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Abstract—We consider the impact of end-user decision-making
on pricing of wireless resources when there is uncertainty in
the Quality of Service (QoS) guarantees offered by the Service
Provider (SP). Specifically, we consider a scenario where an SP
tries to sell wireless broadband services to a potential customer
when the advertised transmission rate cannot be fully guaranteed
at all times. Relying on Prospect Theory (PT), a Nobel Prize
winning theory developed by Kahneman and Tversky to explain
people’s real life decision-making that often violates the principles
of the Expected Utility Theory (EUT), we formulate a game
theoretic model to study the interplay between price offerings
of the SP and the service choices made by the end-user. We
characterize the Nash Equilibrium (NE) of the underlying game
and provide insights into the impact of the deviations of decision-
making from that expected under EUT and show how pricing
can be used as a mechanism to mitigate such impact.

Index Terms—Game Theory, Nash Equilibrium, Expected
Utility Theory, Prospect Theory, Probability Weighting

I. INTRODUCTION

The demand for wireless broadband internet service has
increased dramatically over the past decade thanks to the fast
advancing pace of the physical layer wireless technologies
[1] and the invention of the smart phones and tablets. As
an interest of the Service Providers (SPs) offering such kind
of services, considerable effort has been devoted to finding
a proper pricing strategy of such services, so that the SPs
can maximize their profit while effectively maintaining the
traffic below the congestion level [2]. On the other hand, as an
interest of the users, effort has been made to study the impact
that different aspects of the network’s performance may have
on the users [3][4]. Despite the efforts made on both ends,
however, not too much work focuses on the fact that the actual
performances delivered by the Service Providers (SPs) do not
always meet the advertised rates, and how knowing this piece
of information could affect a user’s decision-making process
when choosing between different retail packages.

In an attempt to measure the actual delivered service from
the SPs as well as to fully inform the users about the actual
wireless broadband service they are purchasing, the Federal
Communications Commission (FCC) has recently launched a
project in which users can send feedback to the FCC via a
smart phone application, which collects information including
the down link and up link rates, latency, as well as packet loss

of the wireless network [5]. Meanwhile, a report published by
the FCC which measured the actual rates delivered by the SPs
shows that the advertised rates are not fully delivered by most
of the SPs all the time even for the wired internet service [6].
In light of this, we investigate the problem where an SP tries
to sell its wireless broadband service to a potential customer
over a wireless channel. In particular, we focus on modeling
the fact that the channel might not be capable of delivering
the advertised service rate at full extent all the time and this
piece of information is available to the customer when making
the decision as the probability, or the portion of time in the
long run, that the advertised service rate can be successfully
met.

However, it has been well known in economics that, when
risks are involved, people can systematically violate the prin-
ciples of the Expected Utility Theory (EUT) [7]. In an effort
to study the consequences of this violation in the context
of wireless services, [8] investigated the scenario of data
pricing in wireless random access where the users do not
objectively evaluate their probability of successfully accessing
the channel. In the scenario of deciding whether or not to
purchase service over a channel that might not be capable
of delivering the advertised service rate all the time, the
user’s inaccurate weighting of probability directly impacts her
judgment on whether the service is worth purchasing, and thus
potentially increasing the burden on the radio resources owned
by the SP. In this paper, we study the impact of the end-
user’s inaccurate view of the service guarantee on her decision-
making process through the formulation of a Stackelberg
game. Specifically, we consider the case when the end-user
decision making follows PT and compare and contrast it to
the case of EUT based decision-making. We study the impact
on the profit of the SP and also discuss the possibility of fully
recovering the revenue, as well as preserving the NE of the
EUT game via “prospect pricing,” a term we use to describe
the use of pricing as a control mechanism to overcome end-
user behavior..

The rest of the paper is organized as follows: in Section
II, we introduce the model of the interactions between the
user and the SP as a Stackelberg game, and discuss conditions
under which the existence of an NE can be guaranteed; in
section III, we discuss the impact of the Probability Weighting



Effect (PWE) on the end-user’s decision-making, the revenue
of the SP, as well as the prospect of recovering the revenue
of the EUT game or maintaining the NE of the EUT game
by selecting a different pricing function; numerical results are
shown in Section IV while conclusions and discussions are
presented in Section V; finally, we present the proofs of the
theorems in the Appendix.

