@0cation. However, since,(z) < u»(y), z does not Pareto
Such a scheme is not the outcome of the power control gaffminatey, regardless of the fact that (z) > w1 (y).

and thus it is not a distributed solution. A power control scheme W& NoW seek improvements to the outcome obtained as a re-
based on this idea will be the topic of future work sult of the NPG. In this paper, the power vectors that improve
utilities (in the Pareto sense) with respect to the Nash equilib-

rium are referred to adPG-dominantThe focus of this section
and the section on pricing is to seek NPG-dominant power allo-
V. INEFFICIENCY OF THENPG EQUILIBRIUM cations.
Theorem 3: The NPG equilibrium is inefficient.
Proof. Recallthat, at the equilibrium of the NPG, there are
types of terminals: those that achieve the utility maximizer
and those that transmit at maximum powgewrhile attaining

U

Power vectox Pareto dominates power vectgrandz is Pareto

The Nash equilibrium discussed in Section IV offers a so-
lution to the power control problem where no terminal can ir{\_/vo
crease its utility any further through individual effort. Thus, itis.

an outcome obtained as a result of distributed decision taki e%s tharf. Let H denote the index set of terminals that are able

\év:\:\(/::r ;ﬁg::datliaoen iﬁ;ﬁgg ttk?robuegLeggg:;z?;:::)inbaet\?vzzsr:btfr to reachry andH denote index set for the rest of the terminals.
. Suppose that, at NPG, glle H reduce their powers by a factor

nals and/or as a result of centralized optimization. Indeed, it I3 . - .

. L S wwhere0 < 1 < 1, while all j € H keep their powers &t.
well known that in general the Nash equilibria are inefficient [8 he utility of - H with th duced )
[18]. A power allocation is said to be more efficient (or Pareto € utiiy ot usety € 1 wi ese reduced powers 1s
dominant) if it is possible to increase the utility of some of the LR
terminals without hurting any other terminal. A formal defini- w;(p) = Mup,
tion is as follows. !

Definition 3: A power vectorp Pareto dominatesinother where

vectorp if, for all j € NV, u;(p) > u;(p) and for somej €

7 () (10)

N, uj(p) > u;(p). Furthermore, a power vectpr* is Pareto !/ = w 1hip; —,

optimal (efficient)if there exists no other power vectprsuch R ke H, hoty WhRPE YwemP+o

thatu;(p) > u;(p*) for all j € A andu;(p) > wu;(p*) for forallj € H. (11)
somej € N.

Fig. 5 explains the concept of Pareto dominance and Parstghilarly, the utility of userj & H with these reduced powers is

optimality on a generic utility possibility set. In the example LR

in Fig. 5, there are two terminals in the game and their strategy ui(p) = Ff (’VJ“) (12)
sets are mapped to the utility possibility set shown as the shaded p

area. Any power vector that provides a Pareto improvement wighhere

respect toy results in nondecreasing changes in individual util- _

ities, u;(y), and therefore would lie in the area labeRegion ~# — w _ h;p 7

of Pareto improvemenfrom the figure, we can observe that R chﬁ, k#j haP + 2 ke hapr + 07

is such a point. We can also referxoas thePareto-preferred forallj € H. (13)
power vector when comparedjo The concepts of Pareto dom-

inance and Pareto optimality should not be confused: Pareto-¥e need to examine how the utility value changes for all termi-
timal power allocationslo notnecessarily Pareto dominaa# nals as the value gf changes. As the value pfgoes from 1 to
other power vectors. For example, compare the utilities obtain@gdthe terminals in the séf dissipate a power lower than equi-
by y andz in Fig. 5. Notice thatz is a Pareto-optimal power librium powers. If this decrease jm results in nondecreasing
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utilities for all terminals, we have a proof that there exists aihimposes on other terminals by the interference it generates.
NPG-dominant power vector. First, let us focus on only thoSéhe self-optimizing behavior of an individual terminal is said
terminals in the sefd, i.e., the terminals that achieveat the to create arexternalitywhen it degrades the quality for every
NPG equilibrium. Taking the first-order derivative of utility inother terminal in the system. Among the many ways to deal with
(10) with respect ta, and evaluating the resulting expression axternalitiespricing (or taxation) has been used as an effective
i = 1, we obtain tool both by economists and researchers in the field of computer
O (11) LR qetwork:_s. Typically, pricing is motivated by two diffe_rent objec-

J lu=1 = tives: 1) it generates revenue for the system and 2) it encourages

I Mp, players to use system resources more efficiently. In this work,

x < Fi)vi (e b + %)

) (14) pricing does _not refer to _monetary incentives, l_)ut rathe_r refers
Zk@m Kot hapr + chﬁ hip + o2 Iy to a control signal to motivate users to adogiozialbehavior.
An efficient pricing mechanism makes decentralized decisions
For terminalj € H, since the FONOGQ”(+)y = f(v) is satis- compatible with overall system efficiency by encouraging effi-

fied, (14) can be simplified to yield cient sharing of resources rather than the aggressive competition
i of the purely noncooperative game. A pricing policy is cailed
() LR ) AL 2
9 lu=1 = i -f(v5) centive compatiblé pricing enforces a Nash equilibrium that
/“L b ) improves social welfare. Roughly speaking, social welfare is de-
doncgpto fined as the sum of utilities.
X — —1]. (15) . . ) - -
DokcH noty Pk + > owem D +o? It is possible to use various pricing policies, such as flat-

