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ABSTRACT
Fog computing is expected to be an enabler of mobile cloud
computing, which extends the cloud computing paradigm
to the edge of the network. In the mobile cloud, not only
central data centers but also pervasive mobile devices share
their heterogeneous resources (e. g. CPUs, bandwidth, con-
tent) and support services. The mobile cloud based on
such resource sharing is expected to be a powerful plat-
form for mobile cloud applications and services. In this
paper, we propose an architecture and mathematical frame-
work for heterogeneous resource sharing based on the key
idea of service-oriented utility functions. Since heteroge-
neous resources are often measured/quantified in disparate
scales/units (e.g. power, bandwidth, latency), we present a
unified framework where all these quantities are equivalently
mapped to“ time” resources. We formulate optimization
problems for maximizing (i) the sum of the utility functions,
and (ii) the product of the utility functions, and solve them
via convex optimization approaches. Our numerical results
show that service-oriented heterogeneous resource sharing
reduces service latencies effectively and achieves high energy
efficiency, making it attractive for use in the mobile cloud.

Categories and Subject Descriptors
C.2.4 [Computer-Communications Networks]: Distri-
buted Systems
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1. INTRODUCTION
Recent advances of cloud computing platforms and mobile

devices have given rise to mobile cloud computing (MCC),
which is a new paradigm for mobile applications and services
that promises to have a strong impact on our lifestyle. Ini-
tially, MCC mainly focused on improving computing power
and storage capacity of mobile nodes by outsourcing tasks
to more powerful cloud data center [1].

Mobile cloud architectures can be roughly classified into
two types[2, 3]. The first type of architecture is the agent-
client based architecture, where only a central data center
provides resources (e.g. central processing unit (CPU) and
storage) for mobile devices and processes the tasks necessary
for implementing a service. In this setting, mobile devices
just use cloud resources and do not contribute any services
[4]. The second type of architecture is a cooperation-based
architecture, where not only central data centers but also
mobile devices share their resources and support services.
Such architectures can be widely varied as well as the most
powerful due to the sheer numbers of devices available to
take part in the cloud. The underlying concept behind such
architectures is also referred to as fog computing [5], which
extends the cloud computing paradigm to the edge of the
network.

The cooperation-based mobile cloud is the most inter-
esting and visible research area of MCC at present. The
recent performance advances and diversification of mobile
devices bring a lot of ‘heterogeneous resources’ into local
networks such as high-performance CPUs, high-speed Long
Term Evolution (LTE) connections, high volume storages,
and multiple-sensor information. These correspond respec-
tively to computational resources, communication resources,
storage resources, and information resources. These hetero-
geneous resources can be leveraged opportunistically mak-
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ing cooperation-based cloud computing enabled by advanced
mobile devices, a powerful platform for supporting a wide
variety of applications.

Several technical issues still need to be solved to fully re-
alize the cooperation-based mobile cloud. In this work, we
focus on the core problem of how to coordinate the sharing
of heterogeneous resources between nodes. Conventional ap-
proaches for achieving heterogeneous resource sharing usu-
ally coordinate tasks (such as numerical calculations or even
download of data) without consideration of the specific ser-
vice that is being provided [2, 3]. In such task-oriented shar-
ing, heterogeneous resources are often measured/quantified
in disparate scales/units (e.g. power, bandwidth, latency),
and tasks are allocated to optimize certain metrics based on
the the disparate scales/units. Consider the example of a
navigation service composed of the tasks of calculating the
optimal route and downloading map images. Task-oriented
sharing for such a service minimizes the processing (com-
puting) time for each task. However, the navigation service
has the peculiar feature that even if the route calculation
is completed in just a few microseconds, users can not en-
joy the service until they complete the downloading tasks.
In this case, it makes no sense to optimize computational
resources; perhaps the optimization would waste the com-
putational resources even. Instead, what would have been
better is the optimization of a service-oriented utility func-
tion that better captures the benefits of such optimization.

In this paper, we propose an architecture and mathemat-
ical framework for heterogeneous resource sharing based on
the key idea of service-oriented utility functions. The pro-
posed system model is shown in Figure 1. In our archi-
tecture, a resource coordinator orchestrates tasks and re-
sources service-by-service to maximize the utilities of nodes
for services. Since heterogeneous resources are often mea-
sured/quantified in disparate scales/units (e.g. power, band-
width, latency), we present a unified framework where all
these quantities are equivalently mapped to“ time”resour-
ces. We formulate optimization problems for maximizing (i)
the sum of the utility functions, and (ii) the product of the
utility functions, and solve them via convex optimization
approaches.

This paper is organized as follows. Section 2 introduces
the system model as well service-oriented utility functions.
The proposed numerical model is discussed in Section 3.
We discuss optimization of resource sharing in Section 4. In
Section 5, scenarios for numerical analysis are discussed, and
numerical results are presented. We conclude the paper in
Section 6.

2. SYSTEM ARCHITECTURE

2.1 Assumptions
We assume that nodes use services through applications

installed in them. Nodes request resources service by service.
A service is composed of multiple tasks such as computing
and data downloading.