II. A STACKELBERG GAME MODEL

We investigate the preliminary scenario where there is a
monopoly SP and one potential user. The interactions between
the SP and the user are modeled using a Stackelberg game,
where the SP makes an offer first and the user decides whether
or not to accept the offer with some probability p. We define
an offer made by the SP as the triple {b, r(b), F̄B(b)}, which
corresponds to the rate b, the price of the service at that rate
determined by a predefined function r(b), and the guarantee
level of the service at b, defined by

F̄B(b) := P(B > b). (1)

Denote the user’s utility upon receiving guaranteed service at
rate b with h(b). If she accepts the offer at rate b, she pays a
price r(b), and with probability F̄B(b) she receives successful
service, while with probability FB(b) := 1−F̄B(b) the channel
cannot successfully deliver the service at rate b and the user
experiences an outage. Hence, the expected utility of the user
when she chooses p as the probability of accepting the offer
at rate r, can then be represented as

Uuser(p, b) = p
[
−r(b) + h(b)F̄B(b) + h(0)FB(b)

]
+

+ (1− p)h(0). (2)

As for the SP, a cost c(b) is incurred upon her when she makes
an offer at rate b. Hence, the expected utility of the SP is

USP (p, b) = p [r(b)− c(b)] + (1− p)(−c(b)). (3)

As natural assumptions, we assume that r(b) is monotonically
increasing and concave, due to the fact that a customer that
buys more is usually awarded with a lower unit price; we
also assume that h(b) is monotonically increasing, concave,
obeying the law of diminishing sensitivity. In addition, we
assume that

c(b) = c1b+ c2, (4)

indicating that the cost mainly consists of the investment in
bandwidth proportional to b, and a fixed cost. As for the
guarantee of the channel, we assume that

lim
b→∞

F̄B(b) = 0. (5)

With these above settings, we have the following results for
the game, the proofs of which are given in the Appendix.

Lemma 1. The best response of the SP given the acceptance
probability of the user p, denoted by b∗p, is a monotonically
increasing function w.r.t. p.

Lemma 2. Under the NE, which we denote using (p∗, b∗), we
have b∗ ∈ [0, b∗1] and p∗ ∈ (p∗min, 1] when b∗ > 0, where

p∗min =
c1

limε→0+

d
dbr(b)|b=ε

, (6)

and

b∗1 = argmax
b′

(r(b′)− c(b′)) . (7)

Lemma 3. For p1, p2 s.t., p∗min < p1 < p2 ≤ 1, we have
USP (p1, b

∗
p1) < USP (p2, b

∗
p2).

The above results can be intuitively explained as follows.
First of all, Lemma 1 indicates that the SP should offer a
lower rate when the user is less likely to accept the offer. As
a consequence, the SP is likely to achieve less profit when the
user is less committed, which is stated by Lemma 3. Lemma 2
implies that, in order to achieve an NE where neither the user
nor the SP has the incentives to deviate unilaterally, the rate
provided by the SP must not exceed b∗1, which follows directly
from Lemma 1, while the acceptance probability of the user
must be greater than p∗min if b∗ > 0. This is because, when
the user’s acceptance probability is lower than p∗min, the SP
cannot make any profit by making an offer with rate b > 0,
hence the best response for the SP in this case is to simply
walk away from the table.

With the help of the above lemmas, we state the following
conclusions.

Theorem 1 (The existence of multiple Nash Equilibria (NE)).
If ∃b > 0, s.t.,

c(b)− c(0) < r(b) ≤ [h(b)− h(0)] F̄B(b), (8)

then there exist 1 + |S| NE of the form (p∗, b∗), in which
b∗ ∈ S,

S =
{
b ∈ (0, b∗1) : [h(b)− h(0)] F̄B(b) = r(b)

}
, (9)

while 1 equals 1 if b∗1 satisfies (8) and 0 otherwise.