) ] i rate, access-based, usage-based, priority-based, etc. This situ-
Notice that the above expression has a negative value, igijon raises the question of which pricing policy is appropriate.
(Quj(p)/Op)lu=1 < 0. Therefore, asu tends from unity, The service provider determines both the pricing policy and the
utilities of the terminals in sef have a tendency to increasegpecific prices for the use of resources based on the system, the
Although this proves the utilities for ali € H increases, we kind of resources it offers, and the type of the demand for these
still need to show that the terminals in skt also received sepyices. An efficient price will reflect accurately the costs of
increased utilities as a result of scaling of powers;byy sage of a resource and must take into account the nature of the
the users in the seff. Recall the utility of usey € H with  gemand for the offered service. Usage-based pricing is an ap-
reduced powers is given in (12) and the SIR is given in (13}roach commonly encountered in the literature. In usage-based
Observe that, when terminals # reduce their powers by, pricing, the price a terminal pays for using the resources is pro-
the denominator term in (13) decreases. Since the numergigftional to the amount of resources consumed by the user.
of this term remains the same (namely, the terminal#ido |y order to improve the equilibrium utilities of NPG in
not change their equilibrium power @), the SIR increases the pareto sense, we resort to usage-based pricing schemes.
for a terminal in . With an increased SIR, the utility of Through pricing, we can increase system performance by
terminalj € H given in (12) increases since the efficiencympjicitly inducing cooperation and yet we maintain the
function is a monotonic increasing function of the SIR and thgncooperative nature of the resulting power control solution.
denominator remains the same. Thus, we conclude that thgfeefficient pricing scheme should be tailored for the problem
exists & < 1 where utilities ofall terminals increase. Sinceat hand. Within the context of a resource allocation problem
atp < 1, the utilities of all the users increase, by definitiongr 5 wireless system, the resource being shared is the radio
the Nash equilibrium of the NPG is not a Pareto optimungnyironment and the resource usage is determined by terminal’s
The scalay: was taken to have the same value for all users feignsmit power. Furthermore, in Section V, we show that the
purposes of convenientillus.trat!on of the non-Pareto Optim"’_‘"%centralized power control game has an equilibrium that is
property of the Nash equilibrium. However, when seekingeficient. We argue that efficiency in power control can be

Pareto-efficient (Pareto-optimal) power vectors, we are ngfomoted by a usage-based pricing strategy where each user
constrained to power vectors that are scalar multiples of t 8ys a penalty proportional to its transmit power.

equilibrium power vector. _ n Keeping the above guidelines for a pricing strategy in mind,
In the rest of this paper, we seek to improve the utilities okye develop a noncooperative game with pricing. (&t =
tained at the Nash equilibrium of NPG. We should note thE}\ﬂ {P;}, {u5(-)}] denote anV-player noncooperative power

in [19] the authors take a centralized approach to improve thgnirol game with pricing (NPGP). Utilities for NPGP are
NPG equilibrium. The improvement is searched over the solu-

tion space constrained to equal-SIR power vectors. The value croy o ' 16
of the best equal-SIR solution is derived and shown that it is an uj(P) = u;(p) = ¢;(pj, P—j) (16)
NPG-dominant power allocation. With the same motivation of . - . .

P herec;: P — R is the pricing function for termingl € V.

improving the NPG utilities, we examine a more decentralizéll(v,i1 S N
P 9 e multi-objective optimization problem that NPGP solves can

method. be expressed as

VI. NONCOOPERATIVEPOWER CONTROL WITH PRICING

) i L .. (NPGP) max v5(p;, p—;) = u;i(p) — ¢;(pj, p—;),
In the NPG, each terminal aims to maximize its own Utl|lt)§ )pjcpj 3(P3: P=j) = 45(P) = ¢5(ps, P—y)

by adjusting its own power, but it ignores the cost (or harm) forallj e N. (17)
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The above formulation does notassume any particular form forThe significance of this property is the fact that such utilities
the pricing functiore; (-). However, motivated by the discussioriead to a system of best response correspondences that have a
in Sections |-V, we impose a price that increases monotonicafiyed point21, p. 180]. Recall that a fixed point in best response
with the transmit power of the user. Particularly, we restrict oworrespondences implies a Nash equilibrium. Finally, we can
attention to linear pricing schemes (see also [4]) of the form state the fundamental result by Topkis.

Theorem 4:[21] The set of Nash equilibria of a supermod-
¢j(pjs P—j) = ca;p; (18) ular game is nonempty. Furthermore, the Nash set has a largest

wherec and{a;} are positive scalars. The pricing factocan €l€ment and a smallest element. _
be considered to have units b/s/\&bo that it is consistent witn A Proof of the theorem can be found in [21]. Let the set of
the units of thenet utility ¢ in b/J Nash equilibria be denoted By and the largest and the smallest
J : .
The pricing factor: needs to be tuned such that user self-ifgléments of£> be denoted byp;, and ps, respectively. The

terest leads to the best possible improvement in overall netwd#kgest and smallest vector in a set of vectors refer to the compo-
performance. The NPGP with linear pricing is as follows: ~ Nent-wise comparison between vectors in that set. For example,

