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Abstract—A major challenge in the operation of wireless com-
munications systems is the efficient use of radio resources. One im-
portant component of radio resource management is power con-
trol, which has been studied extensively in the context of voice com-
munications. With the increasing demand for wireless data ser-
vices, it is necessary to establish power control algorithms for in-
formation sources other than voice. We present a power control so-
lution for wireless data in the analytical setting of a game theoretic
framework. In this context, the quality of service (QoS) a wireless
terminal receives is referred to as theutility and distributed power
control is a noncooperative power control gamewhere users maxi-
mize their utility. The outcome of the game results in aNash equilib-
rium that is inefficient. We introduce pricing of transmit powers in
order to obtain Pareto improvement of the noncooperative power
control game, i.e., to obtain improvements in user utilities relative
to the case with no pricing. Specifically, we consider a pricing func-
tion that is a linear function of the transmit power. The simplicity
of the pricing function allows a distributed implementation where
the price can be broadcast by the base station to all the terminals.
We see that pricing is especially helpful in a heavily loaded system.

Index Terms—Game theory, Pareto efficiency, power control,
pricing, wireless data.

I. INTRODUCTION

A S THE demand for wireless services increases, efficient
use of resources grows in importance. A fundamental

component of radio resource management is transmitter power
control. It is well known that minimizing interference using
power control increases capacity [1]–[3] and also extends bat-
tery life. Recently, an alternative approach to the power control
problem in wireless systems based on an economic model has
been offered [4]–[7]. In this model, service preferences for
each user are represented by a utility function. As the name
implies, the utility function quantifies the level of satisfaction
a user gets from using the system resources. Game-theoretic
methods are applied to study power control under this new
model. Game theory is a powerful tool in modeling interactions
between self-interested users and predicting their choice of
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strategies [8], [9]. Each player in the game maximizes some
function of utility in a distributed fashion. The game settles
at a Nash equilibrium if one exists. Since users act selfishly,
the equilibrium point is not necessarily the best operating
point from a social point of view. Pricing the system resources
appears to be a powerful tool for achieving a more socially
desirable result.

In this work, we are primarily concerned with the impact
of pricing the usage of wireless services on QoS. Pricing of
services in wireless networks emerges as an effective tool
for radio resource management because of its ability to guide
user behavior toward a more efficient operating point. To that
end, we introduce a model for power control in wireless data
networks using concepts from microeconomics. We model
utility to reflect the level of satisfaction (QoS) a data user gets
from using system resources [4]. We consider the uplink power
control problem in a single-cell code-division multiple-access
(CDMA) wireless data system with users where each user
maximizes its own utility. While the resulting noncooperative
power control game has a Nash equilibrium, it is inefficient.
Therefore, we introduce pricing to improve efficiency. We then
show that there exist equilibria in the noncooperative power
control game with pricing and that they are Pareto superior
compared to the equilibrium of the game with no pricing.
However, the game with pricing is still unable to achieve a
socially optimum power solution.

This paper is organized as follows. In Section II, we discuss
the concept of utility and develop a utility function that rep-
resents the QoS of data users. In Section III, we construct the
noncooperative power control game. The equilibrium and its
properties are discussed in Section IV. Section V is devoted to
showing the inefficiency of the Nash equilibrium obtained as a
result of the noncooperative power control game. In Section VI,
we introduce pricing as a means of remedying this inefficiency
and discuss the game with pricing. In Section VI-A, we define
supermodular games and discuss the relevance of this class of
games in the context of the present work. Comparisons of re-
sults in games with and without pricing and the significance of
these results are discussed in Section VII. In Section VIII, we
define the social optimum and discuss how it relates to solutions
for the games discussed in this work. Finally, in Section IX, we
present an overview of the results in this paper and conclusions.

II. UTILITY FUNCTION

The concept of utility is commonly used in microeconomics
and refers to the level of satisfaction the decision-taker receives
as a result of its actions. Formally, a utility function is defined
as follows [8], [9].
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Fig. 1. The behavior of the data user satisfaction (utility) as a function of SIR
for fixed power and as a function of power for fixed SIR.

Definition 1: A function that assigns a numerical value to the
elements of the action set is a utility function,
if, for all , is at least as preferred compared toif
and only if .

Theutility function thatdescribes a particular setof preference
rules is notunique. Any function thatputs the elementsofin the
desired order is a candidate for a utility function. We first identify
the preference relations that are specific to our problem and then
describe a utility function that satisfies this structure.

Users access a wireless system through the air interface which
is a common resource and they transmit information expending
battery energy. Since the air interface is a shared medium, each
user’s transmission is a source of interference for others. The
signal-to-interference ratio (SIR) is a measure of the quality of
signal reception for the wireless user. Typically, a user would
like to achieve a high quality of reception (high SIR) while at
the same time expending a small amount of energy. Thus, it is
possible to view both SIR and battery energy (or equivalently
transmit power) as commodities that a wireless user desires.
There exists a tradeoff relationship between obtaining high SIR
and low energy consumption. Finding a good balance between
the two conflicting objectives is the primary focus of the power
control component of radio resource management. This tradeoff
is illustrated through the conceptual plot in Fig. 1. If the transmit
power were fixed (fixed battery drain), the terminal would ex-
perience lower error rates as the SIR increases which leads to
increased satisfaction of the use of the system resources. For suf-
ficiently large SIR values, the error rate approaches zero which
results in an asymptotic increase in utility in the high SIR re-
gion. If the SIR were to be fixed (fixed error rate), increasing
the transmit power expedites the battery drain, which effectively
reduces the satisfaction of the mobile terminal.

An optimum power control algorithm for wirelessvoicesys-
tems maximizes the number of conversations that can simul-
taneously achieve a certain quality of service (QoS) objective.
Typically, the QoS objective for a voice terminal is to achieve
a minimum acceptable SIR. However, this approach is not ap-
propriate for the efficient operation of a wireless data system
[4], [10]. This is because the QoS objective for data signals dif-
fers from the QoS objective for telephones. In a data system,
error-free communication had high priority. The SIR is an im-
portant quantity since there is a direct relationship between the
SIR and the probability of transmission errors.

