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Abstract—The problem of optimal resource allocation is
studied for ergodic fading orthogonal multi-access relay channels
(MARCs) in which the users (sources) communicate with a des-
tination with the aid of a half-duplex relay that transmits and
receives on orthogonal channels. Under the assumption that the
instantaneous fading state information is available at all nodes,
the maximum sum-rate and the optimal user and relay power
allocations (policies) are developed for a decode-and-forward (DF)
relay. A known lemma on the sum-rate of two intersecting poly-
matroids is used to determine the DF sum-rate and the optimal
user and relay policies, and to classify fading MARCs into one
of three types: (i) partially clustered MARCs in which a user is
clustered either with the relay or with the destination, (ii) clustered
MARCs in which all users are either proximal to the relay or to
the destination, and (iii) arbitrarily clustered MARCs which are a
combination of the first two types. Cutset outer bounds are used
to show that DF achieves the capacity region for a sub-class of
clustered orthogonal MARCs.

Index Terms—Decode-and-forward, ergodic capacity, fading,
multiple-access relay channel (MARC), resource allocation.

I. INTRODUCTION

N ODE cooperation in multiterminal wireless networks
has been shown to improve performance by providing

increased robustness to channel variations and by enabling
energy savings (see [1]–[7] and the references therein). A spe-
cific example of relay cooperation in multiterminal networks
is the multi-access relay channel (MARC). The MARC is a
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network in which several users (source nodes) communicate
with a single destination with the aid of a relay [8]. The coding
strategies developed for the classical relay channel [9] extend
readily to the MARC [10].

We consider a MARC with a half-duplex wireless relay that
transmits and receives on two orthogonal channels. Specifically,
we model a MARC with a half-duplex relay as an orthogonal
MARC in which the relay receives on a channel over which all
the sources transmit, and transmits to the destination on an or-
thogonal channel.1 This channel models a relay-inclusive uplink
in a variety of networks such as wireless local area networks
(LANs), cellular networks, and sensor networks. The study of
wireless relay networks has focused on several performance as-
pects, including capacity (e.g. [1], [3], [9]), diversity (e.g., [2],
[4], [12]), outage (e.g., [13]–[15]), and cooperative coding (e.g.,
[16], [17]). Equally pertinent is the problem of resource alloca-
tion in fading wireless channels in which both source and relay
nodes can allocate their transmit powers to enhance a desired
performance metric when the fading state information is avail-
able. Resource allocation for a variety of relay channels and net-
works has been studied in several papers, including [5], [13], and
[18]–[20]. A common assumption in all these papers is that the
source and relay nodes are subject to a total power constraint.

Resource allocation in multi-user relay networks has been
studied recently in [21]–[23]. The authors in [21] and [23] con-
sider a specific orthogonal model in which the sources time-du-
plex their transmissions and are aided in their transmissions by
a half-duplex relay, while in [22] the optimal multi-user sched-
uling policy is determined under the assumption of a nonfading
backhaul channel between the relay and destination. In con-
trast, in this paper, we consider a more general multi-access
channel with a half-duplex (orthogonal) relay and model all in-
ternode wireless links as ergodic fading channels with perfect
channel state information available at all nodes. Assuming a
decode-and-forward (DF) relay, we develop the optimal source
and relay power allocations and present conditions under which
opportunistic time-duplexing of the users is optimal.

The orthogonal MARC is a multi-access generalization of the
orthogonal relay channel studied in [6]; however, the optimal
DF policies developed in [6] do not extend readily to maxi-
mize the DF sum-rate of the MARC. This is because unlike the
single-user case, in order to determine the DF sum-rate for the

1Yet another class of orthogonal single-source half-duplex relay channels is
defined in [11] in which the source and relay transmit in orthogonal bands. The
source transmits in both bands, one of which is received at the relay and the other
is received at the destination, such that the relay also transmits in the band re-
ceived at the destination. In contrast to [11], we assume that all sources transmit
in only one of the two orthogonal bands and the relay transmits in the other. Fur-
thermore, we assume that signals in both bands are received at the destination.
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MARC, we need to consider the intersection of the two multi-ac-
cess rate regions that result from decoding at both the relay and
the destination. Here, we exploit the polymatroid properties of
the two multi-access regions and use a single known lemma on
the sum-rate of two intersecting polymatroids [24, chap. 46] to
develop inner (DF) and outer bounds on the sum-rate and the
rate region. We also specify the sub-class of orthogonal MARCs
for which the DF bounds are tight.

A lemma in [24, chap. 46] enables us to classify polymatroid
intersections broadly into two sets, namely, the sets of active and
inactive cases. An active or an inactive case result when, in the
region of intersection, the constraints on the -user sum-rate at
both receivers are active or inactive, respectively. In the sequel
we show that inactive cases suggest partially clustered topolo-
gies in which a subset of users is clustered closer to one of the
receivers while the complementary subset is closer to the re-
maining receiver. On the other hand, active cases can result from
specific clustered topologies such as those in which all sources
and the relay are clustered or those in which the relay and the
destination are clustered, or more generally, from topologies
that are either a combination of the two clustered models or of a
clustered and a partially clustered model. For both the active and
inactive cases, the polymatroid intersection lemma yields closed
form expressions for the sum-rates which in turn allows one to
develop the sum-rate optimal power allocations (policies).

We first develop the DF sum-rate maximizing power policies
for a -user orthogonal MARC. Using the polymatroid inter-
section lemma we show that the DF sum-rate averaged over all
fading states is achieved by either one of five disjoint cases,
two inactive and three active, or by a boundary case that lies at
the boundary of an active and an inactive case. We develop the
sum-rate for all cases and show that the sum-rate maximizing
DF power policy either: 1) exploits the multi-user fading di-
versity to opportunistically schedule users analogously to the
fading multiple access channel (MAC) [25], [26] though the op-
timal multi-user policies are not necessarily water-filling solu-
tions, or 2) involves simultaneous water-filling over two inde-
pendent point-to-point links.

Using similar techniques, we also develop the -user DF
rate region. Finally, we develop the cutset outer bounds on the
sum-capacity. We show that DF achieves the sum-capacity for a
class of orthogonal MARCs in which the sources and relay are
clustered such that the outer bound on the -user sum-rate at
the destination dominates all other sum-rate outer bounds. We
also show that DF achieves the capacity region when the cutset
bounds at the destination are the dominant bounds for all rate
points on the boundary of the outer bound rate region.

The paper is organized as follows. In Section II, we present
the channel models and introduce polymatroids and a lemma
on their intersections. In Section III we develop the DF rate re-
gion for ergodic fading orthogonal MARCs. In Section IV we
develop the power policies that maximize the DF sum-rate for
a two-user MARC. In Section IV we extend the analysis to the

-user orthogonal MARC as well as to nonorthogonal models.
In Section VI, we present outer bounds and illustrate our re-
sults numerically. Finally, in Section VIII, we summarize our
contributions.

Fig. 1. A two-user orthogonal MARC.

II. CHANNEL MODEL AND PRELIMINARIES

A. Orthogonal Fading MARC

A -user MARC consists of source nodes numbered
, a relay node , and a destination node . We write

to denote the set of sources,
to denote the set of transmitters, and to denote the
set of receivers. In an orthogonal MARC, the sources transmit
to the relay and destination on one channel, say channel 1,
while the half-duplex relay transmits to the destination on an
orthogonal channel 2 as shown in Fig. 1. Thus, a fraction of
the total bandwidth resource is allocated to channel 1 while
the remaining fraction is allocated to channel 2. In
the fraction , the source , for all , transmits the signal

while the relay and the destination receive and
respectively. In the fraction , the relay transmits and the
destination receives where the sources precede the relay in
the transmission order. In each symbol time (channel use), we
thus have

(1)

and (2)

(3)

where and are circularly symmetric complex
Gaussian noise random variables with zero means and unit vari-
ances. We write to denote a random vector of fading gains
with entries , for all and . We use
to denote a realization of . We assume the fading process
is stationary and ergodic over time but not necessarily Gaussian.
Note that the channel gains are not assumed to be inde-
pendent, for all and . We further assume that the parameter
is fixed a priori, the same for every channel state, and is known
at all nodes. As with the classical relay channel, the relay is as-
sumed to be causal, and hence, the signal at the relay in each
channel use depends causally only on the received in the pre-
vious channel uses.