for two vectorsx,y € R™,x < yifandonlyifz; < 4, forall
(NPGP) max u;(p) — cop;, forall j € N. (19) j =1,...,m. The theorem states that all the equilibpiac £
piclhy are located such thats < p < pr, however itdoes notsay
Noticethatthe NPGPispracticallythe same gameasthe NPGwittlatall points in that interval are equilibrium points.
different payoff functions. We seek a Nash equilibrium point that If the utilities of the game under consideration are such that
solvesthe NPGP, if one exists. In gatie= [\, {P;}, {u;(-)}], there is a parameter that none of the users have control over,
each utility function is quasi-concave in its own strategy. We ege call that parameter axogenousne. Consider a game with
tablished that in a game with such utility functions there existssxogenous parametet, G. = [V, {P;}, {u5(-)}] with utili-
unique equilibrium. The NPGP, however, does not have quasesw;(p;, p—;, ). The supermodularity definition for a generic
concave utility functions. Analytical techniques used to provgame(G given earlier (corresponding to= 0) can be readily
Nash existence under strong assumptions of convexity and diftended to the gani&. with an exogenous parametely im-
ferentiability are no longer applicable. Thus, we turrstgper- posing an additional NDD condition regarding the parameter.

modularity theoryto show existence of equilibria. Definition 6: A gamed, with an exogenous parameters
We now present the theory of supermodular games which waid to besupermodularor it is a parameterized game with
will use to investigate Nash equilibria in the NPGP. complementaritiesf u,(p,, p_;,e) has NDD in(p;,p_;) and
in (p;,e) forall j.
A. Supermodular Games and NPGP The following important result and its proof can be found in

Supermodularity was introduced into the game theory literg21].
ture by Topkis [20] in 1979. In a supermodular power control Theorem 5:In a parameterized supermodular game, both
game, each player’s desire to increase its power increases witH{¢) andp,(¢) are nondecreasing in
an increase in other players’ powers, i.e., the best response of i should be observed that in fact the pricing gafeas given
terminal is monotone increasing in interferers’ strategy. Supén-(19) is agame with an exogenous parameter, the pricing factor,
modular games are of particular interest since they have NasiNPGPG, = [N, {P;}, {uj(~)}] is not a supermodular game
equilibria. Furthermore, it is possible to identify a set of Nashy Definition 6. However, if the strategy spaces of users are mod-
equilibria defined by two Nash equilibria that constitute a lowefied appropriately, we can show that the resulting game is super-
bound and a higher bound on the Nash set. The simplicity miodular. The modified strategy space for ugelenoted byﬁj

supermodular games makes convexity and differentiability 88-3 compact set defined kfyj - [{Bj’ﬁj where the smallest

sumptions unnecessary. A formal definition of a SuPermOdu'ﬁéwerinthestrategysptisderived romy” > 21n M. Notethat
game can be found in [9, p. 491]. For the special case of sin(zlﬁe ) J

21n M corresponds to the point of_rﬁaximum rate of change
= n
dimensional user strategy sets which are of interest in this wo L S ; ;
the definition simplifies ta the followin the efficiencywithincreasing SIR, 1.4 /(7)/07*) = 0.We
Definition 2 Consider a 9- eneric amefindthis SIR requirement using the condition given in Definition
G = N, {3} {u.'(')}] with strategy Spagcef?» c R?or 5.1.€.,(0%u;(p)/OpiOp;) 2 Oforall j # i. The largest power
all B a 7is sju7errjnodularif for each j, u( ! ) has p; is the maximum power constraint of the system. In this work,
nonﬁecreasingpdifferences ('NDD) in; p‘]’ ) \Pj> P we assume the modified strategy sp&tie nonempty, i.e., there
Jr =3/ H — - . _
If the utility of user; has NDD in(p;, p__; ), then usey’s mar- _e_X|sts @, suchthab < ;_la\ii <p; for aII_J. Note that, in the mod
ginal utility is nondecreasing in the transmit powers of interfererdied strategy space of NPGP described above, the power levels
Ratyieldy; < 2In M are no longer available to the terminal. In

i.e., inresponse to an increase in the power level of another ud ‘ ) )
terminalj increases its transmit power level in order to incread¥ G, the terminals can use any nonnegative power as long as it

its utility. NDD property is formally defined as follows. is below the maximum power limit. Thus, the users in NPGP op-
Definition 5: w;(p;, p—;) has NDD in(p;,p_;) if for all erate in a smaller feasibility region as compared to the terminals

p_; > p_; the quantity; (p;, p—;) — u; (p;, P’_j) is nonde- N NP(_3: By the fo_IIowing r_esult, existence of Nash equilibriain
creasing irp;. Equivalently, for continuous and twice differen-th€ pricing game is established. .