Figure 2 depicts an example of a task flow for a service.
Nodes want to complete the tasks included in the service
as soon as possible. To process tasks, nodes need to use
their resources. The set of resources that node i has is given
as Ri = {Rm

i : m ∈ M}, where the label m indicates the
specific type of resource from the set of all available resources
M . Further, the set of the sizes of tasks that node i has to

Resource coordinator	

Service application	

Physical link	

Service request	
Nodes’ information 
- Location  
- Performance 
	

Nodes’ information	
Task compositions for services	

Task allocation	

Figure 1: Service oriented mobile cloud with fog
computing

process is given as Ti = {T l
i : l ∈ L}, where the label l

denotes the specific type of task from the set of all required
tasks L. In other words, node i uses an appropriate amount
of resources to accomplish the task l of size T l

i . It is possible
that accomplishing two different tasks may require the same
type of resources in which case the specific type of resource
has to be shared between these two.

Figure 2 (b) shows an example of services where node i
requests additional resources and node j shares its resources
with node i. A task of T l

i can be separated into smaller por-
tions and, when node j shares resources with node i, node i
outsources some portions of the task to node j. The small
portion of the task outsourced to node j is denoted as ∆T l

ij

(∆T l
ij ≥ 0). Node i has to process the remaining (not out-

sourced) tasks ∆T l
ii. Note that the relationship between T l

i

and ∆T l
ij is T l

i =
P

j∈N ∆T l
ij where N is the set of all nodes.

Outsourcing portions of a task reduces the processing time
for the task accordingly.

a) without resource sharing	

Task 1 (T1
i) � Service 

start�
Service 
request� Task 3 (T3

i) �

Task 2 (T2
i) �

Task 1 (T1
i) �

Service 
start�

Service 
request� Remaining Task 3 (ΔT3

ii) �

Outsourced task 3 (ΔT3
ij) �

Task 2 (T2
i) �

b) with resource sharing	

Figure 2: Example of flow of tasks for service. Value
in bracket is the amount of the task.

2.2 System model
An exemplary model of the architecture is shown in Fig-

ure 3 where neighboring mobile nodes are connected to other
nodes and form a local network for resource sharing by us-
ing short-range wireless connections such as WiFi in ad-hoc
mode and/or Bluetooth. Messages for resource sharing such
as resource requests, task instructions, and the results for
the tasks, are transmitted via the local network. Some of
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Figure 3: System model

the nodes have wireless Internet access using possibly 3G,
LTE and WiFi connections.

Neighboring node in a local network form a group called a
local cloud. Nodes share their resources with other nodes in
the same local cloud. A local resource coordinator (LRC) is
elected from the nodes in each local cloud. The coordinator
manages resource requests and allocates tasks to the nodes
in the local cloud or data center in the Internet if neces-
sary. The coordinator should be elected in accordance with
the connectivity to the local network, CPU performance and
battery life time. In this paper, we focus on resource coor-
dination and have thus omitted the algorithms for the for-
mation of a local cloud and selecting the LRC. Further, we
assume that the short range connections necessary to sup-
port formation of any networks for resource sharing are not
bandwidth restrained. We also study resource allocation
only under the scenario of sharing of computation resour-
ces, communication resources and information resources.

In our architecture, nodes can be resource users and re-
source providers. Figure 4 illustrates an example of mes-
saging between two nodes and a coordinator. Here, suppose
that node i and node j are requesting resources, and node i
is outsourcing its tasks for node j in accordance with some
coordination procedure. The messages are exchanged se-
quentially as follows: (1) the nodes send request messages
to the coordinator; these messages include what and how
much resources a node has, what and how much tasks the
node has to complete for a service, and MAC and IP ad-
dresses of the node. (2) The coordinator allocates the tasks
in order to maximize the utilities of nodes for the services,
which is proposed in next section. The coordinator notifies
each node what and how many tasks the node should pro-
cess; (3) node i sends an instruction message to node j in
accordance with the coordination result. The message in-
cludes necessary information to process tasks of node i; (4)
node j processes the tasks in accordance with the instruc-
tions from node i; (5) node j sends the results of the tasks
to node i; and (6) node i constructs the service based on the
results of tasks.

2.3 Service-oriented unified utility function
We model the utility of nodes as a function of a service

latency. The reason why we focus on service latency is that
the latency is a straightforward measure of the decrease in

Node j	Node i	

3) Task instruction	

5) Result of task 

time	

4) Processing 
tasks	

6) Constructing 
service	

Local resource coordinator	

1) Resource request	

2) Result of coordination	 2) Result of coordination	

1) Resource request	

Figure 4: Coordination flow

the quality of experience for the service [6]. We define ser-
vice latency as the duration from when the first task of a
service being processed starts until all the tasks for that ser-
vice are finished. We define the utility function of node i as
Ui(ti), which is a monotonically decreasing function such as
−a · ti + b, where ti is the service latency of node i. Fig-
ure 5 shows the service latency and the utility as a func-
tion of outsourced tasks. As we can see in Figure 5, in-
creasing the quantity of outsourced tasks increases the gain
of the node for the resource sharing. Here, ti depends on
Ri, T

l
i , ∆T l

ij , ∆T l
ji (j ∈ N, and l ∈ L).