In particular, if there exists a threshold b0 > 0,
such that the service is over-priced when b > b0, i.e.,
[h(b)− h(0)] F̄B(b) < r(b), and under-priced when b < b0,
i.e., [h(b)− h(0)] F̄B(b) > r(b), then the NE is unique in
(p∗min, 1] × (0, b∗1]. We also point out that ∀p ∈ [0, 1], (p, 0)
is an NE. However, we care more about the NE where b > 0,
which predicts a stable state where an offer is actually made
and accepted. Hence, we assume in the rest of this paper, that
b∗ > 0.

Among the multiple NE of the game given a fixed pricing
function r(·), the one we are most interested in is the one that
maximizes the expected utility of the SP. This particular NE
can be found by following the theorem below.

Theorem 2. Among all NE of the game, the one with the
highest offered service rate yields the largest expected utilities
for both the SP and the user.

In practice, the SP can select the rate under this particular
NE to maximize her profit under an NE.



III. THE IMPACT OF PROSPECT THEORY

Prospect Theory, a theory developed by D. Kahneman and
A. Tversky, models people’s decision process under risk. It
explains some of the paradoxes of real-life decision-making
that cannot be explained by EUT. We omit the general back-
ground of PT in this paper, and instead refer the readers to
the original paper [7] for an introduction, [9] for a review of
the recent progress on the theory, and [8] for a brief tutorial.
Here we only give a brief introduction to the PWE, which
we adopt in the rest of this section to model the end-user’s
decision-making process under PT.

A. The PWE

Among the various procedures in [7], the PWE is one of the
most important elements of PT. It reveals the underlying trend
of how people weight different outcomes of an alternative. Un-
like EUT, which postulates that people calculate the expected
utility of each alternative by multiplying the utilities of the out-
comes with their corresponding probability of occurrence and
then adding them up, PT postulates that people will substitute
the probability of occurrence with a subjective weight, which
is, for most of the time, inaccurate. Experimental results reveal
that people tend to over-weight events with small occurrence
probability and under-weight the events with large probability.
As an analytical way of describing the relationship between the
objective occurrence probability of an event and its subjective
weight in a person’s mind, various probability weighting
functions have been proposed [7][10]. In the numerical results
presented here, we consider Prelec’s probability weighting
function w(p) = exp {−(− ln p)α)}, first proposed in [10].
However, most of the conclusions in this paper can be easily
generalized to other probability weighting functions.

B. The impact of PT on the end-user’s decision

Under the influence of PWE, the user now makes her
decision based on her prospect rather than the actual utility.
Denote the user’s prospect under PWE as Uuser,PT (p, b), the
expression of which is represented as follows.

Uuser,PT (p, b) = p
[
−r(b) + (h(b)− h(0))w(F̄B(b))

]
+ (1− p)h(0). (10)

This yields from the result according to [7], which states that
the user will focus on the difference between her options.
Hence, she will accept the offer with probability 1 if

[h(b)− h(0)]w(F̄B(b)) > r(b). (11)

She will reject the offer if

[h(b)− h(0)]w(F̄B(b)) < r(b). (12)

She will accept the offer with probability p ∈ (0, 1] if

[h(b)− h(0)]w(F̄B(b)) = r(b). (13)

Theorem 3. Assume that (p∗EUT , b
∗
EUT ) is an NE under the

EUT game, where p∗EUT is the acceptance probability of the
user corresponding to the offer {b∗EUT , r(b∗EUT ), F̄B(b∗EUT )}.

If the same offer is made and the user follows the decision-
making process of PT, then if p∗EUT < 1, the user will reject
the offer with probability 1 when the guarantee level of the
service is under-weighted, i.e., w(F̄B(b∗EUT )) < F̄B(b∗EUT )
and accept the offer with probability 1 when w(F̄B(b∗EUT )) >
F̄B(b∗EUT ). If p∗EUT = 1, then the user will accept the
same offer if and only if [h(b∗EUT )− h(0)]w(F̄B(b∗EUT )) ≥
r(b∗EUT ).