tiable utilities,u;(p;,p_;) has NDD in(p;, p_;) ifand onlyif ~ Theorem 6:Modified NPGPG. = [N ; {Pj},{u;%(-)}}
(8%u;(p)/Op;0p;) > Oforall j # i. with exogenous parameteilis a supermodular game.
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Proof: We test whether the conditions in Definition 6 aresally, it implies that the Nash equilibrium in the modified NPGP
satisfied.G. has NDD in(p;, p—;) since the condition given is unique and can be reached from eitherttigeor thebottom
in Definition 5 yields the same expression fér. asG. We of the strategy space by implementing Algorithm 1. Since we
need only check whether the utility;(p;, p—,,c) has NDD in do not know if there is a unique equilibrium, we compare the
(p;,c). First, perform a change of variables franto ¢ where equilibria in the Nash seff.. to determine if there exists a single
e = —c. When we take the partial derivative with respect to botiquilibrium that dominates all other equilibria. Indeed, we can
p,; ande, we get(du; /dp;d¢) = a; > O forall j. Thus,G.is  show thatps(c) is thebestequilibrium in the sef...

supermodular. | Theorem 8:If x,y € E. are two Nash equilibria in modified
Using Theorems 4 and 5, we have all the Nash equilibria BPGP wherex > y, thenu$(x) < w§(y) for all 5.
G, within the setE, = {p c P ps(c) <p< ﬁL(C)}, and Proof: Notice that, for fixed p; and ¢, utility

both ps(c) and pz(c) are nonincreasing ia. It is worth re- %5 = (LI/Mp;)J(v;) — ca;jp; decreases with increasing.

membering a comment we made earlier about equilibirum €%r ll 7. Therefore, sinc&_; > y_;, we have
istence results. Equilibrium existence results do not imply an el , el ,
equilibrium does not exist if the conditions of the proof are not (5% 5) S (@Y ). (20)
met. Therefore, the NPGP with original strategy spaces is mfso, by definition of Nash equilibrium and singeis a Nash
supermodular, but we do not know for certain that it does nghuilibrium of NPGP, we have
have an equilibrium. In fact, from some experimental results,
we gather that it does have an equilibrium in some instances of (@, ¥ —5) < ui(yj y—j)- (21)
the problem. We discuss these results in Section VII. .

We discuss a totally asynchronous algorithm that generate@¥%the above equations,
sequence of powers that converges to the smallest Nash equi- c c
librium, ps(c). Suppose that terminal updates its power at uj(x) < u5(y). (22)
time instances given by the s&f = {t;1,¢;2,t;3,...} where ]
tix < tj+41) andtjo = Ofor all ;. DefineT = {r,7,...}  Corollary 1: For modified NPGPps(c) € E. is the Pareto-
as the set of update instancBsU 7 U - -- U Ty sorted inin- - dominant equilibrium, i.ex (ps(c)) > us (p°) for all j, for
creasing order. Assume that no two time instances if'sste || p¢ ¢ E,
exactly the same. Lgt andp denotfa the smallestand the largest  proof: By Theorem 8, we know that componentwise
vectors in modified strategy spagg respectively. smaller equilibrium results in higher utilities for all users than

Algorithm 1 (Terminal): Consider the noncooperative powee larger equilibrium. Sincgs(c) < p¢ for all p¢ € E,., we
control game with pricing (NPGP) as given in (19). Generateganclude that for alp® € E.
sequence of powers as follows.

1) Setthe initial power vector at tinte= 0: p(0) = p. Also uj (Ps(c)) 2 uj(p) for all j. (23)
letk = 1. -

2) Forallk such t_hatr’“. €T Note that this resultimplies that, in case NPGP has Nash equi-
a) Forall terminalg € IV such that, € T; libria, the one that yields highest net utilities is the Nash equi-

i) Givenp(ri_1), computer; () = arg max, . librium with the minimum total transmit powers.

uj(pjvp—J(Tk—l))
i) Assign the transmit power ag;(rx) = min VII. NUMERICAL RESULTS

We ref t(i‘f'(T’“))' thesetof best t i for t We demonstrate the improvement in performance ob-
e refer tor;(7;) as thesetof best transmit powers for €I tained as a result of the NPGP outcome on a single-cell

minal j at time instancé in responsetotheinterferencevecto&DMA system with stationary users, fixed frame size
p—;(7x—1). Itis important to note that the terminabptimizes 4"\, forward error correction. The 'system we examine
the net utility over the modified strategy space of the NP&P, has the design parameters listed in Table IIl. Also, the

wherer; is b_ounded byf” < 2lnM. Implementaﬂon of this system we consider has nine terminals that are located at
lower bound inthe algorithm assumesthatthemstantaneous%R [310, 460, 570, 660, 740, 810, 880, 940, 1000] m from the

atthebase stationisknownbytheterminal. Theterminalthen U$LRe station. Path gains are obtained using the simple path loss
this information to derive the lower bound on its transmit POWeL (delh. — K/d* whereK = 0.097 is a constant
;= 5 =0. .

In the game with pricing, more than one transmit power might £, numerical examples, we use the efficiency function
constitute a best response to a given interference vector. In this

case, the algorithm determines the transmit power of a terminal for) = (1- CfO-Sw)M (24)
by selecting the smallest power among all possibilities as dic-
tated by the algorithm. which approximate$’. for noncoherent FSK. A comparison of

Theorem 7: Algorithm 1 converges to a Nash equilibrium ofthe difference betweef. and f(~) as a function of the SIR
NPGP. Furthermore, it is the smallest equilibriymg,c), in the for A/ = 80 can be found in Fig. 2. Using the efficiency func-
set of Nash equilibria. tion given in (24) and the linear pricing regime with = 1 for