Over uses of the channel, the source and relay transmit se-
quences and , respectively, which are constrained
in power according to

(4)



SANKAR et al.: FADING MULTIPLE ACCESS RELAY CHANNELS: ACHIEVABLE RATES AND OPPORTUNISTIC SCHEDULING 1913

Since the sources and relay know the fading states of the links
on which they transmit, they can allocate their transmitted signal
powers according to the channel state information. A power
policy is a mapping from the fading state space consisting
of the set of all fading instantiations to the set of positive
real values in . The entries of are , the power
policy at user , for all . While denotes the map for
a particular fading instantiation, we write to explicitly
describe the policy for the entire set of random channel states.
Thus, we use the notation when averaging over all states
or describing a collection of policies, one for every . The en-
tries of are for all .

For an ergodic fading channel, (4) then simplifies to

(5)

where the expectation in (5) is over the distribution of . We de-
note the set of all feasible policies , i.e., the power policies
whose entries satisfy (5), by . Finally, we write to denote
the vector of average power constraints with entries , for all

. Throughout the sequel, we also refer interchangeably
to the transmit and receive fractions and as the first and
second fractions, respectively.

We assume perfect channel state information (CSI) at the
transmitters and receivers and a relatively long transmission
time over which all fading states are seen. In practice channel
estimation and feedback typically require a slowly varying
channel as well as bandwidth and energy resources at the
receivers. Despite such practical constraints, our assumption
and the ensuing theoretical analysis defines the optimal per-
formance bounds when the fading states are known perfectly
at all nodes which in turn can serve as an upper bound on
the performance of practical systems. Determining such per-
formance bounds has led to fundamental results on ergodic
capacities and optimal policies for many important ergodic
channel models such as point-to-point [27], multiple access
[25], [26], broadcast [28], and interference channels [29], [30].

Remark 1: We have chosen the bandwidth fraction to be
fixed a priori to make the analysis and elucidation of our results
easier; furthermore, such an assumption also models practical
networks for which dynamic change of bandwidth fractions may
not be straightforward or feasible. In general, however, can be
chosen to maximize the sum-rate. Our analysis can be extended
in a straightforward manner for the case of variable , and where
possible, we generalize our expressions to allow for this. Later
in the sequel, we will illustrate our results for both fixed and
varying .

Remark 2: An alternate mechanism for half duplexed relay
transmissions is to use independent time slots for the users and
the relay. Such models have been considered for the MARC in
[10] and, in general, for multiterminal relay networks in [21]
and [23].

B. Notation

Before proceeding, we summarize the notation used in the
sequel.

Fig. 2. Rate regions� �� ���� and� �� ���� and sum-rates for cases 1 and
2.

• Random variables (e.g., ) are denoted with uppercase
letters and their realizations (e.g., ) with the corre-
sponding lowercase letters.

• denotes a circularly symmetric complex
Gaussian distribution with zero mean and covariance .

• denotes the set of sources and
denotes the set of all transmitters.

• denotes expectation; denotes where
the logarithm is to the base 2, denotes

denotes mutual information, denotes differen-
tial entropy, denotes , and denotes

for any .
• We use the usual notation for entropy and mutual informa-

tion [31], [32] and take all logarithms to the base 2 so that
our rate units are bits per channel use.

• Rate regions for a fixed are denoted with a superscript.
and denote the sum-rate optimal power

policies for DF and the cutset outer bounds, respectively.

C. Polymatroids

In the sequel, we use the properties of polymatroids to de-
velop the ergodic sum-rate results. Polymatroids have been used
to develop capacity characterizations for a variety of multiple-
access channel models including the MARC (see for e.g., [26],
[33], [34]). We review the following definition of a polymatroid.

Definition 1: Let and be
a set function. The polyhedron

(6)

is a polymatroid if (normalization), if
(monotonicity), and

(7)

We use the following lemma on polymatroid intersections
to develop optimal inner and outer bounds on the sum-rate for

-user orthogonal MARCs.
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Fig. 3. Rate regions � �� ���� and � �� ���� and sum-rates for cases ���
��, and ��.

Lemma 1 ([24, p. 796, Cor. 46.1c]): Let and
, for all , be two polymatroids. Then

(8)

Lemma 1 states that the maximum sum of over all de-
noted by , that results from the intersection of two polyma-
troids, and , is given by the minimum
of the two -variable planes and only if both sums
are at most as large as the sum of the orthogonal planes
and , for all . We refer to the resulting in-
tersection as belonging to the set of active cases (see Fig. 3 for
an illustration of the active cases for ).

When there exists at least one for which the
above condition is not true, an inactive case is said to result.
For such cases, the maximum -variable sum in (8) is the sum
of two orthogonal rate planes achieved by two complementary
subsets of users. As a result, the -variable sum bounds
and are no longer active for this case, and thus, the region
of intersection is no longer a polymatroid with faces. For
a -user MARC, there are possible inactive cases. See
Fig. 2 for an illustration of the inactive cases for .

The intersection of two polymatroids can also result in a
boundary case when for any is equal
to one or both of the -user sum-rate planes. The orthogonality
of the planes and implies that no two inactive
cases have a boundary, and thus, a boundary case arises only
between an inactive and an active case. See Figs. 4 and 5 for
an illustration of the boundary cases for . Note that by
definition, a boundary case is also an active case though for ease
of exposition, throughout the sequel we explicitly distinguish
between them. From (8), there are three possible active cases
corresponding to the three cases in which the sum-rate plane at
one of the receivers is smaller than, larger than, or equal to that
at the other. In fact, the case in which the sum-rates are equal is
also a boundary case between the other two active cases. Thus,
there are a total of boundary cases for each active
case.

In summary, the inactive set consists of all intersections for
which the constraints on the two sum-rates are not active, i.e., no
rate tuple on the sum-rate plane achieved at one of the receivers
lies within or on the boundary of the rate region achieved at the
other receiver. On the other hand, the intersections for which
there exists at least one such rate tuple such that the two sum-rate
constraints are active belong to the active set. Thus, by defini-
tion, the active set also includes those boundary cases between

Fig. 4. Rate regions � �� ���� and � �� ���� for cases (1,3a), (1,3b), and
(1,3c).

Fig. 5. Rate regions � �� ���� and � �� ���� for cases (2,3a), (2,3b), and
(2,3c).

the active and inactive cases for which there is exactly one such
rate pair.

III. ORTHOGONAL MARC: ERGODIC DF RATE REGION

The DF rate regions for full-duplex discrete memoryless and
Gaussian MARCs are developed in [3, Appendix A] (see [34]
for a detailed proof) and [35], respectively. The DF rate bounds
for the (half-duplex) orthogonal MARC can be obtained from
those for the full-duplex MARC by incorporating this restriction
via an additional conditioning on a mode random variable that
models our orthogonal bandwidth constraint (see [36] for such
modeling). In the interest of space, we refer the reader to [34]
for the full-duplex bounds and present here directly the DF rate
bounds for an orthogonal Gaussian MARC.

For the orthogonal Gaussian MARC with a fixed and that
are assumed to be known at all nodes, we consider Gaussian
signaling at transmitter with zero mean and variance such
that , for all . Reliable decoding at the
relay and at the destination in the appropriate fractions (the relay
decodes using signals received in the fraction while the des-
tination uses both fractions) requires that the transmitted rates
satisfy the multiple access bounds at both receivers. The fol-
lowing proposition summarizes the resulting DF rate region.

Proposition 1: The DF rate region for -user or-
thogonal Gaussian MARCs with fixed channel states includes
the set of all rate pairs that satisfy

(9)
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For a stationary and ergodic process , the channel in
(1)–(3) can be modeled as a set of parallel Gaussian orthogonal
MARCs, one for each fading instantiation . For a power
policy , assuming Gaussian signaling at the transmitters,
the DF rate bounds for this ergodic fading channel are given
as a weighted average of the rate bounds achieved in each
fading state (the parallel orthogonal Gaussian MARC) where
the weights denote the probabilities of occurence of the fading
states. Considering the rate regions over all yields
the ergodic fading DF rate region, , where is defined
in Section II as a vector of average power constraints at all
transmitters (sources and relay). The ergodic fading DF rate re-
gion, , for a fixed bandwidth fraction , is summarized
by the following theorem.