Under EUT, the cases of p∗EUT = 1 and p∗EUT < 1
correspond to the scenarios where the user will accept the
offer with and without certainty, respectively. As stated in the
above theorem, PWE will definitely affect the eventual form of
the decision of the end-user when p∗EUT < 1. This is because
when p∗EUT < 1, under-weighting the guarantee level of the
service F̄B(b∗EUT ) means that the user will experience the
feeling that the service is over-priced, while over-weighting
the guarantee level of the service indicates that the user
will most likely feel the opposite. On the other hand, when
p∗EUT = 1, the user’s prospect is less than her actual utility
when F̄B(b∗EUT ) is under-weighted, thus she will only accept
the offer if either (11) or (13) holds. When p∗EUT = 1 and
F̄B(b∗EUT ) is over weighted, the user will accept the offer for
sure. PWE will not affect the end-user’s decision when the
rate can be guaranteed at all times as PWE does not affect
events that happens with probability 1.

C. Prospect Pricing

In this subsection, we propose pricing as a way of mitigating
PWE. However, changing the pricing function often affects the
rate as well as the corresponding acceptance probability of a
NE, and thus creating a different burden on the radio resources
owned by the SP. Particularly, we highlight the following
Radio Resource Management (RRM) constraints,

p∗EUT = p∗PT , (14)
b∗EUT = b∗PT , (15)

and answer the following questions.

• Given rEUT (·), and a NE (p∗EUT , b
∗
EUT ), how to choose

rPT (·) such that the RRM constraints are met?
• Can we fully recover the revenue when we are forced to

meet the RRM constraints under the PT game? If not, can
we fully recover the revenue when the RRM constraints
are relaxed?

Proposition 1 (Preserving the RRM constraints under the PT
game). Assuming that the service guarantee is under-weighted
by the user, then as long as

[h(b∗EUT )− h(0)]w(F̄B(b∗EUT )) > c(b∗EUT ), (16)

we can always maintain (p∗EUT , b
∗
EUT ) as an NE under the

PT game by applying a concave pricing function, which can
be chosen as

rPT (b) = γ(rEUT (b)− c(b)) + c(b), (17)



where

γ =
rEUT (b∗EUT )w(F̄B(b∗EUT ))− c(b∗EUT )F̄B(b∗EUT )

(rEUT (b∗EUT )− c(b∗EUT )) F̄B(b∗EUT )
.

(18)

Although the choice of the pricing function is not unique,
the following two conditions combine to serve as a set of
necessary and sufficient conditions for constructing a concave
pricing function rPT (b):

Condition 1. The value of rPT (b) is constrained by

rPT (b∗EUT ) = rEUT (b∗EUT )
w(F̄B(b∗EUT ))

F̄B(b∗EUT )
, (19)

if p∗EUT < 1. If p∗EUT = 1, then

rPT (b∗EUT ) ≤ [h(b∗EUT )− h(0)]w(F̄B(b∗EUT )). (20)

Condition 2. The maximum of rPT (b) − c(b) is constrained
by

b∗EUT = argmax
b
{p∗EUT rPT (b)− c(b)} . (21)

In particular, for a concave, derisive pricing function rPT (b),
the derivative of the right hand side of the above equation
must be 0.

Next, we present our result on the SP’s ability to recover
her revenue.

Theorem 4. Assume that the service guarantee is under-
weighted, and the RRM constraints are to be preserved under
the PT game. If p∗EUT < 1, then the SP will obtain less revenue
regardless of the choice of the pricing function. If p∗EUT = 1,
then the SP will be able to recover the revenue fully if and
only if

USP,EUT (p∗EUT , b
∗
EUT ) ≤ [h(b∗EUT )− h(0)]w(F̄B(b∗EUT ))−

− c(b∗EUT ). (22)

Finally, we observe the following conclusion when the RRM
constraints are allowed to be relaxed.