The proof can be found in Appendix B. Experiments suggeall 7, the equilibrium powers that solve the NPGP given in (19)
ps(c) = pr(c) for our problem. If this is indeed true analyti-are obtained by use of Algorithm 1. We first get the equilibrium
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TABLE I 10
THE LIST OF PARAMETERS FOR THESINGLE-CELL CDMA SYSTEM
USED IN THE EXPERIMENTS

M, total number of bits per frame 80
L, number of information bits per frame 64 o)
W, spread spectrum bandwidth 108 Hz %
R, bit rate 10* bits/second ]
a?, AWGN power at the receiver 5 x 10715 Watts E 10"
modulation technique non-coherent FSK :‘%
=3
P, maximum power constraint 2 Watts 5
2

powers in NPGP with no pricing: = 0), which is equivalent to
playing the NPG given in (6). Recall that the equilibrium power :
in NPG are obtained by solving, = 5 for all j if itis feasible. ;¢ ‘ : s . - .,
The utility-maximizing SIR for the specific system under exam 10 10° 10¢ o, priciag factor 10 1o
ination is found to bey = 12.4 by solving f/(v)y = f(v) or

(33). For this example, we compute that an equal-SIR equiliby. 6. Sum of equilibrium utilities in a game with nine terminals as a function
rium is feasible ifN < 9. Once the equilibrium with no pricing of the pricing factor.

is obtained, the NPGP is played again after incrementing the
pricing factor,c, by a positive valueAc. Algorithm 1 returns .
a set of powers at equilibrium with this value of the pricing 1°
factor. If the utilities at this new equilibrium with some posi-
tive price ¢ improve with respect to the previous instance, th

pricing factor is incremented and the procedure is repeated. \:07
continue until an increase iresults in utility levels worse than
the previous equilibrium values for at least one user. We decleﬁ .
the last value of with Pareto improvement to be the best pricingg10
factor,cprgT. The wayerpst is determined by the network can £
be summarized in algorithmic format as follows. g
Algorithm 2 (Network): £
1) Setc = 0 and announce to all terminals. gf

10

2) Getw; for all j € AN at equilibrium, increment :=
¢+ Acand announce to all terminals
3) Ifug < uj*A“ for all j € N then go to step 2, else stop
and declaregrst = c. 10102 0
Fig. 6 is constructed by letting Algorithm 1 reach Nast. distance between BS and terminal (meters)
equilibrium at each value af. We terminate incrementing the _
pricing factor if at least one user receives worse payoff than the "
previous equilibrium utility. It can be observed that solution
by NPGP withe = cggst Offers a significant improvement is generally the one with the worst path gain. Therefore, the
in total utilities with respect to the solution offered by NPGterminal that triggers the choice afgst is usually the one that
Increase in individual utilities can be examined in Fig. 7. Thalready receives lower utility. In such cases, we note that the
corresponding equilibrium powers are displayed in Fig. 8hoice ofcgrst has implications of anax—min fairoutcome.
The terminals that are closer to the base station receive midfe max—min fairness concept is commonly used in computer
higher utilities while expending smaller power as comparatetworks in the context of flow control of sources within the
to terminals further away from the base station in both NP@etwork. It refers to a flow rate allocation where it is not
and NPGP equilibria. Yet, we observe that utilities improvpossible to increase the flow from a source without having to
significantlyfor all terminalsas a result of pricing and that thedecrease the flow of a source that is already receiving a smaller
powers decrease from values at equilibrium with no pricingortion of the allocation [22]. Notice that, if increasing the
The numerical results also reveal that although the equilibriyonicing factor beyondggst results in the farthest terminal re-
SIRs for the game with zero pricing are equal for all terminafseiving decreased utility, thetsgsT is a max—min fair pricing
(y; = A forall j € N), the SIRs at equilibrium in NPGP factor for the (Network) algorithm described in Algorithm 2.
with ¢ = cgrsT are higher for terminals closer to the base The equilibrium results presented for NPGP are guaranteed
station ¢; > «; if d; < d;). We should note that, in many by the equilibrium existence results of Section VI-A. However,
of our experiments where we finthgst, the first terminal to remember that if the conditions of the existence theorem are
experience a decrease in utility as the pricing factor is increageat met, it does not automatically imply there is no equilibrium

3

Utilities at equilibrium of NPG and NPGP with= cgrgT.
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thatu,;(p’) > u;(p*) for somei andu,;(p’) > w;(p*) for all <.
This implies thaty"; | Fiu,(p’) > > i, Biui(p*). Therefore
p*(B) cannot be a solution t0Sg) which is a contradiction to
the original assumption. Therefore, it has to be a Pareto optimal
point. |

In fact, in our experiments, we observe that the sum of util-
ities continue to increase beyowmd= cggsT. However, such
improvement in total utilities result in degraded QoS for at least
one user, beginning with the user that is farthest from the base

[ NPG o0 |- : station. The solution tdSg) is not even guaranteed to Pareto
e NPGP, e=q o | : B

equilibrium powers (Watts)

dominate the Nash solution of the NPG.