Consider a single-cell system where each user transmits
information bits in frames (packets) of bits at a rate

b/s using W of power.1 In this work, the term frame and

1A multi-cell system is studied in [11].

TABLE I
BER AS A FUNCTION OF SIR FOR VARIOUS MODULATION SCHEMES

packet have identical meanings. We assume fixed ratefor all
terminals. Optimization assuming variable rates is treated in [6]
and [12]. Let denote the probability of correct reception of a
frame at the receiver, i.e., the frame success rate (FSR).is a
function of the SIR obtained by the terminal at its base station
and depends on the properties of the system such as modulation,
radio propagation, and receiver structure. The utility function
can be expressed as [10]

bits
Joule

(1)

Utility as defined above is the number of information bits
received successfully per Joule of energy expended. Assuming
perfect error detection and no error correction, we can ex-
press the FSR as where is the bit error
rate (BER). In the case of an additive white Gaussian noise
(AWGN) channel, the BER expressions for various modu-
lation techniques are given in Table I. In all cases, the BER
decreases monotonically with SIR, where SIR is denoted by

. Consequently, is a monotonically increasing function
of the SIR. Therefore, can be expressed as a function of

and substituted in (1) to obtain the utility function for a
specific system. However, the utility function given in (1) has
a mathematical anomaly in its formulation. In case of transmit
power , for all modulation schemes, the best strategy
for the receiver is to make a guess for each bit, resulting in

, resulting in infinite utility. This suggests that,
in order to maximize utility, all users in the system should
transmit zero power and just wait for the receiver to guess the
correct data. To avoid this degenerate solution, we approximate
the FSR, , by anefficiency functionthat closely follows the
behavior of the probability of correct reception while producing

at .2 The efficiency function is defined as

(2)

to replace in (1). The resulting utility function will be exam-
ined in the remainder of this paper. It is given as

bits
Joule

(3)

The efficiency function yields the desirable properties
for and . At any other value of the SIR, its
shape follows that of . Fig. 2 demonstrates how closely the
efficiency function follows the FSR in case of BPSK and nonco-
herent FSK modulation schemes. In the remainder of the paper,
we consider power control schemes where each data user tries
to maximize its individual utility. A thorough discussion on the

2An interpretation of this modification is the implicit inclusion of a delay
constraint in the utility function.
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Fig. 2. The FSR and efficiency as a function of terminal SIR for BPSK and
noncoherent FSK modulation schemes. Efficiency is an approximation to FSR.

efficiency function for different types of modulation techniques
can be found in [13].

III. N ONCOOPERATIVEPOWER CONTROL GAME

Let denote the noncooperative
power control game (NPG) where is the
index set for the mobile users currently in the cell, is the
strategy set, and is the payoff function of user. Each
user selects a power level such that . Let the power
vector denote the outcome of the game
in terms of the selected power levels of all the users, where
is the set of all power vectors. The resulting utility level for
the th user is . We will occasionally use an alternative
notation where denotes the vector consisting
of elements of other than theth element. The latter notation
emphasizes that theth user has control over its own power,
only. The strategy space of all the users excluding theth user
is denoted by .

The utility user obtained by expending can be expressed
more formally as

bits
joule

(4)

where is the SIR of user defined as

(5)

and is the available spread-spectrum bandwidth [Hz],is
the AWGN power at the receiver [W], and is the set of path
gains from the mobile to the base station. It should be noted
that the derivation of the SIR expression given in (5) assumes
conventional matched filter receivers and pseudorandom signa-
ture sequences [14], [15]. We assume that the strategy space
of each user is a compact, convex set with minimum and max-
imum power constraints denoted byand , respectively. For
NPG, we let for all which results in the strategy space

Fig. 3. Shape of the utility as a function of the user transmit power for fixed
interference.

. The utility function takes the generic form given
in Fig. 3 for fixed interference.

Note that (4) demonstrates the strategic interdependence be-
tween users. The level of utility each user gets depends on its
own power level and also on the choice of other players’ strate-
gies, through the SIR of that user. The efficiency function can be
chosen to represent any given modulation technique consistent
with the approximation rule described in Section II.

In the power control game, each user maximizes its own
utility in a distributed fashion. Formally, the NPG is expressed
as

for all (6)

where is given in (4) and is the strategy space of
user . The transmit power that optimizes individual utility de-
pends on transmit powers of all the other terminals in the system.
It is necessary to characterize a set of powers where the users are
satisfied with the utility they receive given the power selections
of other users. Such an operating point is called anequilibrium.

IV. NASH EQUILIBRIUM IN NPG

The solution that is most widely used for game theoretic prob-
lems is theNash equilibrium[16].

Definition 2: A power vector is a Nash
equilibrium of the NPG if, for every

, for all .
At a Nash equilibrium, given the power levels of other

players, no user can improve its utility level by making in-
dividual changes in its power. The power level chosen by a
rational self-optimizing user constitutes abest responseto the
powers actually chosen by other players. Formally, terminal’s
best response is the correspondence that assigns
to each the set

for all (7)
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Fig. 4. Best response correspondences in a game with two players. The point
of intersection is a Nash equilibrium.

With the notion of a terminal’s best response correspondence,
the Nash equilibrium definition can be restated in a compact
form as follows: the power vector is a Nash
equilibrium of the NPG if and only
if for all . Fig. 4 illustrates how the Nash
equilibrium is determined by using the best response correspon-
dences in a game with two players. In this fictitious example,
the strategy space for both players is [0, 1] and bothversus

and versus are plotted on the same figure. The intersec-
tion point of the two plots fulfills the condition
for all given above in the definition of a Nash equilib-
rium. Note that if for every , is composed of
precisely one element, then can be viewed as a function in
the usual sense. Thus,correspondenceis a generalized concept
of a function[8].