Theorem 5. Denote the NE under the EUT game as
(p∗EUT , b

∗
EUT ) and the NE under the PT game as (p∗PT , b

∗
PT ),

then under the PT game, the revenue USP,EUT (p∗EUT , b
∗
EUT )

can be fully recovered if and only if

USP,EUT (p∗EUT , b
∗
EUT ) ≤ p∗PT [h(b∗PT )− h(0)]w(F̄B(b∗PT ))−

− c(b∗PT ). (23)

As can be easily seen, the second part of Theoreom 4 is a
special case of Theorem 5. However, for any p∗EUT < 1, the
revenue cannot be fully recovered if the RRM constraints are
enforced under the PT game. This is because the SP must pay
for the user’s skewed view of the service offer in order for the
user to accept the offer with some probability p.

IV. NUMERICAL RESULTS

In this section, we present a demonstration of some of the
conclusions drawn above. In particular, we compare the NE
under the EUT game with its counterpart under the PT game;
compare the behavior of the SP’s utility under an NE of the
EUT game and its counterpart under the PT game when the
RRM constraints are met/relaxed; compare the behavior of the
user’s surplus under the EUT game and under the PT game
when the RRM constraints are met/relaxed.

Consider a Rayleigh block fading channel, whose guarantee
of service can be expressed as [11]

F̄B(b) = exp

{
− 2

b
BW −1

P/N0BW

}
. (24)

Here, P is the transmission power, while N0 is the power
spectral density (PSD) of the noise. Meanwhile, BW repre-
sents the bandwidth, and b represents the encoding rate of the
SP.

In Figure 1, we locate the NE under the EUT and PT games
by plotting the best response functions of the SP and the user.
PWE is parameterized by α, and for each α, the best response
of the user is plotted using a dashed line as a function of the
encoding rate of the SP, while the best response of the SP is
plotted using a solid line as an inverse function of the user’s
acceptance probability. The figure shows that, when the user
follows the decision-making process of PT, her best response
for the offer that induces the NE under the EUT game becomes
p∗PT = 0. In addition, for the particular choice of the pricing
function used in Figure 1, PWE affects the system in a way
such that the user tends to accept an offer with a lower rate
with a smaller probability, and the revenue of the SP tends
to decrease. In Figure 2, the same procedure is demonstrated,
except that the initial pricing function under the EUT game is
selected differently. Under this pricing function, PWE affects
the system in a way where the user tends to accept an offer
containing an higher rate with a larger probability, and the
actual utilities for both the SP and the user increase.

Figure 3 shows the behavior of the revenue of the SP under
the EUT game and the PT game. Firstly, we plot the SP’s
revenue under the NE of the EUT game as a function of the
rate b∗ ∈ (0, b∗1) under the NE when the pricing function
rEUT (b) is predefined. This can be done because when the
pricing function is fixed, each b∗ ∈ (0, b∗1) corresponds to
a unique p∗. Next, we plot the revenue of the SP under
the PT game when the RRM constraints are preserved. We
see from the figure that when α becomes smaller, i.e., when
PWE impacts the user more severely, the SP sacrifices more
revenue in the effort of maintaining the satisfaction of the
RRM constraints. Finally, we plot the revenue of the SP under
the NE when the RRM constraints are partially relaxed, i.e.,
the pricing function is changed such that b∗PT = b∗EUT while
p∗PT is not constrained to the value p∗EUT . From the figure,
we can see that the maximum retainable revenue decreases as
α decreases. It can also be seen that for each α, the SP is
able to recover her revenue of the EUT game when the RRM
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constraints are relaxed up to a certain rate. When α decreases,
this rate also decreases, indicating that the possibility that the
SP is able to recover her revenue is smaller. However, in a
generalized multiple user scenario (although not modeled in
this paper), the SP bears a heavier burden on the network she
owns by relaxing the RRM constraints to recover the revenue.
Note that in the figure, each b∗ corresponds to a distinct user
with a distinct utility function h(b), while for the same b∗, all
the curves can be regarded as for a particular user.

V. CONCLUSION

In this paper, we studied the impact of the end-user decision-
making on pricing of the wireless resources when the QoS
guarantee offered by the SP contains uncertainty. Particularly,
we formulated a Stackelberg game and studied the interplay
between price offerings of the SP and the decisions of the
end-user. We characterized the NE under the EUT game, and
studied the impact on the NE of the game when the end-
users make their decisions relying on PT. We also showed that
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the RRM constraint can be preserved by changing the pricing
function, and the revenue of the SP can be fully recovered
under certain conditions.