Solving (Sﬂ) with a particular choice of results in one of
the points in the Pareto-optimal frontier, which consists of the
points on the northeast boundary of the utility possibility set as
shown in Fig. 5. By solving.Sg) for all 8 € R, we can con-
struct the Pareto-optimal frontier. What we obtain by the NPGP
distance between BS and terminal (meters) is a Pareto-dominant power vector with respect to the solution
offered by the NPG. NPGP solution lies in the space labeled
Region of Pareto improvemeint Fig. 5. Note that, unless the

: . tility possibility set is a convex set, solution of the social op-
in the game. Actually, even if the strategy space of the modi- yp y ’ P

. X i imum is not guaranteed to yield a point that is Pareto dominant
fied NPGP is relaxed to the original space of NPG, our exXpelain respect to the NPG.

iments show that an equilibrium exists. Furthermore, an equl'Nevertheless, an optimal pricing function that has the solution

librium can be rea}ched starting _fropn: 0, 'the a!l-zero POWET' ot the social problem as a Nash equilibrium does exist for each
vector, and updating the transmit powers iteratively. If the moﬁ;5 er

ified NPGP equilibrium SIRs are such that > 2InM for . . : .
all j € NV, then modified NPGP and the original NPGP equi: Theorem 10"‘.@? (B) solve the SOC"’.’II prqbler@ﬁﬂ)..p 'S
L . . . o .also a Nash equilibrium for the NPGP given in (17) with pricing
libria are identical. Otherwise, when the SIR constraint is aCt'\fSnctionc( Y= —(1/8) 3" 310:(p)

at the equilibrium of the modified NPGP for at least one ter- A i) 2uj=1, i P31 \P):

minal, the original NPGP equilibrium yields zero equilibrium c( Proof: p* is a Nash equilibrium ‘of the NPGP if

Fig. 8. Powers at equilibrium of NPG and NPGP with= cgest.

us (pr

) “ B* ) > 4 (pl.p*. i ! .
powers for some of the weaker terminals. It should be obser\;gd p“p—”) = (p“’p—’) forall i € N, forallp; € F;

. S [ncep* solves the social problem, then
that zero transmit power can never be an equilibrium value for

modified NPGP due to the lower bound on SIR. Although the n n
original NPGP equilibria typically return a higher sum of util- Zﬁjuj(p*) > Zﬁjuj (v}, p%) (26)
ities than the modified NPGP for the same value of the pricing j=1 j=1

factor, some of the terminals receive utilities strictly equal to

zero. Thus, it might be reasonable to interpret pricing for tHer all (p,p*;) € P. Rearranging terms on both sides and
original NPGP as an admission control mechanism. Howevéiyiding both sides bys;, we obtain

since in this work the motivation of pricing is to improve the

NPG equilibrium utilitiesfor all the terminals we are more in- X 1 X P
. _ . b TE [ .
terested in the results from the modified NPGP. ui(p”) + B; . ;# Biui(P") 2 ui (P, p"5)
J=L, 937
R .
VIIl. NPGP AND THE SOCIAL OPTIMUM +ﬁ E: By (v pe;) . (27)

In NPGP, we choose the value©f cygst that brings max-
imal Pareto improvement to the solution from NPG. However , ) i ,
the power vector obtained as a result is not necessarily a SOQQ”]SIdeI’ the secondnterm on either side as th? CO,St function and
optimum. In this section, we discuss the connection betweetfh¢i(P) = (1/8) 2 51 ;i Biu;(p)- Expressing in terms of
social optimum and a general pricing function. The pricing fundn€ cost function, we obtain
tion is not restricted to have a linear form. . . ;o ;o

Theorem 9: A power vectorp*(8) that solves the social ui(P”) = ei(p”) = wi (pi, p73) — i (v PT) (28)
problem(Sﬂ) is Pareto optimal Wher@Sﬂ) is defined as

=1, j#i

which is true for allp; € P, and true for alk. This is the defi-
n nition of a Nash equilibrium. Thus, by definitiop;* is a Nash
(Sﬂ) maxf-u = maXZﬂiui (25) equilibrium for the NPGP game. Since the Nash equilibrium of
P Pia the NPGP game with

with g a vector of positive scalars.

Proof: Assumep™*(f) soIves(Sﬂ) and suppose*(f) is ¢i(p) = 1 Z Bju;(p) (29)
not Pareto optimal. Then, there exists some power vgctsuch Bi G=1, i
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is the point where the social problem is solved, we refer to thisility of at least one terminal begins to decrease with increasing

pricing function as the Pareto optimal pricing function. B values ofc. Usingc = cggsr, it is possible to get significant
Notice that, with pricing function (29), each user is tryingmprovement in utility for all terminals. Finally, we have dis-

to maximize the same objective function, individually. The opsussed how the utilities obtained using the pricing factgis

timal pricing function given here is in the most general formompare with the social optimum which is the power vector that

a pricing function can take and does not have the linear formaximizes the sum of utilities of all the terminals in the system.

we produced results for in Sections I-VII. This pricing functio®ur results indicate that linear pricing while yielding Pareto im-

is not practical since we need an algorithm that would gugrsrovements (over the case of no pricing) is still unable to achieve

antee the solution of (25) to emerge as an equilibrium of tliee social optimum. The desirable attributes of the linear pricing

social game. However, accomplishing this is as difficult as (#cheme studied in the present work are that it imposes a fair,

not harder than) the central authority solving the social problemsage-based penalty for the use of radio resources.

and imposing it on all users. Instead, the implementation pro-

posed in this work has a single pricing factdo be announced APPENDIX |

by the base station. Thus, users can still implement their dis- PROOF OFTHEOREM 1

tributed power control schemes that unilaterally maximize the

utility function u<(p) in (16). The following result is obtained from [24]-[26].