Theorem 1: The DF rate region of a -user ergodic
fading orthogonal Gaussian MARC is

(10)

where

(11)

and

(12)

Proof: The proof follows from the observation that the
channel in (1)–(3) can be modeled as a set of parallel Gaussian
orthogonal MARCs, one for each fading instantiation and the
fact that independent signals are transmitted in each parallel
channel. We use the argument in denoting the rate regions
since the rates are averaged over the channel states. The DF rate
region, , is given by the union of such intersections, one
for each . The convexity of follows from the
convexity of the set and the concavity of the function.

Proposition 2: and are polymatroids.
Proof: In [34, Sec. IV.B], it is shown that for each choice

of the input distribution, the DF rate region is an intersection
of two polymatroids, one resulting from the bounds at the relay
and the other from the bounds at the destination. For the or-
thogonal Gaussian MARC, the bounds in (11) and (12) involve
a weighted sum of mutual information expressions; using the
same approach as in [34, Sec. IV.B], the submodularity of these
expressions can be verified in a straightforward manner.

Remark 3: The DF rate region is obtained using block
Markov encoding at the sources. For the ergodic fading model,
the rates in Theorem 1 are obtained assuming that each block is
large enough to contain all fading instantiations in an ergodic
manner.

Remark 4: For the case where can be varied, the DF rate
region is obtained as a union of over all feasible
values of , i.e., .

In the following sections, we first develop the sum-rate op-
timal DF power policies for the two-user case and then gener-
alize it for the -user case.

IV. TWO-USER ORTHOGONAL MARC: DF SUM-RATE

OPTIMAL POWER POLICY

For ease of notation, throughout the sequel, we write
to denote the sum-rate bound on the users in and to
denote the sum-rate obtained by successively decoding the users
in before decoding those in at receiver , i.e.,

. See Fig. 2 for an illustration. For the
two-user case, and , for all are given by the
sum-rate and single-user bounds in (11) and (12) at the relay and
destination, respectively.

The region in (10) is a union of the intersections of the
regions and achieved at the relay and
destination respectively, where the union is over all .
Since is convex, each point on the boundary of is
obtained by maximizing the weighted sum over
all , and for all . Specifically, we
determine the optimal policy that maximizes the sum-
rate when . Observe from (10) that every point
on the boundary of results from the intersection of the
polymatroids (pentagons) and for some

. In Figs. 2 and 3 we illustrate the five possible choices for
the sum-rate resulting from such an intersection for a two-user
MARC of which two belong to the inactive set and three to the
active set.

The inactive set consists of cases 1 and 2 in which user 1
achieves a significantly larger rate at the relay and destination,
respectively, than it does at the other receiver; and vice-versa
for user 2. The active set includes cases , and shown
in Fig. 2 in which the sum-rate at relay is smaller, larger, or
equal, respectively, to that achieved at the destination . The
three boundary cases between case 1 and the three active cases
are shown in Fig. 4 while the remaining three between case 2
and the active cases are shown in Fig. 5. We denote a boundary
case as case .

We write and to denote the set of power
policies that achieve case , and case

, respectively. We show in the sequel
that the optimization is simplified when the conditions for each
case are defined such that the sets and are disjoint for all

and , and thus, are either open or half-open sets such that
no two sets share a boundary. Observe that cases 1 and 2 do not
share a boundary since such a transition (see Fig. 2) requires
passing through case or or . Finally, note that Fig. 3
illustrates two specific and regions for , and .
For ease of exposition, we write .
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In general, the occurrence of any one of the disjoint cases de-
pends on both the channel statistics and the policy . Since
it is not straightforward to know a priori the power allocations
that achieve a certain case, we maximize the sum-rate for each
case over all allocations in and explicitly check whether the
optimizing power allocation indeed results in the corresponding
case. In the following, we will argue that this can be true for
only one case, and the optimizing power policy for this case is
the unique solution that achieves the optimal sum-rate.

We write and to denote the optimal solu-
tion for case and case , respectively. Explicitly including
boundary cases ensures that the sets and are disjoint for
all and , i.e., these sets are either open or half-open sets
such that no two sets share a power policy in common. This in
turn simplifies the convex optimization as follows.

Consider case . The optimal is first determined by
maximizing the sum rate for this case over all . The resulting
sum-rate optimal must satisfy the conditions for case
, i.e., we require . If , the opti-

mality of follows from the fact that the rate function
for each case is strictly concave and that the sets and are
disjoint for all and as a result of which does not
maximize the sum-rate for any other case. On the other hand,
when , we now argue that achieves its
maximum outside . The proof again follows from the fact
that for all cases is a strictly concave function of

for all . Thus, when , for every
there exists a with a larger sum-rate.

Combining this with the fact that the sum-rate expressions are
continuous while transitioning from one case to another at the
boundary of the open set , ensures that the maximal sum-rate
is achieved by some . Similar arguments justify
maximizing the optimal policy for each case over all . Due to
the strict concavity of the logarithm function, a unique
or will satisfy the conditions for its case. The optimal

is given by this or .
The optimization problem for case or case is given by

(13)

where

(14)

and the subscript in indicates that is fixed.
Let denote the sum-capacity that the two users achieve

at the destination in the absence of the relay, i.e., (or
and . From [25] and [26], we know that the optimizing

policy simplifies to multi-user opportunistic water-
filling. For a fixed the maximum achievable sum-rate is then
given by

(15)

More generally, when all feasible values of the bandwidth frac-
tion are allowed, the maximum achievable sum-rate is given
by

(16)

Remark 5: In (16), allowing the range of to include
covers the MAC without relay case.

Throughout the discussion below, we assume that is fixed,
and therefore, (15) is used to determine the maximal sum-rate.
For the case in which is larger, it suffices to not allo-
cate any bandwidth resources for relay transmission and simply
communicate directly with the destination, i.e., . While
this may hold for any case, it is particularly possible for cases

, and , where the multiple access link to the
relay is the bottleneck link. We now determine the sum-rate
maximizing policy for each case and assume that (15) is always
used to determine the maximal sum-rate.

For each case, we determine the optimal policy using
Lagrange multipliers and the Karush-Kuhn-Tucker (KKT)
conditions [37, 5.5.3]. A detailed analysis is developed in
the Appendix and we summarize the KKT conditions and
the optimal policies for all cases below. From (14), the KKT
conditions for each case , for all and are
given as

(17)

where , for all , are dual variables chosen to satisfy
the power constraints in (13) and will be defined later
for each case. Specializing the KKT conditions for each case, we
obtain the optimal policies for each case as summarized below
following which we list the conditions that the optimal policy
for each case needs to satisfy.

Case 1: The functions in (17) for
case 1 are

(18)

(19)

It is straightforward to verify that these KKT conditions simplify
to

(20)

and

(21)

Case 2: From (14), since can be obtained from
by interchanging the user indices 1 and 2, the functions
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, and hence, the KKT conditions for this case can be
obtained by replacing the superscript by and using the
pairs in (18)–(20). The resulting optimal
policies are

and

(22)

Case 3a: The functions satisfying the
KKT conditions in (17) are

(23)

Since this case maximizes the multi-access sum-rate at the relay,
the optimal user policies are multi-user opportunistic water-
filling solutions given by

(24)

Thus, from (24), we see that the sum-rate is maximized
when each user exploits knowledge of the channel states to op-
portunistically schedule its transmissions when its fading state
is better than that of the other. Finally, while the relay power
does not explicitly appear in the optimization, since this case
results when the sum-rate at the relay is smaller than that at the
destination, choosing the optimal relay policy to maximize the
sum-rate at the destination, i.e., , will en-
sure the case conditions. However, it is worth noting that for-
warding via the relay is desirable for this case only if

(25)

is satisfied for the chosen (or some when is allowed to
vary). Otherwise, it is better to transmit directly to the destina-
tion by setting , i.e., not use the relay.

Case : The functions satisfying
the KKT conditions in (17) can be obtained from (23) by re-
placing the subscript ‘ ’ by ‘ ’ in (23) while

. Thus, this case maximizes the multi-access sum-

rate at the destination and the optimal user policies are multi-
user opportunistic water-filling solutions given by

(26)

while the optimal relay policy is a water-filling solution
.