A. Existence and Uniqueness of NPG Equilibrium

The Nash equilibrium concept offers a predictable, stable out-
come of a game where multiple agents with conflicting interests
compete through self-optimization and reach a point where no
player wishes to deviate. However, such a point does not neces-
sarily exist. First, we investigate the existence of an equilibrium
in NPG.

Theorem 1: A Nash equilibrium exists in the NPG,
.

The proof of the above theorem can be found in Appendix A.
The analysis presented in the proof uses the efficiency func-
tion that approximates the probability of correct reception of
noncoherent FSK as an example. However, the result thatis
quasi-concave in applies to a fairly general class of modems.
It is shown in [13] that the efficiency functions that correspond
to the modulation schemes listed in Table I are all quasi-con-
cave in each user’s own power. The above theorem establishes
the existence of a Nash equilibrium in NPG where the utility
function is quasi-concave in transmit power. At this point, it is
important to make a note of equilibrium existence statements in
general. An equilibrium existence proof states that under certain

conditions, an equilibrium isguaranteedto exist. Such a state-
mentdoes notimply, however, that if the same conditions are
notmet, there exists no equilibrium. Next, we discuss the prop-
erties of the equilibrium itself. First, we derive the best-response
correspondence of a terminal in NPG.

Proposition 1: In NPG, terminal ’s best response to a given
interference vector is given as

(8)

where is the unconstrained
maximizer of the utility in (4). Furthermore, is unique.

Proof: In the proof of Theorem 1 given in Appendix A, it
is shown that the unconstrained maximization of the utility func-
tion results in as the solution for terminal where solves

for all . For given interference, corre-
sponds to the transmit power given by

(9)

Since is the unique maximizer of the utility and since there
is a one-to-one correspondence between the transmit power and
the SIR, the transmit power that maximizes utility for fixed
interference is also unique. If for some user , then
since it is not a feasible point, cannot be a best response to
given . In this case, we observe that for any

, and therefore for any . This implies that the
utility function is increasing in that region. Sinceis the largest
power in the strategy space, it yields the highest utility among
all and thus it is the best response to the given.

Note that, at any equilibrium of the NPG game, a terminal
either attains the utility maximizing SIR or it fails to do so
and transmits at maximum power.

Theorem 2: The NPG has a unique equilibrium.
Proof: By Theorem 1, we know that there exists an equi-

librium in NPG. Let denote the Nash equilibrium in the NPG.
By definition, the Nash equilibrium has to satisfy
where . Note that and

are equivalent. The key aspect of the uniqueness proof
is to realize that the best-response correspondence is a
standardfunction [1]. A function is said to be standard if it sat-
isfies the following properties;

• positivity: ;
• monotonicity: if then ;
• scalability: for all , .

It is shown in [1] that the fixed point is unique for
a standard function. Therefore, the Nash equilibrium of NPG is
unique.

A special case is when the user configuration is such that all
terminals are able to achieve the utility maximizing SIR,, at
the Nash equilibrium. We already mentioned that the equilib-
rium SIR, , of NPG is derived from the efficiency function
given in (2). If all the wireless terminals use the same modu-
lation technique and the same packet length, they have the
same efficiency function. Therefore, the value ofthat each
terminal tries to achieve at equilibrium is the same for all termi-
nals. It is worth noting that the power control solution obtained
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at the equal-SIR NPG equilibrium is similar to the solutions of-
fered by power control algorithms for speech communications
[1], [2], [17]. In fixed-target type power control algorithms for
voice systems, users adjust powers in order to satisfy a min-
imum target SIR constraint. The algorithm terminates at a set
of powers where each terminal has exactly the target SIR. The
Nash equilibrium SIR of can be thought of as the target SIR
in voice systems with one important distinction: the common
target SIR for voice systems is determined by subjective mea-
sures of speech quality. However,is derived from the partic-
ular efficiency function and therefore is dictated by system prop-
erties such as modulation technique, channel model, and packet
length.

Notice that, at the utility maximizing SIR, the utility of a
user increases with decreasing interference. Such behavior can
be observed by substituting (9) into the utility expression. Con-
sequently, one might consider a scheme where the terminals are
scheduled to transmit one at a time: only one terminal transmits
at the utility maximizing SIR while the others do not transmit.
Such a scheme is not the outcome of the power control game
and thus it is not a distributed solution. A power control scheme
based on this idea will be the topic of future work.

V. INEFFICIENCY OF THENPG EQUILIBRIUM

The Nash equilibrium discussed in Section IV offers a so-
lution to the power control problem where no terminal can in-
crease its utility any further through individual effort. Thus, it is
an outcome obtained as a result of distributed decision taking
which could be expected to be lessefficient than a possible
power allocation obtained through cooperation between termi-
nals and/or as a result of centralized optimization. Indeed, it is
well known that in general the Nash equilibria are inefficient [8],
[18]. A power allocation is said to be more efficient (or Pareto
dominant) if it is possible to increase the utility of some of the
terminals without hurting any other terminal. A formal defini-
tion is as follows.

Definition 3: A power vector Pareto dominatesanother
vector if, for all , and for some

, . Furthermore, a power vector is Pareto
optimal (efficient)if there exists no other power vectorsuch
that for all and for
some .

Fig. 5 explains the concept of Pareto dominance and Pareto
optimality on a generic utility possibility set. In the example
in Fig. 5, there are two terminals in the game and their strategy
sets are mapped to the utility possibility set shown as the shaded
area. Any power vector that provides a Pareto improvement with
respect to results in nondecreasing changes in individual util-
ities, , and therefore would lie in the area labeledRegion
of Pareto improvement. From the figure, we can observe that
is such a point. We can also refer toas thePareto-preferred
power vector when compared to. The concepts of Pareto dom-
inance and Pareto optimality should not be confused: Pareto-op-
timal power allocationsdo notnecessarily Pareto dominateall
other power vectors. For example, compare the utilities obtained
by and in Fig. 5. Notice that is a Pareto-optimal power

Fig. 5. Power vectorx Pareto dominates power vectory and z is Pareto
optimal.

allocation. However, since , does not Pareto
dominate , regardless of the fact that .