APPENDIX

A. Proof of Lemma 1

Proof. Since

b∗p = argb′

{
d

db
[r(b)]b=b′ =

c1
p

}
, (25)

where r(b) is assumed to be a monotonically increasing but
concave function, it can be seen that b∗p decreases as c1

p
increases. Hence, it is a monotonically increasing function
w.r.t. p.

B. Proof of Lemma 2

Proof. According to Lemma 1, b∗ ≤ b∗1 =
argmaxb′ USP (1, b′) = argmaxb′(r(b

′) − c(b′)). For
any NE with b∗ > 0, since b∗ is the best response of
p∗, we must have a positive solution for equation (25),
i.e., c1p∗ < limε→0+

d
dbr(b)|b=ε.

C. Proof of Lemma 3

Proof. Since ∀b ∈ [0, b∗1], USP (p1, b) < USP (p2, b), we
have USP (p1, b

∗
p1) < USP (p2, b

∗
p1) ≤ argmaxb USP (p2, b) =

USP (p2, b
∗
p2).

D. Proof of Theorem 1

Proof. If r(b∗1) ∈
(
c(b)− c(0), [h(b∗1)− h(0)] F̄B(b)

]
, then

(1, b∗1) is an NE as Uuser(1, b
∗
1) ≥ Uuser(p, b

∗
1), and

USP (1, b∗1) ≥ USP (1, b) for all p ∈ [0, 1] and b > 0
respectively. For b ∈ (0, b∗1), we show that (p, b) can only be an
NE if b ∈ S. This is because, if [h(b)− h(0)] F̄B(b) > r(b),
then p∗b = 1. Thus, as a best response, the SP should provide
the rate b∗1, which contradicts the assumption that b ∈ (0, b∗1).
On the other hand, if [h(b)− h(0)] F̄B(b) < r(b), then p∗b = 0,



the best response of the SP for which is 0, contradicting the
assumption that b ∈ (0, b∗1). Next, we show that if b ∈ S, then
there exists a unique p∗b s.t. (p∗b , b) is an NE. This is because
when b ∈ S, ∀p ∈ [0, 1] is a best response of the user. Hence,
the only p that ensures that (p, b) is an NE is the one such that
b = argmaxb′ USP (p, b′). The solution to this equation exists
and is unique according to Lemma 1 and Lemma 2.

E. Proof of Theorem 2

Proof. If (p∗(1), b
∗
(1)) and (p∗(2), b

∗
(2)) are two NE under the

same pricing function of the EUT game, and b∗(1) < b∗(2), then
p∗(1) < p∗(2). This is because, according to Lemma 1, if p∗(1) >
p∗(2), then b∗(1) > b∗(2), contradicting the assumption. Hence,
the proof follows by further using the result of Lemma 3.

F. Proof of Theorem 3

Proof. When p∗EUT < 1, the user receives 0 utility (assuming
h(0) = 0) as she is indifferent between accepting the offer
and rejecting it, i.e., [h(b∗EUT )− h(0)] F̄B(b∗EUT ) = r(b∗EUT ).
Hence, when the guarantee level of the service is under-
weighted, [h(b∗EUT )− h(0)]w(F̄B(b∗EUT )) < r(b∗EUT ). The
user will thus reject the offer.

When p∗EUT = 1, the user receives positive utility under
the EUT game, thus (1, b∗EUT ) will be an NE if under PWE
[h(b∗EUT )− h(0)]w(F̄B(b∗EUT )) ≥ r(b∗EUT ). The sufficiency
of the condition can be proved as follows. If the condition
is satisfied, then p∗PT = 1 is a best response to the offer
{b∗EUT , rEUT (b∗EUT ), F̄B(b∗EUT )}. However, we know that
b∗EUT is the best response under the EUT game when the
acceptance probability is 1, and the pricing function is the
same, hence (1, b∗EUT ) is still an NE under PWE.