Theorem 11:A Nash equilibrium exists in game

G = N, {P;}, {u;(")}]if forall j=1,...,N:
1) P; is a nonempty, convex, and compact subset of some
We have presented a distributed power control algorithm for  Euclidean spac&” .

wireless data systems. The QoS a wireless terminal receives i) u;(p) is continuous irp and quasi-concave ip;.

referred to as the utility and distributed power control where The set of maximizers of the continuous functioy(-, p_;)

users maximize their utilities is a noncooperative power contrgh he compact seP; in NPG is called the best-response

game (NPG). The resulting operating point (Nash equmb”“"%rrespondence and is denoted/hyp_;). It is the mapping
of such adistributed power control is inefficientin power usage.. p_~ _, P; and defined as

Therefore, we introduce pricing to improve the NPG result. In

the noncooperative power control game with pr|C|ng'(NPGP7)j(p_i) = {p; € Pj:u;(p;, p_i)

each terminal maximizes its net utility given by the difference >, (0 p—s) Yo, € P;}. (30)
between the utility function and a pricing function. The class of = Wi\Pp P=i) VP& Ly
pricing functllons Smd'ed Is linear in transm-|t-power, where th&n alternative definition for the Nash equilibrium can be stated
pricing function is simply the product of a pricing factor and thﬁsing the set of best responses. A power vegtisra Nash equi-
transmit power. Such a pricing function allows easy impleme '

tation: the power control algorithmis realized by the base staﬂﬂb”um of NPG. '.f anq only ifp; € 7;(p ”). fqr all j €
. o Lo hen the conditions in Theorem 11 are satisfied, the correspon-
announcing the pricing factor to all the users, which is followe

encer;(-) is nonempty, convex-valued, and upper semicontin-

by each terminal choosing the transmit power from its strate%US for allj [24]—[26]. Thus, there exists a fixed poiptsuch
space that maximizes its net utility. For positive values of t atp; € Tj‘(p_i) for all.j c N This fixed point is by definition

pricing factorz we ;how that there exist Nash equilibria that e\ ash equilibrium. The proof of the theorem is completed by
not necessarily unique. However, we have proved that the mjn-

. . S . srhowing the conditions given in the theorem are met in NPG.
imum power vector in the set of Nash equilibria yields high . ) L

o o ach user has a strategy space that is defined by a minimum
net utilities than any other equilibrium power vector. Such a

o . N ower, a maximum power, and all the power values in between.
power vector is said to Pareto dominate other equilibrium po

. e also assume the maximum power is larger than or equal to
vectors. We have also presented an algorithm that reachesth e P g g

. D : € minimum power. Thus, the first condition is satisfied. It re-

Pareto-dominant equilibrium starting from the smallest power . o . X .

. mains to show that the utility function;(p) is quasi-concave
vector in the strategy space. . e : : . .

.y S - n p; for all j in NPG. First, we define quasi-concavity.
Under zero pricing, the utility is maximized at the same Slé, N ) : 1 )

. : . . Definition 7: The functionu;: P; — %, defined on the
5, for all terminals. The value of is determined by the system nvex set?: is quasi-concave in. if and only if
characteristics such as modulation technique, channel moc?gl, isq R y
and packet length. As the pricing factor is increased from zero
to positive values, the equilibrium begins to shift toward a point p . p
where users attain lower SIR, expend lower power, and attalfh()‘pf + (1= 2P, p—i) 2 min (u;(pj, P-i), us (p],p_(é)l))

higher utilities. At the equilibrium of NPGP, SIRs are no Iongefr I ' e Poand) e 0.1
equal for all use.rS.In. fagt, the equilibrium SIR for a user cIo;er or ?tefééz'c)i]\}eely éit?]r:ar thg Igéal]}rlaximum of the quasi-concave
to the base station is higher than a user farther away, while t%lrri:tion is at th'e same time a alobal maximum or the quASI-con-
of the SIRs are smaller than the no-pricing equilibriunvof 9 q

: : : - function is constant in the neighborhood of a local max-
As a special case of an appropriate choice of the pricing factff '€ ) . s
we definecsmst as the value of the pricing factor where thdmum [27], [28]. We can show that the first part of this condition
is true for the utility function used in this study.

3In [23], it was found that SIR-balancing is not the optimal solution to maxi- Ff)r a diﬁ?_rem_iab!e function, the first-order necessary opti-
mize sum of utilities. mality condition is given aédu;(p;, p—i)/3p;) = 0. The par-

IX. SUMMARY AND CONCLUSION
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tial derivative ofw;(-) with respect ta; is Sincep; (i) = min(r;(7i)), the power vector at = 7y
is p(7ar) = (pj(mw), P—;(Tir_1)). Since terminafj has the
Ou;(pj, p—i) _ AR N , 32) same power value for all update instanegs < ¢ < 7/, the
) 3 (f (%)% f(%)) (32) .
ap; Mp? power vector at = 7y is p(7i) = (p; (), P—j(Tr)). The
power ordering in (34) is

where f'(v;) = df(v;)/dv;. Sincep; > 0 for NPG, we ex-

amine only positive real numbers. Evaluating (32) at= 0, we

get(du;(p;,p—i)/Op;) = 0. Thereforep; = 0 is a stationary —p(7) (35)

point and the value of utility at this point is;(0,p ;) = 0. “PUw)-

If we evaluate uFi!ity in thec—neighborhood op; = 0,. Wher.e. Above inequality impliesp_;(7,—1) < p_;(mw). Since