We now seek improvements to the outcome obtained as a re-
sult of the NPG. In this paper, the power vectors that improve
utilities (in the Pareto sense) with respect to the Nash equilib-
rium are referred to asNPG-dominant. The focus of this section
and the section on pricing is to seek NPG-dominant power allo-
cations.

Theorem 3: The NPG equilibrium is inefficient.
Proof: Recall that, at the equilibrium of the NPG, there are

two types of terminals: those that achieve the utility maximizer
and those that transmit at maximum powerwhile attaining

less than . Let denote the index set of terminals that are able
to reach and denote index set for the rest of the terminals.
Suppose that, at NPG, all reduce their powers by a factor
of where , while all keep their powers at.
The utility of user with these reduced powers is

(10)

where

for all (11)

Similarly, the utility of user with these reduced powers is

(12)

where

for all (13)

We need to examine how the utility value changes for all termi-
nals as the value of changes. As the value ofgoes from 1 to
0, the terminals in the set dissipate a power lower than equi-
librium powers. If this decrease in results in nondecreasing
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utilities for all terminals, we have a proof that there exists an
NPG-dominant power vector. First, let us focus on only those
terminals in the set , i.e., the terminals that achieveat the
NPG equilibrium. Taking the first-order derivative of utility in
(10) with respect to and evaluating the resulting expression at

, we obtain

(14)

For terminal , since the FONOC is satis-
fied, (14) can be simplified to yield

(15)

Notice that the above expression has a negative value, i.e.,
. Therefore, as tends from unity,

utilities of the terminals in set have a tendency to increase.
Although this proves the utilities for all increases, we
still need to show that the terminals in set also received
increased utilities as a result of scaling of powers byby
the users in the set . Recall the utility of user with
reduced powers is given in (12) and the SIR is given in (13).
Observe that, when terminals in reduce their powers by,
the denominator term in (13) decreases. Since the numerator
of this term remains the same (namely, the terminals indo
not change their equilibrium power of), the SIR increases
for a terminal in . With an increased SIR, the utility of
terminal given in (12) increases since the efficiency
function is a monotonic increasing function of the SIR and the
denominator remains the same. Thus, we conclude that there
exists a where utilities ofall terminals increase. Since
at , the utilities of all the users increase, by definition
the Nash equilibrium of the NPG is not a Pareto optimum.
The scalar was taken to have the same value for all users for
purposes of convenient illustration of the non-Pareto optimality
property of the Nash equilibrium. However, when seeking
Pareto-efficient (Pareto-optimal) power vectors, we are not
constrained to power vectors that are scalar multiples of the
equilibrium power vector.

In the rest of this paper, we seek to improve the utilities ob-
tained at the Nash equilibrium of NPG. We should note that
in [19] the authors take a centralized approach to improve the
NPG equilibrium. The improvement is searched over the solu-
tion space constrained to equal-SIR power vectors. The value
of the best equal-SIR solution is derived and shown that it is an
NPG-dominant power allocation. With the same motivation of
improving the NPG utilities, we examine a more decentralized
method.

VI. NONCOOPERATIVEPOWERCONTROL WITH PRICING

In the NPG, each terminal aims to maximize its own utility
by adjusting its own power, but it ignores the cost (or harm)

it imposes on other terminals by the interference it generates.
The self-optimizing behavior of an individual terminal is said
to create anexternalitywhen it degrades the quality for every
other terminal in the system. Among the many ways to deal with
externalities,pricing (or taxation) has been used as an effective
tool both by economists and researchers in the field of computer
networks. Typically, pricing is motivated by two different objec-
tives: 1) it generates revenue for the system and 2) it encourages
players to use system resources more efficiently. In this work,
pricing does not refer to monetary incentives, but rather refers
to a control signal to motivate users to adopt asocialbehavior.
An efficient pricing mechanism makes decentralized decisions
compatible with overall system efficiency by encouraging effi-
cient sharing of resources rather than the aggressive competition
of the purely noncooperative game. A pricing policy is calledin-
centive compatibleif pricing enforces a Nash equilibrium that
improves social welfare. Roughly speaking, social welfare is de-
fined as the sum of utilities.

It is possible to use various pricing policies, such as flat-
rate, access-based, usage-based, priority-based, etc. This situ-
ation raises the question of which pricing policy is appropriate.
The service provider determines both the pricing policy and the
specific prices for the use of resources based on the system, the
kind of resources it offers, and the type of the demand for these
services. An efficient price will reflect accurately the costs of
usage of a resource and must take into account the nature of the
demand for the offered service. Usage-based pricing is an ap-
proach commonly encountered in the literature. In usage-based
pricing, the price a terminal pays for using the resources is pro-
portional to the amount of resources consumed by the user.

In order to improve the equilibrium utilities of NPG in
the Pareto sense, we resort to usage-based pricing schemes.
Through pricing, we can increase system performance by
implicitly inducing cooperation and yet we maintain the
noncooperative nature of the resulting power control solution.
An efficient pricing scheme should be tailored for the problem
at hand. Within the context of a resource allocation problem
for a wireless system, the resource being shared is the radio
environment and the resource usage is determined by terminal’s
transmit power. Furthermore, in Section V, we show that the
decentralized power control game has an equilibrium that is
inefficient. We argue that efficiency in power control can be
promoted by a usage-based pricing strategy where each user
pays a penalty proportional to its transmit power.

Keeping the above guidelines for a pricing strategy in mind,
we develop a noncooperative game with pricing. Let

denote an -player noncooperative power
control game with pricing (NPGP). Utilities for NPGP are

(16)

where is the pricing function for terminal .
The multi-objective optimization problem that NPGP solves can
be expressed as

for all (17)
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Theabove formulationdoesnotassumeanyparticular formfor
the pricing function . However, motivated by the discussion
in Sections I–V, we impose a price that increases monotonically
with the transmit power of the user. Particularly, we restrict our
attention to linear pricing schemes (see also [4]) of the form

(18)

where and are positive scalars. The pricing factorcan
be considered to have units b/s/Wso that it is consistent with
the units of thenet utility in b/J.