Case : The functions satisfying
the KKT conditions in (17) are given as

(27)

(28)

where the Lagrange multiplier accounts for the boundary
condition

(29)

and the optimal policy satisfies (29) where
is the set of that satisfy (29). In the Appendix, using

the KKT conditions we show that the optimal user policies are
opportunistic in form and are given by

and

(30)

where we write

(31)

Analogous to cases and , the scheduling conditions in (30)
depend on both the channel states and the water-filling levels

at both users. However, the conditions in (30) also depend
on the power policies, and thus, the optimal solutions are no
longer water-filling solutions. In the Appendix we show that the
optimal user policies can be computed using an iterative non-
water-filling algorithm which starts by fixing the power policy
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of one user, computing that of the other, and vice-versa until the
policies converge to the optimal policy. The iterative algorithm
is computed for increasing values of until the op-
timal policy satisfies (29) at the optimal . The proof of conver-
gence is detailed in the Appendix. Finally, since ,
the relay’s optimal policy simplifies to the water-filling solution
given by

(32)

Boundary Cases A boundary case results when

and (33)

Recall that and are sum-rates for an inactive case ,
and an active case , respectively. Thus, in addition to the con-
straints in (13), the maximization problem for these cases in-
cludes the additional constraint in (33). For all except the two
cases where , the equality condition in (29) is represented
by a Lagrange multiplier . The two cases with have
two Lagrange multipliers and to also account for both the
equality condition in (29) and the condition .

For the different boundary cases, the functions
, satisfying the KKT conditions in (17) are given as

(34)

(35)

(36)

(37)

(38)

For ease of exposition and brevity, we summarize the KKT
conditions and the optimal policies for case . In the
Appendix, using the KKT conditions we show that the optimal
user policies are opportunistic in form and are given
by

and

(39)

where for . As in case ,
the optimal policies take an opportunistic nonwater-filling form
and in fact can be obtained by an iterative nonwater-filling al-
gorithm as described for case . Furthermore, analogously to
case , the user policies are computed for increasing values
of until the optimal policy satisfies (33) at the op-
timal . The optimal is a water-filling
solution.

The optimal policies for all other boundary cases can be ob-
tained similarly as detailed in the Appendix and can be com-
puted using the iterative algorithm detailed in the Appendix.
Specifically, for cases the iterative algorithm
is computed for increasing values of until the
optimal policy satisfies (33) and (29) at the optimal and

, respectively. For all boundary cases, the optimal user poli-
cies are opportunistic nonwater-filling solutions while those for
the relay are water-filling solutions. Finally, the sum-rate maxi-
mizing policy for any case is the optimal policy only if it satisfies
the conditions for that case. The conditions for the cases are

and

(40)

and

(41)

and (42)

and (43)

and

(44)

and (45)

and (46)

and (47)

and (48)

(49)

(50)

where in fading state , (40)–(50) are evaluated for
, and for

.
The following theorem summarizes the form of and
presents an algorithm to compute it.

Theorem 2: The optimal policy maximizing the
DF sum-rate of a two-user ergodic fading orthogonal MARC
is obtained by computing and starting with
the inactive cases 1 and 2, followed by the active cases
and , in that order, and finally the boundary cases in
the order that cases are the last to be optimized, until for
some case the corresponding or satisfies the
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case conditions. The optimal is given by the optimal
or that satisfies its case conditions and falls

into one of the following three categories:
Inactive Cases: The optimal policy for the two users is such

that one user water-fills over its link to the relay while the
other water-fills over its link to the destination. The optimal
relay policy is water-filling over its direct link to the
destination.

Cases : The optimal user policy , for all
, is opportunistic water-filling over its link to the relay for

case and to the destination for case . For case ,
for all , takes an opportunistic nonwater-filling form and
depends on the channel gains of user at both receivers. The
optimal relay policy is water-filling over its direct link
to the destination.

Boundary Cases: The optimal user policy , for all
, takes an opportunistic nonwater-filling form. The op-

timal relay policy is water-filling over its direct link
to the destination.

Proof: The closed form expressions for the optimal poli-
cies for each case are developed in the Appendix. The need for
an order in evaluating is due to the following reasons.
From Lemma 1, for any polymatroids defined by the set func-
tions and , an inactive case results when

(51)

Thus, the condition in (51) for the inactive cases by definition
precludes an active case. For , these conditions simplify
to those in (40) and (41) for cases 1 and 2, respectively. Fur-
thermore, the inactive cases are also mutually exclusive. The
remaining (active and boundary) cases satisfy the conditions

(52)

(53)

For , the condition in (52) simplifies to those in (42)–(44)
for cases , and , respectively, while that in (53) simpli-
fies to those in (45)–(50) for the respective boundary cases. Ad-
ditionally, for cases , and , we also have the requirement
that the sum-rate at the relay is less than, greater than, and equal
to that at the destination, respectively. The conditions in (51)
and (52) are mutually exclusive. On the other hand, the equality
condition for a boundary case , for all is subsumed
in the optimization while the inequality condition is satisfied
for all except one subset of users for which the equality
condition holds. This in turn implies that case has one
less inequality condition than case . Since case has no in-
equality conditions, neither do cases and . Thus,
the optimality of cases and can be determined

only after eliminating the optimality of all others just as the op-
timality of case is determined after that of cases and .
The order of all other active and boundary cases can be chosen
arbitrarily, and for ease of presentation, we simply assume that
the search algorithm first verifies the optimality of ,
failing which it verifies the optimality of , followed
by , and , and finally verifies the
optimality of the boundary cases in the order

, and . Note, however, that cases
and are mutually exclusive due to cases 1 and 2

being disjoint. Thus, the optimal is only achieved by a
unique or depending on the policy that sat-
isfies its case conditions.

Remark 6: The conditions for cases , and can also
be redefined to include the negation of all the conditions for the
other cases. This in turn eliminates the need for an order in com-
puting the optimal policy; however, the number of conditions
that need to be checked to verify whether the optimal policy sat-
isfies the conditions for cases or or remain unchanged
relative to the algorithm in Theorem 2.

We now summarize the optimal power policies at the sources
and the relay for the different cases as follows.

Optimal Relay Policy: In the orthogonal model we consider,
the relay transmits directly to the destination on a channel or-
thogonal to the source transmissions. Thus, the relay to des-
tination link can be viewed as a fading point-to-point link. In
fact, in all cases the optimal relay policy involves water-filling
over the fading states analogous to a fading point to point link
(see [27]). However, the exact solution, including scale factors,
depends on the case considered. Thus, for case 1, maximizing
the sum rate results in the relay using its power to for-
ward only the message from user 1 in every fading state in which
it transmits. Similarly, for case 2, the relay cooperates entirely
with user 2. For the active cases, and , the sum-rate may be
achieved by an infinite number of feasible points on one or both
of the sum-rate planes; the optimal cooperative strategy at the
relay will differ for each such point. Thus, for a corner point the
relay transmits a message from only one of the users while for
all noncorner points the relay transmits both messages. For the
boundary cases, the water-filling solution at the relay is depen-
dent on the Lagrangian parameter(s) introduced to satisfy the
boundary conditions.

Optimal User Policies: As with the relay, the optimal policies
for the two users depend on the case considered. For cases 1 and
2, the optimal policies are water-filling solutions to that receiver
at which it achieves a lower rate. In fact, the conditions for case
1 in (40) suggest a network geometry in which source 1 and
the relay are physically proximal enough to form a cluster and
source 2 and the destination form another cluster; and vice-versa
for case 2. For cases and , the optimal policies at the two
users maximize the two-user multiple-access sum-rate (see [25],
[26]) achieved at the relay and destination, respectively, and
thus, the optimal policy for each user involves water-filling over
its fading states to that receiver. The solution also exploits the
multi-user diversity to opportunistically schedule the users in
each use of the channel. The optimal policies for case require
the users to allocate power such that the sum-rates achieved at
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both the relay and the destination are the same. This constraint
has the effect that it preserves the opportunistic scheduling since
the sum-rate involves the multi-access sum-rate bounds at both
receivers. However, the solutions are no longer water-filling due
to the fact that the equality (boundary) condition results in the
function being a weighted sum of the functions and

for cases and , respectively. The same observation
holds true for the boundary cases too since are weighted
sums of the functions for cases and .

Remark 7: The case conditions in (40)–(50) require aver-
aging over the channel states; thus, the case that maximizes
the sum-rate depends on the average power constraints and the
channel statistics (including network topology).