G. Proof of Proposition 1 and the Conditions

Proof. The function given in the Proposition satisfies the two
Conditions, the proof of which is as follows.

We first show the sufficiency of the Conditions. If p∗EUT =
1, and (20) is satisfied, then p∗PT = 1 is the best response
for the offer {b∗EUT , rPT (b∗EUT ), F̄B(b∗EUT )} under the PT
game. Since the second Condition is also satisfied at the
same time, b∗PT = b∗EUT is the best response of the SP
under the PT game. Hence (p∗EUT , b

∗
EUT ) is preserved as

an NE under the PT game. Similarly, when p∗EUT < 1,
we have rEUT (b∗EUT ) = [h(b∗EUT ) − h(0)]F̄B(b∗EUT ). Thus,
when (19) is satisfied, p∗EUT is a best response for the
offer {b∗EUT , rPT (b∗EUT ), F̄B(b∗EUT )} because rPT (b∗EUT ) =
[h(b∗EUT ) − h(0)]w(F̄B(b∗EUT )). Since the second Condition
is also satisfied, b∗PT = b∗EUT is the best response for
the user’s acceptance probability under the PT game. Hence
(p∗EUT , b

∗
EUT ) is preserved as an NE under the PT game. To

ensure that the existing pricing function is concave, we must
have r∗PT (b∗EUT )

b∗EUT
> d

dbc(b)|b∗EUT
, which is guaranteed when

rPT (b∗EUT ) ≥ c(b∗EUT ), a condition that is automatically
satisfied under our general assumption that p∗EUT > 0, and
when the second Condition is satisfied.

We finally prove the necessity of the Conditions 1 and 2.
In order for (p∗EUT , b

∗
EUT ) to be an NE under the PT game,

we must have b∗EUT be a best response of the SP towards
the user’s acceptance probability p∗EUT . Since we assumed
that the pricing function is concave, it must be the only best
response. Hence, we must have the second Condition. In order
for p∗EUT to be the user’s best response, the first Condition
must be satisfied. We do not need further constraints to ensure
the existence of a concave pricing function as the concavity
is already guaranteed by the second Condition.

H. Proof of Theorem 4
Proof. When p∗EUT < 1, according to Criterion
1, if w(F̄B(b∗EUT )) < F̄B(b∗EUT ), we have
rEUT (b∗EUT ) > rPT (b∗EUT ). Thus, USP,PT (p∗EUT , b

∗
EUT ) <

USP,EUT (p∗EUT , b
∗
EUT ). When p∗EUT = 1, the result can be

proved by plugging p∗PT = p∗EUT = 1 into Theorem 5.

I. Proof of Theorem 5
Proof. Under the NE (p∗PT , b

∗
PT ) under the PT game, the

user accepts the offer with a non-zero probability. Hence,
rPT (b∗PT ) ≤ [h(b∗PT ) − h(0)]w(F̄B(b∗PT )), where the max-
imum the SP could earn under that NE is the right hand side
of (23), proving the necessity of the inequality.

The sufficiency of the inequality holds as there exists a
concave function that crosses both the origin, and the point
(b∗PT , [h(b∗PT ) − h(0)]w(F̄B(b∗PT ))). Furthermore, we can
ensure the p∗PT is the best response of the user by letting
the function satisfy d

dbrPT (b)|b∗PT
= 1

p∗PT

d
dbc(b)|b∗PT

. The
concavity of the function is guaranteed when d

dbrPT (b)|b∗PT
<

[h(b∗PT )−h(0)]w(F̄B(b∗PT ))
b∗PT

, which must hold when (p∗PT , b
∗
PT ) is

an NE under the PT game and when p∗PT > 0. This is because
b∗PT

d
dbrPT (b)|b∗PT

= 1
p∗PT

(b∗PT
d
dbc(b)|b∗PT

) < 1
p∗PT

c(b∗PT ) <
1

p∗PT
(p∗PT rPT (b∗PT )) ≤ [h(b∗PT )− h(0)]w(F̄B(b∗PT )).
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