The pricing factor needs to be tuned such that user self-in-
terest leads to the best possible improvement in overall network
performance. The NPGP with linear pricing is as follows:

for all (19)

NoticethattheNPGPispracticallythesamegameastheNPGwith
different payoff functions. We seek a Nash equilibrium point that
solves the NPGP, if one exists. In game ,
each utility function is quasi-concave in its own strategy. We es-
tablished that in a game with such utility functions there exists a
unique equilibrium. The NPGP, however, does not have quasi-
concave utility functions. Analytical techniques used to prove
Nash existence under strong assumptions of convexity and dif-
ferentiability are no longer applicable. Thus, we turn tosuper-
modularity theoryto show existence of equilibria.

We now present the theory of supermodular games which we
will use to investigate Nash equilibria in the NPGP.

A. Supermodular Games and NPGP

Supermodularity was introduced into the game theory litera-
ture by Topkis [20] in 1979. In a supermodular power control
game, each player’s desire to increase its power increases with
an increase in other players’ powers, i.e., the best response of a
terminal is monotone increasing in interferers’ strategy. Super-
modular games are of particular interest since they have Nash
equilibria. Furthermore, it is possible to identify a set of Nash
equilibria defined by two Nash equilibria that constitute a lower
bound and a higher bound on the Nash set. The simplicity of
supermodular games makes convexity and differentiability as-
sumptions unnecessary. A formal definition of a supermodular
game can be found in [9, p. 491]. For the special case of single
dimensional user strategy sets which are of interest in this work,
the definition simplifies to the following.

Definition 4: Consider a generic game
with strategy spaces for

all . is supermodularif, for each , has
nondecreasing differences (NDD) in .

If the utility of user has NDD in , then user ’s mar-
ginalutility isnondecreasing in thetransmitpowersof interferers,
i.e., in response to an increase in the power level of another user,
terminal increases its transmit power level in order to increase
its utility. NDD property is formally defined as follows.

Definition 5: has NDD in if for all
the quantity is nonde-

creasing in . Equivalently, for continuous and twice differen-
tiable utilities, has NDD in if and only if

for all .

The significance of this property is the fact that such utilities
lead to a system of best response correspondences that have a
fixed point[21, p. 180]. Recall that a fixed point in best response
correspondences implies a Nash equilibrium. Finally, we can
state the fundamental result by Topkis.

Theorem 4: [21] The set of Nash equilibria of a supermod-
ular game is nonempty. Furthermore, the Nash set has a largest
element and a smallest element.

A proof of the theorem can be found in [21]. Let the set of
Nash equilibria be denoted byand the largest and the smallest
elements of be denoted by and , respectively. The
largest and smallest vector in a set of vectors refer to the compo-
nent-wise comparison between vectors in that set. For example,
for two vectors , if and only if for all

. The theorem states that all the equilibria
are located such that , however itdoes notsay
thatall points in that interval are equilibrium points.

If the utilities of the game under consideration are such that
there is a parameter that none of the users have control over,
we call that parameter anexogenousone. Consider a game with
exogenous parameter,, with utili-
ties . The supermodularity definition for a generic
game given earlier (corresponding to ) can be readily
extended to the game with an exogenous parameterby im-
posing an additional NDD condition regarding the parameter.

Definition 6: A game with an exogenous parameteris
said to besupermodular, or it is a parameterized game with
complementaritiesif has NDD in and
in for all .

The following important result and its proof can be found in
[21].

Theorem 5: In a parameterized supermodular game, both
and are nondecreasing in.

It should be observed that in fact the pricing gameas given
in (19) is a game with an exogenous parameter, the pricing factor,
. NPGP is not a supermodular game

by Definition 6. However, if the strategy spaces of users are mod-
ified appropriately, we can show that the resulting game is super-
modular. The modified strategy space for userdenoted by

is a compact set defined by where the smallest
power in thestrategyset isderivedfrom .Notethat

corresponds to the point of maximum rate of change
oftheefficiencywithincreasingSIR,i.e., .We
find this SIR requirement using the condition given in Definition
5, i.e., for all . The largest power

is the maximum power constraint of the system. In this work,
we assume the modified strategy spaceis nonempty, i.e., there
exists a such that for all . Note that, in the mod-
ified strategy space of NPGP described above, the power levels
that yield are no longer available to the terminal. In
NPG, the terminals can use any nonnegative power as long as it
is below the maximum power limit. Thus, the users in NPGP op-
erate in a smaller feasibility region as compared to the terminals
in NPG. By the following result, existence of Nash equilibria in
the pricing game is established.

Theorem 6: Modified NPGP
with exogenous parameteris a supermodular game.
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Proof: We test whether the conditions in Definition 6 are
satisfied. has NDD in since the condition given
in Definition 5 yields the same expression for as . We
need only check whether the utility has NDD in

. First, perform a change of variables fromto where
. When we take the partial derivative with respect to both

and , we get for all . Thus, is
supermodular.

Using Theorems 4 and 5, we have all the Nash equilibria of
within the set , and

both and are nonincreasing in. It is worth re-
membering a comment we made earlier about equilibirum ex-
istence results. Equilibrium existence results do not imply an
equilibrium does not exist if the conditions of the proof are not
met. Therefore, the NPGP with original strategy spaces is not
supermodular, but we do not know for certain that it does not
have an equilibrium. In fact, from some experimental results,
we gather that it does have an equilibrium in some instances of
the problem. We discuss these results in Section VII.

We discuss a totally asynchronous algorithm that generates a
sequence of powers that converges to the smallest Nash equi-
librium, . Suppose that terminal updates its power at
time instances given by the set where

and for all . Define
as the set of update instances sorted in in-
creasing order. Assume that no two time instances in setare
exactly the same. Let and denote the smallest and the largest
vectors in modified strategy space, respectively.

Algorithm 1 (Terminal): Consider the noncooperative power
control game with pricing (NPGP) as given in (19). Generate a
sequence of powers as follows.