Remark 8: The optimal policy for each source for cases 1,
2, , and depends on the channel gains at only one of the
receivers. However, the optimal policy for the boundary cases,
including case , depends on the instantaneous channel states at
both receivers. Furthermore, all the cases exploiting the multi-
user diversity require a centralized protocol to coordinate the
opportunistic scheduling of users.

V. -USER GENERALIZATION AND DF RATE REGION

A. -User Sum-Rate Analysis

We use Lemma 1 to extend the two-user analysis in
Section IV to users (and a fixed . Recall that in The-
orem 1 is given by a union of the intersection of polymatroids,
where the union is over all power policies. From Lemma 1, we
have that the maximal -user sum-rate tuple is achieved by an
intersection that either belongs to active set or to the inactive
set. We index the nonempty subsets of via a
superscript . For a -user MARC, there
are possible intersections of the inactive kind with
sum-rate given by

and (54)

where and are as defined in Section III and for
are given by the bounds (11) and (12), respectively. The

sum-rates , for the active cases , are

and

(55)

and

(56)

(57)

Finally, the sum-rate , for the boundary cases totaling
and enumerated as cases

, are

(58)

(59)

(60)

where the subset is chosen to correspond to the appropriate
case .

Remark 9: The constraint for case in (54) are obtained di-
rectly from the requirement that the -user sum-rate constraints
at the two receivers are larger than that for case (see (51)).

The -user sum-rate optimization problem for cases and
can be written as

and

(61)

An inactive case results when the conditions for that case in
(54) are satisfied. The active cases , and result when
the conditions in (55), (56), and (57) are satisfied, respectively.
A boundary case results when the -user sum-rate for case

is equal to that for case as indicated in (58)–(60). Finally,
as before, the achievable maximum sum-rate is given by (15)
and (16) when can be varied. The DF sum-rate optimization
problem here is analagous to the two-user case and in the in-
terest of space, we simply summarize our results in the fol-
lowing theorem.

Theorem 3: The optimal power policy that maxi-
mizes the DF sum-rate of a -user ergodic fading orthogonal
Gaussian MARC is obtained by computing and

starting with the inactive cases
followed by the active cases and , and finally the
boundary cases , choosing cases after computing

for cases and for all , until for some
case the corresponding or satisfies the
case conditions. The optimal is given by the optimal

or that satisfies its case conditions and falls
into one of the following three categories:

Inactive Cases: The optimal user policy , for all
, is multi-user opportunistic water-filling over its bottle-neck

(rate limiting) link to the relay among users in or the destina-
tion among users in . The optimal relay policy is
water-filling over its direct link to the destination.

Active Cases : The optimal user policy ,
for all , is opportunistic water-filling over its link to the
relay for case and to the destination for case . For case

, for all , takes an opportunistic nonwater-filling
form. The optimal relay policy is water-filling over the
relay-destination link.
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Boundary Cases: The optimal user policy , for all
, takes an opportunistic nonwater-filling form. The op-

timal relay policy is water-filling over its direct link
to the destination.

Based on the optimal DF policies, one can conclude that
the topology of the network affects the form of the solution
with the classic multi-user opportunistic water-filling solutions
applicable only for the sources-relay or the relay-destination
clustered models. For all other partially clustered or nonclus-
tered networks, the solutions are a combination of single- and
multi-user water-filling and nonwater-filling but opportunistic
solutions.

B. -User Rate Region

Analogously to the two-user analysis, one can also generalize
the sum-rate analysis above to derive the optimal policies for all
points on the boundary of the -user DF rate region. For brevity,
we outline the approach below.

We start with the observation that the DF rate region, ,
is convex, and thus, every point on the boundary of is ob-
tained by maximizing the weighted sum
for all . As noted earlier, each point on the boundary of is
obtained by an intersection of two polymatroids for some .
Thus, analogously to the sum-rate analysis for for all ,
for arbitrary , is maximized
by either an inactive or an active case.

Since the maximum value of over a feasible
bounded polyhedron is achieved at a vertex of the polyhe-
dron, for any , the -tuple maximizing

is given by a vertex of an
polyhedron at which is a tangent. For the
inactive cases, the polymatroid intersections are polytopes
with constraints on the multi-access rates of all users in and

at the relay and destination, respectively. Since bounds
on the multi-access rates of users result in a polymatroid
with vertices, the intersection of the two orthogonal sum-rate
planes will result in a polytope with vertices of
which an appropriate vertex will maximize . Each
of the boundary cases are also characterized by
an intersection with vertices since these active
cases are such that only one point on the sum-rate plane is
included in the region of intersection. Finally, for cases ,
and , the intersection of -dimensional polymatroids results
in a -dimensional polyhedron.

In general, the intersection of two polymatroids is not a poly-
matroid, and thus, unlike the case with polymatroids, greedy
algorithms do not maximize the weighted sum of rates. This
in turn implies that closed form expressions are not in general
possible and determining the optimal power policies requires
convex programming techniques. We comment specifically on
two cases of most interest.

Remark 10: For the special case in which the optimal policies
for all are such that the bounds at the relay are smaller than
the bounds at the destination for all , i.e., the op-
timal user policies for all are multi-user water-filling solutions

developed in [26, II.C] with the relay as the receiver. Note that
this condition implies that all possible subsets of users achieve
better rates at the destination than at the relay. This can happen
when either all users are clustered closer to the destination or
when the relay has a relatively high SNR link to the destination
sufficient enough to achieve rate gains for all users at the des-
tination. This case is interesting only if the rates achieved thus
are larger than the MAC sum-capacity (without relay).

Remark 11: Similarly, for the special case in which the op-
timal policies for all are such that , the optimal user
policies are multi-user water-filling solutions with the destina-
tion as the receiver. This case occurs when case holds for
all points on the boundary of the DF rate region. This condition
implies that all possible subsets of users achieve better rates at
the relay than they do at the destination which in turn suggests
a geometry in which all subsets of users are clustered closer to
the relay than to the destination. The optimal relay policy in all
cases is a water-filling solution over its link to the destination.
In the following section we show that for this case DF achieves
the capacity region.

VI. OUTER BOUNDS

Thus far, we have focused on the DF achievable scheme. It is
worthwhile to understand the conditions under which DF can
achieve the sum-capacity, and if possible, the capacity region,
for an ergodic fading Gaussian MARC. To this end, we develop
outer bounds for this channel using cut-set bounds. Specifically,
we obtain our outer bounds by specializing the known cut-set
bounds developed in [10] for a -user half-duplex discrete
memoryless (d.m.) MARC to the Gaussian case. We summarize
these half-duplex d.m. bounds summarized below. As with
DF, we focus on the case in which the bandwidth parameter

is fixed a priori, and thus, is not part of the optimization of
the outer bound rate region. For the case in which can be
varied, the rate region will be a union over regions, one for each
feasible .

Proposition 3: For the orthogonal MARC with a fixed the
capacity region is contained in the union of the set of rate tuples

that satisfy

(62)

where the union is taken over all distributions that factor as

(63)

Remark 12: The time-sharing random variable en-
sures that the region defined by (62) is convex. One can apply
Caratheodory’s theorem [38] to this -dimensional convex re-
gion to bound the cardinality of as .
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Following techniques similar to those for proving the con-
verse for Gaussian MAC, we obtain

(64)

where is the covariance matrix of a noise vector

(65)

is the complex conjugate of and a conditional en-
tropy theorem [39] is used to show that Gaussian signals

, and maximize the
bounds in (62). Using the fact that the ergodic channel is a col-
lection of parallel nonfading channels, one for each fading state
instantiation, the capacity region of an ergodic fading orthog-
onal Gaussian MARC is as described in the following theorem.

Theorem 4: The capacity region of an ergodic
fading orthogonal Gaussian MARC with a fixed bandwidth pa-
rameter is contained in

(66)

where, for all , we have

(67)

where

(68)

and

(69)

Remark 13: Comparing outer bounds in (69) with the DF
bounds in (12), we see that the bounds at the destination are the
same in both cases. However, unlike the DF bound at only the
relay in (11), the cutset bound in (67) is a single-input multiple-
output (SIMO) bound with single-antenna transmitters and with
the relay and the destination acting as a multiantenna receiver.