¢ is a small positive number, we notice that utilty is positive, .\ "\ i, (1)) andp, (my 1) = min(r (ms1)) and

which implies utility is increasing at; = 0. Therefore, we gince the pest response correspondenés is increasing in

conclude zero cannot _be a local maximum. For nonzero val%a:sj, we havep;(r.7) < p;(7v41) and hence

of the power, we examine the valuesyfthat makef’ (-, )y, —

f(y;) =0. Suppose the moduIat?on fornjat u;ed is noncoherent p(m) < P(Tr41)- (36)

FSK for which the BER expression is given in Table I. The ef-

ficiency function corresponding to noncoherent FSK can be dehus, we confirm thap(t) is a nondecreasing sequence of

rived using (2). Expressing’(~y,) in terms of f(v;) and rear- powers in time. Furthermore, the convergence of the power

ranging terms, we get\//2)v;e="/2 — (1 —e~%/2) =0or  vector such thatim; ... p(t) = p’ wherep’ € P follows

M because(t) € P for all t and P is a compact set and since a

eyt 1= evil?, (33) nondecreasing sequence has a limit point in a compact set [29].

2 Although p’ has been shown to be a limit point of the se-

We observe that the right-hand side of the above equationdisence of powers generated by the algorithm, it is yet to be

convex inv;, the left-hand side is monotonously increasing imerified thatp’ is also an equilibrium of NPGP. For any user

v, and the equation is satisfied af = 0. Therefore, there j, for all update instances, € 7}, limy ..o p;(7%) = pj; and

is a single value that satisfies the given expressiomfor> ~at any instanp;(7x) € P;(p—;(7x—1)). It is possible to find

0. Let this value bey; = ¥ where# is derived numerically some sequencgg/(r,.) € P;(p_;(m1)) for all 7, € T} such

from (33) and it is the same value for all users assuming eatatlim, ... p} (7x) = p}. Sincep;(7:.) belongs to the best re-

user operates with the same efficiency function. The secorsponse correspondence of termipalt that instance, we have

order partial derivative of the utility with respect to the power

reveals that this point is a local maximum and therefore a global Uy (P}/(Tk)v pLj(Tk)) < uy (p}(Tk% pLj(Tk)) (37)

maximum. Hence, the utility function of usgrs quasi-concave

in p; for all j. This completes the proof of the theorem.
Finally, it should be emphasized that, although we used non-

p(7r) = (i), P—ji (T —1)) < (pi(Twrr), P—j ()

which results in

(p.pl) = lim w; (p -
coherent FSK as an example in the proof, the results apply to a Uy (pﬂ ’ p—ﬂ) kli{go b (pﬂ (), p—J(T’“))
fairly broad class of modulation schemes [13]. < klggo u; (p’j(Tk), P/_j (Tk))
APPENDIX I =u; (7, PL;) - (38)

PROOF OFTHEOREMY The argument applies to all the terminals. Hence, by definition

If the smallest power vector in the strategy spaegis al- of a Nash equilibriump’ is an equilibrium point of NPGP.
ready an equilibrium of NPGP, following the definition of an We seek to prove by induction that the algorithm results in
equilibrium, the power updates will result in the same poweie smallest Nash equilibrium. Lt be any equilibrium of the
vector. Ifp is not an equilibrium point, then we need to demongame. We know that the initial vector of the algorithm is the
strate how the power vector evolves in time. Remember thghallest point in the strategy space and hasieg) = p < p’.
we defined?” = {71,7,...} as the set of update instanceSuppose that for somie > 0, p(7) < p’. At time 751, Sup-
Ty UTy U--- UTy sorted in increasing order. Note that= pose that terminaj updates its power. By construction of the
min;e ;1. Sincep(0) is not an equilibrium pointp,/(0) < algorithm,p, (7141 ) is the smallest value in its best correspon-
py(m1) = min(r;(71)) wherej’ = argminjen t;1. Since dencey;(7r41)- Also, p’; has to belong to its best response cor-
p; is the only component of the power vector to be updated @ispondence since it is an equilibrium point. Recalling that the
t =71, we also have(7o = 0) < p(71). Suppose that for some best response correspondence is a nondecreasing function of the

K, p(7) < p(re41)forallk =0,1,... k" —1. Since we have interference and that we assupigr) < p’, we conclude that
already established that this assumption is trud:fee 1, itis
sufficient to show thap (7 ) < p(7x-41). Consider usej such (Pj(Tr41), P—j (1)) = P(Tr41) < P (39)

that 41 € 7. Suppose the previous update of ugepok
place att = 7,» wherek” is some time index if{0,...,4’}. Since by inductionp(r41) < p’ for all k& which implies
By the induction assumption, we have lim—oo p(7) < p’, we prove that the limit point of the
sequence generated by the algorithm is the smallest equilibrium
p(’/‘k//) < p(Tk”+1) <. <L p(’/‘k/). (34) in the Nash set.
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useful discussions earlier in this work.
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