1) Set the initial power vector at time . Also
let .

2) For all such that

a) For all terminals such that

i) Given , compute
.

ii) Assign the transmit power as
.

We refer to as thesetof best transmit powers for ter-
minal at time instance in response to the interference vector

. It is important to note that the terminaloptimizes
the net utility over the modified strategy space of the NPGP,,
where is bounded by . Implementation of this
lower bound in the algorithm assumes that the instantaneous SIR
at thebasestation isknownbytheterminal.Theterminal thenuses
this information to derive the lower bound on its transmit power.

In the game with pricing, more than one transmit power might
constitute a best response to a given interference vector. In this
case, the algorithm determines the transmit power of a terminal
by selecting the smallest power among all possibilities as dic-
tated by the algorithm.

Theorem 7: Algorithm 1 converges to a Nash equilibrium of
NPGP. Furthermore, it is the smallest equilibrium, , in the
set of Nash equilibria.

The proof can be found in Appendix B. Experiments suggest
for our problem. If this is indeed true analyti-

cally, it implies that the Nash equilibrium in the modified NPGP
is unique and can be reached from either thetop or thebottom
of the strategy space by implementing Algorithm 1. Since we
do not know if there is a unique equilibrium, we compare the
equilibria in the Nash set to determine if there exists a single
equilibrium that dominates all other equilibria. Indeed, we can
show that is thebestequilibrium in the set .

Theorem 8: If are two Nash equilibria in modified
NPGP where , then for all .

Proof: Notice that, for fixed and , utility
decreases with increasing

for all . Therefore, since , we have

(20)

Also, by definition of Nash equilibrium and sinceis a Nash
equilibrium of NPGP, we have

(21)

By the above equations,

(22)

Corollary 1: For modified NPGP, is the Pareto-
dominant equilibrium, i.e., for all , for
all

Proof: By Theorem 8, we know that componentwise
smaller equilibrium results in higher utilities for all users than
a larger equilibrium. Since for all , we
conclude that for all

for all (23)

Note that this result implies that, in case NPGP has Nash equi-
libria, the one that yields highest net utilities is the Nash equi-
librium with the minimum total transmit powers.

VII. N UMERICAL RESULTS

We demonstrate the improvement in performance ob-
tained as a result of the NPGP outcome on a single-cell
CDMA system with stationary users, fixed frame size,
and no forward error correction. The system we examine
has the design parameters listed in Table II. Also, the
system we consider has nine terminals that are located at

m from the
base station. Path gains are obtained using the simple path loss
model where is a constant.

For our numerical examples, we use the efficiency function

(24)

which approximates for noncoherent FSK. A comparison of
the difference between and as a function of the SIR
for can be found in Fig. 2. Using the efficiency func-
tion given in (24) and the linear pricing regime with for
all , the equilibrium powers that solve the NPGP given in (19)
are obtained by use of Algorithm 1. We first get the equilibrium
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TABLE II
THE LIST OF PARAMETERS FOR THESINGLE-CELL CDMA SYSTEM

USED IN THE EXPERIMENTS

powers in NPGP with no pricing , which is equivalent to
playing the NPG given in (6). Recall that the equilibrium powers
in NPG are obtained by solving for all if it is feasible.
The utility-maximizing SIR for the specific system under exam-
ination is found to be by solving or
(33). For this example, we compute that an equal-SIR equilib-
rium is feasible if . Once the equilibrium with no pricing
is obtained, the NPGP is played again after incrementing the
pricing factor, , by a positive value, . Algorithm 1 returns
a set of powers at equilibrium with this value of the pricing
factor. If the utilities at this new equilibrium with some posi-
tive price improve with respect to the previous instance, the
pricing factor is incremented and the procedure is repeated. We
continue until an increase inresults in utility levels worse than
the previous equilibrium values for at least one user. We declare
the last value of with Pareto improvement to be the best pricing
factor, . The way is determined by the network can
be summarized in algorithmic format as follows.

Algorithm 2 (Network):

1) Set and announce to all terminals.
2) Get for all at equilibrium, increment

and announce to all terminals
3) If for all then go to step 2, else stop

and declare .

Fig. 6 is constructed by letting Algorithm 1 reach Nash
equilibrium at each value of. We terminate incrementing the
pricing factor if at least one user receives worse payoff than the
previous equilibrium utility. It can be observed that solution
by NPGP with offers a significant improvement
in total utilities with respect to the solution offered by NPG.
Increase in individual utilities can be examined in Fig. 7. The
corresponding equilibrium powers are displayed in Fig. 8.
The terminals that are closer to the base station receive much
higher utilities while expending smaller power as compared
to terminals further away from the base station in both NPG
and NPGP equilibria. Yet, we observe that utilities improve
significantly for all terminalsas a result of pricing and that the
powers decrease from values at equilibrium with no pricing.
The numerical results also reveal that although the equilibrium
SIRs for the game with zero pricing are equal for all terminals
( for all ), the SIRs at equilibrium in NPGP
with are higher for terminals closer to the base
station ( if ). We should note that, in many
of our experiments where we find , the first terminal to
experience a decrease in utility as the pricing factor is increased

Fig. 6. Sum of equilibrium utilities in a game with nine terminals as a function
of the pricing factorc.

Fig. 7. Utilities at equilibrium of NPG and NPGP withc = c .

is generally the one with the worst path gain. Therefore, the
terminal that triggers the choice of is usually the one that
already receives lower utility. In such cases, we note that the
choice of has implications of amax–min fairoutcome.
The max–min fairness concept is commonly used in computer
networks in the context of flow control of sources within the
network. It refers to a flow rate allocation where it is not
possible to increase the flow from a source without having to
decrease the flow of a source that is already receiving a smaller
portion of the allocation [22]. Notice that, if increasing the
pricing factor beyond results in the farthest terminal re-
ceiving decreased utility, then is a max–min fair pricing
factor for the (Network) algorithm described in Algorithm 2.