The expressions in (67) and (69) are concave functions of
, for all , and thus, the region is convex. Thus,

as in Theorem 1, the region in (66) is a union of the in-
tersections of the regions and , where
the union is taken over all and each point on the
boundary of is obtained by maximizing the weighted sum

over all , and for all .
In [40], it is shown that the rate polytopes satisfying the full-du-
plex cutset bounds are polymatroids. Since the polytopes in (67)
and (69) are obtained from the full-duplex case for the special
case of orthogonal signaling, one can verify in a straightforward
manner using Definition 1 that these are polymatroids as well.

A. Optimal Sum-Rate Policies and Sum-Capacity

Since is obtained completely as a union of the inter-
section of polymatroids, one for each choice of power policy,
Lemma 1 can be applied to explicitly characterize the outer
bounds on the sum-rate. Thus, the maximum sum-rate tuple is
achieved by an intersection that belongs to either the active set
or to the inactive set such that there are inactive cases,
cases , and , and boundary cases. The analysis
here is analagous to the -user DF case and the optimization for
each case involves writing the Lagrangian and the KKT condi-
tions. The optimal policy satisfies the conditions for
only one of the cases. Comparing these optimal policies with
that for DF, we have the following capacity theorem.

Theorem 5: The sum-capacity of a -user ergodic fading or-
thogonal Gaussian MARC is achieved by DF when the optimal
policies and for the cutset and DF bounds,
respectively, satisfy the conditions for case and for no other
case.

Proof: The proof follows from comparing the sum-rate ex-
pressions for all cases for the inner and outer bounds, respec-
tively. For all those cases in which the SIMO cut-set bound
dominates the sum-rate, the cutset bounds do not match the DF
bounds. On the other hand, when the optimal policies
and satisfy the conditions for case , the bound on

at the destination dominates for both the inner and the outer
bounds. Furthermore, since this sum-rate bound at the destina-
tion is the same for both DF and the outer bounds, we have

, and thus, DF achieves the
sum-capacity.

Remark 14: Recall that case corresponds to a clustered
geometry in which the relay is clustered with all sources such
that the cooperative multi-access link from the sources and the
relay to the destination is the bottleneck link.

Remark 15: The set of power policies, and , are de-
fined by the appropriate conditions for the DF and outer bounds
which are not necessarily the same (since the bounds are not
exactly the same). However, when case maximizes both the
inner and outer bounds, we have

for both bounds.

B. Capacity Region

One can similarly write the rate expressions and the KKT
conditions for every point on the boundary of . The anal-
ysis is similar to that for the -user orthogonal MARC under
DF developed in Section V-B. From Theorem 4, every point
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on results from an intersection of two poly-
matroids. For those cases in which the intersection is an inac-
tive case, both the SIMO cut-set bound at the relay and desti-
nation and the cooperative cut-set bound at the destination are
involved, and thus, one cannot achieve capacity. This is also
true for the boundary cases. For cases , and , in which
the polymatroid intersection also has constraints, and
hence, corner points on the dominant -user sum-rate face,

is maximized by a corner point (vertex) of the re-
sulting polytope. Any polytope that results from some or all of
the SIMO bounds will be larger than the corresponding DF inner
bounds. On the other hand, since and the DF and outer
bound rate regions, respectively, at the destination are the same,
the cut-set bounds can be tight when these bounds dominate the
weighted rate sum. This occurs when the power policies max-
imizing the DF and outer outer bounds result in case . Thus,
for the cut-set bounds to be tight for a given and , we require

and

(70a)

(70b)

where and denote the power policies maxi-
mizing for DF and the outer bounds, respectively,
for a given . Furthermore, when (70) is satisfied, we have

, i.e., DF achieves the optimal
weighted sum of rates for a given . When this
requirement holds for all , we obtain the capacity region. This
observation is summarized in the following theorem.

Theorem 6: The capacity region of an er-
godic orthogonal Gaussian MARC with a fixed is
achieved by DF when every point in the DF
and the outer bound rate regions is achieved by case
such that

. The requirement that case maxi-
mizes every point on the boundary of both the DF and
outer bound rate regions implies that for both bounds,

and
such that

(71)

Remark 16: For the special case in which has uniform
phase fading and the channel state information is not known at
the transmitters such that , for
all , Theorem 6 yields the capacity region of an ergodic
phase fading orthogonal Gaussian MARC as developed in [3,
Theorem 9].

Remark 17: For the case of variable , the capacity region
is still achieved only when case maximizes all possible
weighted sum of rates for both the DF and the outer bounds.
However, now the rate regions result from a maximization over
all feasible . For the case of choosing the same sum-rate max-
imizing over all channel states, this optimization involves
searching over the entire range of , because the equa-
tion that the optimal satisfies involves averaging rates over
channel states, and has to be computed numerically. However,

Fig. 6. Two-user MARCs with partially clustered (topology 1) and symmetric
(topology 2) topologies.

for the case with varying with channel state, for each channel
state, obtaining can be done more easily by solving an
equation for the root instead of an exhaustive search (see, for
e.g., [6] for ). For time-duplexed relay systems in [21],
a quasi-concavity property of the sum-rate as a function of the
time-sharing fraction is exploited to determine the sum-rate
maximizing time fraction.

VII. ILLUSTRATION OF RESULTS

We present numerical results for a two-user orthogonal
MARC with Rayleigh fading links. We model the channel
fading gains between receiver and transmitter , for all
and , as

(72)

where is the distance between the transmitter and receiver,
is the path-loss exponent, and is a circularly symmetric

complex Gaussian random variable with zero mean and unit
variance such that is Rayleigh distributed with zero
mean and variance . We assume that are indepen-
dent for all . For the purpose of our illustration, we set the
path-loss exponent . Finally, we use Monte Carlo methods
to simulate the random parameters and evaluate the sum-rates
for the inner DF and outer bounds.

Towards illustrating our results, we consider a two-user
MARC under two different topologies as shown in Fig. 6. The
first topology models a partially clustered MARC in which
one of the users (user 1) is closer to the relay while the other
(user 2) is closer to the destination than the other receiver. The
second topology models a symmetric geometry where the users
are equidistant from the destination and the relay. the average
power levels in dB for topology 1 and 2 are dB,

dB and dB, respectively.
The partially clustered topology, referred to as topology 1, in

Fig. 6 models Case 1 in our analysis. For this topology, we plot
the rate regions achieved at the relay and destination for three
values of and in Fig. 7. Also shown in each
sub-plot (one for each is the MAC capacity region without
resource allocation, i.e., assuming transmission at the same av-
erage power in each use of the channel. For all three choices of ,
the optimal policies are those satisfying the conditions for case 1
such that users 1 and 2 waterfill over their bottleneck links to the
destination and relay, respectively. However, as shown in Fig. 7,
for all these choices of the DF sum-rate is strictly smaller than
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Fig. 7. Plot of the DF rate regions at the relay and destination and that of the MAC without resource allocation for � � 0.25, 0.5, and 0.8.

the sum-rate of the ergodic fading Gaussian MAC (from sources
to the destination) without resource allocation. This is due to
two limitations: a) both users in the MARC are waterfilling to
the distant receivers while in the MAC user 2 has the advantage
of being closer to the intended receiver, and b) while the relay
aids user 1, the fractional bandwidth use resulting from the or-
thogonal half-duplex model significantly limits the rate gains.
We make further comments on strategies for such geometries
following the discussion of the second topology below.

Consider Topology 2 in Fig. 6. For the symmetric geom-
etry modeled, in Fig. 8 we plot the inner (DF) and outer cutset
bounds on the sum-rate for as a function of the relay
position along the horizontal axis. As a result of the symmetric
geometry, for every choice of the relay position, both the inner
and outer bounds on the sum-rate are maximized by one of
cases , or . For each case, we use an iterative algorithm,
as described in the Appendix, to compute the sum-rate maxi-
mizing user policies. For cases and the iterative algorithm
simplifies to the iterative water-filling algorithm developed in
[41] in which at each step the algorithm finds the single-user
water-filling policy for each user while regarding the signals
from the other user as noise. For case , the optimal policy at
each step is still obtained by regarding the signals from the other
user as noise; however, the user policy at each step is no longer
a water-filling solution. Finally, the optimality of DF when the
sources are clustered relatively closer to the relay than to the
destination is amply demonstrated in Fig. 8. The inner and outer
bounds are also compared with the sum-capacity of the fading
multi-access channel without a relay and , shown by the
dashed line that is a constant independent of the relay position.
Also shown in Fig. 8 are the ranges of relay positions for cases

and for both DF and the cutset bounds.
For case in which the multiple access channel to the

relay from the sources is the bottleneck link, for relay positions
very close to the destination ( in Fig. 8), the DF sum rate
achieved for is strictly smaller than the waterfilling
sum-capacity of the multiple access channel from the users to
the destination (without the relay). A similar behavior is seen
for the outer bound sum-rate when the relay is very proximal

to the destination. This limitation is due to the orthogonal
half-duplex constraint on the sources. One approach to increase
the rate is to increase (as discussed below). The sum rate
can also be potentially increased by allowing the sources to
transmit in both orthogonal bands; however, it comes at a cost
of increased complexity of analysis and solutions. In general,
however, as has been established in earlier works (e.g., [3],
[42]), a decode-and-forward relay provides significant rate and
capacity benefits when it is physically closer to all the sources.