The equilibrium results presented for NPGP are guaranteed
by the equilibrium existence results of Section VI-A. However,
remember that if the conditions of the existence theorem are
not met, it does not automatically imply there is no equilibrium
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Fig. 8. Powers at equilibrium of NPG and NPGP withc = c .

in the game. Actually, even if the strategy space of the modi-
fied NPGP is relaxed to the original space of NPG, our exper-
iments show that an equilibrium exists. Furthermore, an equi-
librium can be reached starting from , the all-zero power
vector, and updating the transmit powers iteratively. If the mod-
ified NPGP equilibrium SIRs are such that for
all , then modified NPGP and the original NPGP equi-
libria are identical. Otherwise, when the SIR constraint is active
at the equilibrium of the modified NPGP for at least one ter-
minal, the original NPGP equilibrium yields zero equilibrium
powers for some of the weaker terminals. It should be observed
that zero transmit power can never be an equilibrium value for
modified NPGP due to the lower bound on SIR. Although the
original NPGP equilibria typically return a higher sum of util-
ities than the modified NPGP for the same value of the pricing
factor, some of the terminals receive utilities strictly equal to
zero. Thus, it might be reasonable to interpret pricing for the
original NPGP as an admission control mechanism. However,
since in this work the motivation of pricing is to improve the
NPG equilibrium utilitiesfor all the terminals, we are more in-
terested in the results from the modified NPGP.

VIII. NPGP AND THE SOCIAL OPTIMUM

In NPGP, we choose the value of that brings max-
imal Pareto improvement to the solution from NPG. However,
the power vector obtained as a result is not necessarily a social
optimum. In this section, we discuss the connection between a
social optimum and a general pricing function. The pricing func-
tion is not restricted to have a linear form.

Theorem 9: A power vector that solves the social
problem is Pareto optimal where is defined as

(25)

with a vector of positive scalars.
Proof: Assume solves and suppose is

not Pareto optimal. Then, there exists some power vectorsuch

that for some and for all .
This implies that . Therefore

cannot be a solution to which is a contradiction to
the original assumption. Therefore, it has to be a Pareto optimal
point.

In fact, in our experiments, we observe that the sum of util-
ities continue to increase beyond . However, such
improvement in total utilities result in degraded QoS for at least
one user, beginning with the user that is farthest from the base
station. The solution to is not even guaranteed to Pareto
dominate the Nash solution of the NPG.

Solving with a particular choice of results in one of
the points in the Pareto-optimal frontier, which consists of the
points on the northeast boundary of the utility possibility set as
shown in Fig. 5. By solving for all , we can con-
struct the Pareto-optimal frontier. What we obtain by the NPGP
is a Pareto-dominant power vector with respect to the solution
offered by the NPG. NPGP solution lies in the space labeled
Region of Pareto improvementin Fig. 5. Note that, unless the
utility possibility set is a convex set, solution of the social op-
timum is not guaranteed to yield a point that is Pareto dominant
with respect to the NPG.

Nevertheless, an optimal pricing function that has the solution
of the social problem as a Nash equilibrium does exist for each
user.

Theorem 10:Let solve the social problem . is
also a Nash equilibrium for the NPGP given in (17) with pricing
function .

Proof: is a Nash equilibrium of the NPGP if
for all , for all .

Since solves the social problem, then

(26)

for all . Rearranging terms on both sides and
dividing both sides by , we obtain

(27)

Consider the second term on either side as the cost function and
let . Expressing in terms of
the cost function, we obtain

(28)

which is true for all and true for all . This is the defi-
nition of a Nash equilibrium. Thus, by definition, is a Nash
equilibrium for the NPGP game. Since the Nash equilibrium of
the NPGP game with

(29)
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is the point where the social problem is solved, we refer to this
pricing function as the Pareto optimal pricing function.

Notice that, with pricing function (29), each user is trying
to maximize the same objective function, individually. The op-
timal pricing function given here is in the most general form
a pricing function can take and does not have the linear form
we produced results for in Sections I–VII. This pricing function
is not practical since we need an algorithm that would guar-
antee the solution of (25) to emerge as an equilibrium of the
social game. However, accomplishing this is as difficult as (if
not harder than) the central authority solving the social problem
and imposing it on all users. Instead, the implementation pro-
posed in this work has a single pricing factorto be announced
by the base station. Thus, users can still implement their dis-
tributed power control schemes that unilaterally maximize the
utility function in (16).

IX. SUMMARY AND CONCLUSION

We have presented a distributed power control algorithm for
wireless data systems. The QoS a wireless terminal receives is
referred to as the utility and distributed power control where
users maximize their utilities is a noncooperative power control
game (NPG). The resulting operating point (Nash equilibrium)
of such a distributed power control is inefficient in power usage.
Therefore, we introduce pricing to improve the NPG result. In
the noncooperative power control game with pricing (NPGP),
each terminal maximizes its net utility given by the difference
between the utility function and a pricing function. The class of
pricing functions studied is linear in transmit power, where the
pricing function is simply the product of a pricing factor and the
transmit power. Such a pricing function allows easy implemen-
tation: the power control algorithm is realized by the base station
announcing the pricing factor to all the users, which is followed
by each terminal choosing the transmit power from its strategy
space that maximizes its net utility. For positive values of the
pricing factor, we show that there exist Nash equilibria that are
not necessarily unique. However, we have proved that the min-
imum power vector in the set of Nash equilibria yields higher
net utilities than any other equilibrium power vector. Such a
power vector is said to Pareto dominate other equilibrium power
vectors. We have also presented an algorithm that reaches the
Pareto-dominant equilibrium starting from the smallest power
vector in the strategy space.

Under zero pricing, the utility is maximized at the same SIR,
, for all terminals. The value of is determined by the system

characteristics such as modulation technique, channel model,
and packet length. As the pricing factor is increased from zero
to positive values, the equilibrium begins to shift toward a point
where users attain lower SIR, expend lower power, and attain
higher utilities. At the equilibrium of NPGP, SIRs are no longer
equal for all users.3 In fact, the equilibrium SIR for a user closer
to the base station is higher than a user farther away, while all
of the SIRs are smaller than the no-pricing equilibrium of.
As a special case of an appropriate choice of the pricing factor,
we define as the value of the pricing factor where the

3In [23], it was found that SIR-balancing is not the optimal solution to maxi-
mize sum of utilities.

utility of at least one terminal begins to decrease with increasing
values of . Using , it is possible to get significant
improvement in utility for all terminals. Finally, we have dis-
cussed how the utilities obtained using the pricing factor
compare with the social optimum which is the power vector that
maximizes the sum of utilities of all the terminals in the system.
Our results indicate that linear pricing while yielding Pareto im-
provements (over the case of no pricing) is still unable to achieve
the social optimum. The desirable attributes of the linear pricing
scheme studied in the present work are that it imposes a fair,
usage-based penalty for the use of radio resources.

APPENDIX I
PROOF OFTHEOREM 1

The following result is obtained from [24]–[26].
Theorem 11:A Nash equilibrium exists in game

if, for all :

1) is a nonempty, convex, and compact subset of some
Euclidean space .

2) is continuous in and quasi-concave in .
The set of maximizers of the continuous function

on the compact set in NPG is called the best-response
correspondence and is denoted by . It is the mapping

and defined as

(30)

An alternative definition for the Nash equilibrium can be stated
using the set of best responses. A power vectoris a Nash equi-
librium of NPG if and only if for all .
When the conditions in Theorem 11 are satisfied, the correspon-
dence is nonempty, convex-valued, and upper semicontin-
uous for all [24]–[26]. Thus, there exists a fixed pointsuch
that for all . This fixed point is by definition
a Nash equilibrium. The proof of the theorem is completed by
showing the conditions given in the theorem are met in NPG.
Each user has a strategy space that is defined by a minimum
power, a maximum power, and all the power values in between.
We also assume the maximum power is larger than or equal to
the minimum power. Thus, the first condition is satisfied. It re-
mains to show that the utility function is quasi-concave
in for all in NPG. First, we define quasi-concavity.

Definition 7: The function defined on the
convex set is quasi-concave in if and only if

(31)
for all and .

Alternatively, either the local maximum of the quasi-concave
function is at the same time a global maximum or the quasi-con-
cave function is constant in the neighborhood of a local max-
imum [27], [28]. We can show that the first part of this condition
is true for the utility function used in this study.

For a differentiable function, the first-order necessary opti-
mality condition is given as . The par-
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tial derivative of with respect to is

(32)

where . Since for NPG, we ex-
amine only positive real numbers. Evaluating (32) at , we
get . Therefore, is a stationary
point and the value of utility at this point is .
If we evaluate utility in the -neighborhood of , where

is a small positive number, we notice that utility is positive
which implies utility is increasing at . Therefore, we
conclude zero cannot be a local maximum. For nonzero values
of the power, we examine the values ofthat make

. Suppose the modulation format used is noncoherent
FSK for which the BER expression is given in Table I. The ef-
ficiency function corresponding to noncoherent FSK can be de-
rived using (2). Expressing in terms of and rear-
ranging terms, we get or

(33)

We observe that the right-hand side of the above equation is
convex in , the left-hand side is monotonously increasing in

, and the equation is satisfied at . Therefore, there
is a single value that satisfies the given expression for
. Let this value be where is derived numerically

from (33) and it is the same value for all users assuming each
user operates with the same efficiency function. The second-
order partial derivative of the utility with respect to the power
reveals that this point is a local maximum and therefore a global
maximum. Hence, the utility function of useris quasi-concave
in for all . This completes the proof of the theorem.

Finally, it should be emphasized that, although we used non-
coherent FSK as an example in the proof, the results apply to a
fairly broad class of modulation schemes [13].

APPENDIX II
PROOF OFTHEOREM 7

If the smallest power vector in the strategy space,, is al-
ready an equilibrium of NPGP, following the definition of an
equilibrium, the power updates will result in the same power
vector. If is not an equilibrium point, then we need to demon-
strate how the power vector evolves in time. Remember that
we defined as the set of update instances

sorted in increasing order. Note that
. Since is not an equilibrium point,

where . Since
is the only component of the power vector to be updated at

, we also have . Suppose that for some
, for all . Since we have

already established that this assumption is true for , it is
sufficient to show that . Consider user such
that . Suppose the previous update of usertook
place at where is some time index in .
By the induction assumption, we have

(34)

Since , the power vector at
is . Since terminal has the
same power value for all update instances , the
power vector at is . The
power ordering in (34) is

(35)

Above inequality implies . Since
and and

since the best response correspondence is increasing in
, we have and hence

(36)

Thus, we confirm that is a nondecreasing sequence of
powers in time. Furthermore, the convergence of the power
vector such that where follows
because for all and is a compact set and since a
nondecreasing sequence has a limit point in a compact set [29].

Although has been shown to be a limit point of the se-
quence of powers generated by the algorithm, it is yet to be
verified that is also an equilibrium of NPGP. For any user
, for all update instances , and

at any instant . It is possible to find
some sequence for all such
that . Since belongs to the best re-
sponse correspondence of terminalat that instance, we have

(37)

which results in

(38)

The argument applies to all the terminals. Hence, by definition
of a Nash equilibrium, is an equilibrium point of NPGP.

We seek to prove by induction that the algorithm results in
the smallest Nash equilibrium. Let be any equilibrium of the
game. We know that the initial vector of the algorithm is the
smallest point in the strategy space and hence .
Suppose that for some , . At time , sup-
pose that terminal updates its power. By construction of the
algorithm, is the smallest value in its best correspon-
dence, . Also, has to belong to its best response cor-
respondence since it is an equilibrium point. Recalling that the
best response correspondence is a nondecreasing function of the
interference and that we assume , we conclude that

(39)

Since by induction for all which implies
, we prove that the limit point of the

sequence generated by the algorithm is the smallest equilibrium
in the Nash set.
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