Finally, in Fig. 9 we illustrate the effect of three values of
, and for Topology 2. Relative to for

, the cooperative multiple-access link from the sources
and relay to the destination (case ) remains a bottleneck link
for a larger range of relay positions thereby increasing the range
over which the sum capacity will be achieved. This is because
for larger , the rate achieved at the relay is larger. However,
the smaller bandwidth allocated to the relay to destination link
results in smaller case sum rates relative to the and
the 0.5 curves. On the other hand, for relay positions closer to the
destination, where the multiple access sum rate from the sources
to the relay is the bottleneck link, the rates achieved are larger
relative to the other two plots since is larger. The observations
hold in reverse for relative to the larger values of . The
different choices of suggest that could be chosen a priori to
maximize the rates achieved for a given network geometry. In all
cases, as the relay approaches the destination, the performance
of DF for this orthogonal signaling scheme we consider falls
below that of the MAC sum-capacity.

Observations: The results illustrated thus far lead us to make
the following observations:

1) The relay is most useful to all users only when all the users
are clustered close to the relay such that the combined
channel from the users and the relay to the destination is
the bottleneck link.

2) Partially clustered geometries suffer from the limitation
that users that are more distant from the relay than their in-
tended receiver also need to be decoded by the relay. This
in addition to the orthogonal half-duplex constraint limits
the rates achieved significantly. One mitigating approach
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Fig. 8. Plot of inner and outer bounds on the sum-rate versus the relay position.

may be to use a combination of decoding and nondecoding
strategies at the relay such as DF with compress-and-for-
ward and amplify-and-forward. In these cases, optimizing
the bandwidth parameter factor may also help. These may
potentially enable better use of the relay resources albeit
with increased complexity. Similar observations on com-
bining strategies have also been made in [21] and [23].

3) Our results indicate that the channel model (orthogonal
half-duplex model and choice of source-relay bandwidth
fractions) as well as the network geometry determine the
optimal solutions. In [21] and [23], the users and relay(s)
are assumed to use orthogonal resources to avoid interfer-
ence issues. We consider a model in which the users ac-
cess the channel simultaneously over the same bandwidth
but do not interfere with the relay. In all these models,
the orthogonal use of bandwidth resources limits perfor-
mance but allows practical implementation. However, the
multiple-access nature of our model allows interference.
In fact, while the sum-rate optimal DF power policies for
our model involve opportunistic scheduling of users, which
suggests scheduling users to transmit using orthogonal re-
sources, our results clearly demonstrate the effect of the
bandwidth fraction and the network geometry in deter-
mining the appropriate receiver to which to schedule all
or a subset of users and highlight the subset of users for
which the relay is most useful. These results can, therefore,
potentially enable better user scheduling and bandwidth al-
location in general multiple-access relay networks such as
those studied in [21] and [23].

4) Effect of user and relay powers: While not explicitly shown
in our illustration, we briefly remark on the effect of user
and relay power on the DF sum-rate for a given geometry.
First we note that for fixed user and relay average transmit
powers, changing the value of is equivalent to changing
the transmit powers in a specific way, i.e., increasing
by and by . Our illustration demon-
strates that for the range of , and hence, the resulting
small range of average node powers, and for the specific
geometries considered, the optimizing case remains un-
changed. In general, however, for a given geometry, the
case maximizing the DF sum-rate will change when the
transmit power of any node changes. For special cases such
as symmetric or skewed geometries studied here, if the user
powers scale proportionately (for fixed relay power and ),
then the optimizing case will remain unchanged.

VIII. CONCLUDING REMARKS

We have developed the maximum DF sum-rate and the
sum-rate optimal power policies for an ergodic fading -user
half-duplex Gaussian MARC. The MARC is an example of a
multiterminal network for which the multidimensionality of
the policy set, the signal space, and the network topology space
contribute to the complexity of developing capacity results
resulting in few, if any, design rules for real-world communi-
cation networks. For a DF relay, the polymatroid intersection
lemma we presented here allowed us to simplify the otherwise
complicated analysis of developing the DF sum-rate optimal
power policies for the two-user and -user orthogonal MARC
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Fig. 9. DF sum rates achieved for � � 0.4, 0.5, and 0.75 for Topology 2.

and the -user outer bounds. The lemma allowed us to develop
a broad topological classification of fading MARCs into one of
following three types:

i) partially clustered MARCs in which a subset of all users
form a cluster with the relay while the complementary
subset of users form a cluster with the destination;

ii) clustered MARCs comprised of either sources-relay or
relay-destination clustered networks;

iii) arbitrarily-clustered MARCs that are a combination of
either the two clustered models or of a clustered and a
partially clustered model.

The optimal policies for the inner DF and the outer cutset
bounds for the orthogonal MARC model studied here lead to
the following observations:

• DF achieves the sum-capacity of a class of source-relay
clustered orthogonal MARCs for which the combined link
from all sources and the relay to the destination, i.e., the
link achieving the -user sum-rate at the destination is the
bottle-neck link. Furthermore, DF achieves the capacity
region when for every weighted sum of user rates, the
limiting bound is the weighted rate-sum achieved at the
destination.

• For this sum-capacity achieving case, the optimal user
policies for both the orthogonal and nonorthogonal
MARCs are multi-user opportunistic water-filling solu-
tions over their links to the destination and the optimal
relay policy is a water-filling solution over its direct link
to the destination.

• And for the remaining classes of MARCs, the optimal
users policies are water-filling and nonwater-filling solu-
tions for the partially clustered and arbitrarily clustered
models, respectively.

For the partially clustered cases, we have shown that the op-
timal policy for each user is multi-user water-filling over its
bottle-neck link to one of the receivers. Thus, the users that are
clustered with the destination are forced to transmit at a lower
rate to allow decoding of their signals at the relatively distant
relay. Our results suggest that a useful practical strategy for the
partially clustered topologies may be to allow those distant users
that present little interference at the relay to communicate di-
rectly with the destination.

The optimal relaying strategy for all except the capacity
achieving clustered case described above remains open. Given
the complexity of finding the optimal signaling schemes for a
given performance metric in multiterminal networks, a natural
extension to this work could be to understand the gap in spectral
efficiency between DF and the cutset outer bounds for fading
MARCs using layered deterministic models. Such bounds have
been developed recently for time-invariant interference chan-
nels and relay channels in [43] and [44], respectively, for fading
Gaussian broadcast channels with no channel state information
at the transmitter in [45], and for fading interference channels
in [46] and [47].

A note on complexity: our theoretical analysis distinguishes
between all possible polymatroid intersection cases in deter-
mining the optimal policy for a -user system and, therefore,
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has a complexity that grows exponentially in the number of
users. In practice, however, for two intersecting polymatroids
the maximum of a weighted sum of rates and the optimizing
policies can be computed using strongly polynomial-time algo-
rithms [24, Theorem 47.4]. Finally, our analysis can also be ex-
tended to develop the DF regions for a more general nonorthog-
onal half-duplex model as well as the full-duplex MARC model.
One can also study the ergodic rate regions for other relaying
schemes studied for the MARC such as compress-and-forward
and partial decode-and-forward [10], [48].

APPENDIX

PROOF OF THEOREM 2

The sum-rate maximizing DF power policy in The-
orem 2 is obtained by sequentially determining the power poli-
cies and that maximize the sum-rate for
cases and , respectively, over all , until one of
them satisfies the conditions for its case. The Lagragian maxi-
mizing the sum-rate for any case is given by

(73)

where, for all are the dual variables associated with
the power constraints in (5), are the dual variables as-
sociated with the positivity constraints , and is
given by (14) for each case. We now detail the optimization for
each case separately starting with case 1.

Case 1: The optimal policy is that maximizes (73)
if it belongs to the open set defined by the conditions

and (74a)

(74b)

where

(75)

(76)

The KKT conditions for this case simplify to (17) with the su-
perscript set to 1. One can verify in a straightforward manner
that these KKT conditions result in the power policies
and given by (20) and (21), respectively.

Case 2: The optimal policy maximizes (73) if it
belongs to the open set given by the conditions

and (77a)

(77b)

where and are given by (75) and (76), respec-
tively, after replacing the user indices 1 by 2 and 2 by 1. The

optimal and are given by (20) and (21), re-
spectively, with provided satis-
fies (77).

Case 3: Consider the three cases and shown in
Fig. 3. Substituting the appropriate , in (73),
the sum-rate optimization for all three cases can be written as

(78)

subject to average power and positivity constraints on
for all , where denotes the sum-rate bound at receiver

. We write to denote the open set consisting of
all that do not satisfy (74) and (77) either as strict
inequalities or as a mixture of equalities and inequalities, where
by a mixture we mean that a subset of the inequalities in (74)
and (77) are satisfied with equality. We will later show that
such sets of mixed equalities and inequalities in (74) and (77)
corresponds to conditions for the various boundary cases (see
also Figs. 4 and 5). Thus, only when it does not
satisfy the conditions for the inactive and the active-inactive
boundary cases. By definition, , where

is defined for case below.
The optimization in (78) is a multi-user generalization of the

single-user max-min problem studied in [6] for the orthogonal
single-user relay channel. The classical results on minimax op-
timization also apply to the multi-user sum-rate optimization in
(78), and thus, the optimal policy , sat-
isfies one of following three conditions:

(79)

(80)

(81)

Note that the conditions in (79)–(81), evaluated at any ,
are also conditions defining the sets and , respec-
tively. We now present the optimal policies and sum-rates for
each case in detail.
Case 3a: For this case, from the KKT conditions in (17),
in (23) depend only the sum-rate and channels gains of the two
users at the relay. Thus, the problem simplifies to that for a
MAC at the relay and the classical multi-user water-filling solu-
tion developed in [25] and [26] applies. The optimal user poli-
cies are thus given by (24), in which with the exception of the
equality condition in (24), the optimal policies are unique, i.e.,
the optimal at user in (24) is an opportunistic water-
filling solution that exploits the fading diversity in a multi-ac-
cess channel from the sources to the relay. If the channel gains
are continuously distributed, the equality condition occurs with
probability 0. Furthermore, even if the distributions were not
continuous, one could choose to schedule one user or the other
when the equality condition is met, thereby maintaining the op-
portunistic allocation policy. Finally, the optimal power policy
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at the relay is not explicitly obtained from the Lagrangian for
this case as is the sum-rate achieved by the sources at the
relay. However, since the sum-rate at the relay for this case is
smaller than that at the destination, choosing the water-filling
policy at the relay that maximizes the relay-destination link pre-
serves the condition for this case, and thus, is given
by (21). When , the requirement of satisfying
(79), i.e., , simplifies to a threshold condition

where , is defined in (5) and the
threshold is obtained by setting (79) to an equality.
When but is max-
imized by either case 3b or case 3c. For , as
argued in Section IV, the sum-rate is not maximized by any

.
Case 3b: The optimal policy at user for this case sat-
isfies the KKT conditions in (17) with . As with case

, here too, the optimal policy is an opportunistic water-filling
solution and is given by (24) with the subscript ‘ ’ changed
to ‘ ’ for all and with the superscript . Further, for
the relay node, the optimal satisfies the KKT condi-
tions in (17) for , and is given by the water-filling
solution in (21). Finally, for , the requirement

simplifies to satisfying the threshold condition
where is determined by setting

(80) to an equality.
Case 3c (equal-rate policy): The function is a weighted
sum of and in which the Lagrange multiplier ac-
counts for the boundary condition in (81). Substituting in
(17), we have the following KKT conditions:

(82)

from which the optimal power policies simplify to (30). De-
termining the optimal requires verifying
each one of the three conditions in (30). Note that in contrast
to cases and , the opportunistic scheduling policy in (30)
also depends on the user policies in addition to the channel
states. Furthermore, the optimal solutions do not take
a water-filling form. Thus, for a given is given by

(83)

where the root is determined by the following equation:

(84)

Using given by (84), is obtained as the root of

(85)

Thus, for all , starting with an initial , we iteratively
obtain and until they converge to and

. The proof of convergence is detailed below. Finally,
the optimal policies are determined over all to find an

that satisfies the equal rate condition in (81).
Proof of Convergence: The proof follows along the same

lines as that detailed in [42, p. 3440] and relies on the fact that
the maximizing function is a strictly concave function of

and and is bounded from above because of the
power constraints at the source and relay nodes. At each iter-
ation, the optimal and are the KKT solutions
that maximize the objective function. Thus, after each iteration,
the objective function either increases or remains the same. It
is easy to check that for a given the objective function
is a strictly concave function of , and thus, (84) yields
a unique value of . Furthermore, the objective function
is also a strictly concave function of for a fixed .
Thus, as the objective function converges, also
converges. Finally, and converge to the solutions
of the KKT conditions, which is sufficient for
to be optimal since the objective function is concave over all

.
Case 4: (Boundary Cases): Recall that we define the sets

, as open sets to ensure that an optimal
maximizes the sum-rate for a case only if it satisfies the

conditions for that case. Since an optimal policy can lie on the
boundary of any two such cases, we also consider six additional
cases each of which lies at the boundary of an inactive and an
active case. These boundary cases result when the conditions for
an inactive case , and an active case ,
are such that the sum-rate is the same for both cases. We con-
sider each of the six boundary cases separately and develop
the optimal for each case. The requirement that the
optimal satisfies the condition for the
boundary case simplifies to

(86)

(87)

(88)

(89)

(90)

(91)

where the conditions in (86)–(91) are evaluated at the appro-
priate . In addition, to ensure disjoint sets, from (53)
we require that also satisfy (45)–(50) which are
the conditions defining the the sets through ,
respectively. Using (45)–(50), we write the Lagrangian for all
boundary cases except cases and as

(92)

and (93)
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and the Lagrangian for cases and as

(94)

and (95)

where and are dual variables associated with the
average power and positivity constraints on , respectively.
The variable is the dual variable associated with all boundary
cases with a single boundary condition while and are
the dual variables associated with cases and . The
resulting KKT conditions, one for each are

(96)

(97)

where and are as defined earlier for cases and and
equality holds in (96) and (97) for , for all . We now
present the optimal policies for each case separately.
Case : From (96), the KKT conditions for this case are

(98)

(99)

(100)

which results in (39). As in case , the optimal policies take an
opportunistic nonwater-filling form and in fact can be obtained
by the iterative algorithm described for that case. Finally, from
(100), the optimal is given by (32).
Case : The analysis for this case mirrors that for case

and the optimal user policies are opportunistic non-
water-filling solutions given by (39) with replaced by

. On the other hand in contrast to case
where , since both and are nonzero, the
optimal relay policy .

Case : For this case, the KKT conditions in (97) in-
volves a weighted sum of , and . Thus, for

, we have the KKT conditions

(101)

(102)

(103)

where and are the dual variables associated with the
equalities and , respec-
tively, in (88). From (101) and (102), one can verify that the op-
timal user policies are opportunistic nonwater-filling solutions
given by (39) with the superscript replaced by .
Finally, is given by the water-filling solution in (32)
with replaced by .
Case : The optimal user policies for this case and the
KKT conditions they satisfy are given by (98), (99), and (39)
when is replaced by , for all , and is superscripted
by . Thus, here too, the optimal user policies are op-
portunistic nonwater-filling solutions. The optimal relay policy

is the same as that obtained in case .
Case : The optimal user policies
are again opportunistic nonwater-filling solutions and are given
by (98), (99), and (39) when and are replaced by
and , respectively, for all , and is superscripted by

. The optimal relay policy is the same as that
for case .
Case : The optimal policy vector is the same
as that for case with is replaced by , for all ,
and with the superscript .
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