Se
rv

ic
e 

la
te

nc
y	

ti’: w/o outsourcing tasks	

Outsourced tasks	

: Gain	

Node i	

Other nodes	

Outsourcing  
tasks of ΔT 	

ti: w/ outsourcing tasks	

ΔT	

Figure 5: Gain of resource sharing

Using the unified utility function enables us to compare
the value of heterogeneous resources in the same dimension
of time. It could be a powerful metric for heterogeneous re-
sources since we can treat any kind of resource as long as
the resource can reduce the service latency. For example,
a high-performance CPU reduces the latency for processing
computational jobs, and high-speed wireless access reduces
the latency for downloading data. A smart algorithm can re-
duce the latency for processing a computational task. Con-
tent can also be a resource, which can reduce the latency for
obtaining the same content from the Internet. Sensor infor-
mation can reduce latencies. For example, GPS information
can be used to localize a node instead of other localization
techniques that may be more computationally intensive and
require completion of several communication tasks.

3. NUMERICAL MODEL FOR SERVICE-
ORIENTED RESOURCE SHARING

In this section, we discuss the proposed architecture in
terms of service latency and energy consumption, which are
important factors for mobile users.
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3.1 Service latency
Figure 6 shows the different scenarios possible for how

tasks may need to be accomplished in providing a service.
For a service (a), we can easily calculate the latency as the
sum of the latencies for all tasks. For a service (b), we also
can calculate the latency as the pointwise maximum of the
latencies for all tasks. However, a service generally consists
of multiple sequential tasks as shown in Fig 6 (c). Here, we
define a sequence as a set of tasks which have to be processed
in order. As shown in Figure 6 (d), we can define the service
(c), identified as s, as Qs = {Qu

s : u ∈ Us}, where the label
u indicates the specific identification of the sequence from
the set of all sequences included in the service Us. Since the
latency of each sequence can be calculated as the sum of the
latency for processing the tasks included in the sequence,
the service latency of node i ti is written as

ti = max
u∈Us

(
X

l∈Qu
s

tml
i ), (1)

where t
ml
i is the latency required for node i to complete task

l when using the resources appropriate for the task R
ml
i .

b) Parallel case	

Task A � Service 
start�

Service 
request� Task B �

a) Sequential case	

Task A � Service 
start�

Service 
request� Task B �

Sequence 1 �
Service 

start�
Service 
request� Sequence 2 �

Sequence 3 �

d) Parallelized sequences	

Task A �
Service 

start�
Service 
request� Task C �

Outsourced task C’ �

Task B �

c) Mixed case	

Task D �

Figure 6: Task sequences for service

The tml
i should be defined appropriately for the resources

ml. For computational and communication resources, we
define the latency as T l

i /R
ml
i . This definition of latency is

accurate, since, for example, the processing time of compu-
tational operations T l

i when using a CPU that performs R
ml
i

operation per second, and the downloading time of a data
size of T l

i with throughput of R
ml
i bps could be calculated

using the definition.
Next, we discuss information resources. We regard these

resources as alternative resources to communication and com-
putational resources. For example, when a map image is
required for a service, if a node caches the image, the node
can use it without downloading the image from the Inter-
net. Suppose that in a navigation service, if a node caches
a route calculation result, the node can leverage that result
instead of calculating the route. If node i has alternative in-
formation for a task T l

i , the node can finish the task without
processing the task using resources R

ml
i . Let us define

δli
j =

(

0 (Il
i ⊆ Rinfo

j );

1 (Il
i 6⊂ Rinfo

j ),
(2)

where Il
i is an alternative information resource for task l and

Rinfo
j denotes the set of all information resources for node

j. Using Eq. (2), we define the latency for a task as

t
ml
i (T l

i ) = δli
i

T l
i

Rml
i

. (3)

3.2 Procedure for sharing resources
As shown in Figure 4, in order to share resources, nodes

have to exchange messages and process tasks for other nodes.
For example, suppose that node i outsources a set of tasks
∆T l

ij to node j. The instruction message from node i in-
structs node j how to process each task in the set and node
j processes the tasks using its resources R

ml
j . When it fin-

ishes processing the tasks, node j sends the results of the
tasks back to node i. We define the latency for an out-
sourced task tl

ij as the duration from when the first message
is sent until the result is received.

The latency tl
ij is written as

tl
ij = t

ml
j (∆T l

ij) + tt(D
l
ins(∆T l

ij)) + tt(D
l
r(∆T l

ij)) + ∆t
ml
j ,
(4)

where tt(D) indicates the time needed to transmit a message
via short-range communications, the length of which is D;
Dl

ins(∆T l
ij) is the data size required for instructing the node

how to process the task ∆T l
ij ; Dr(∆T l

ij) is the data size of

results for task ∆T l
ij ; ∆tml

j is an additional latency that

depends on when node j starts to process task T l
ij . In this

paper, we simply define them as

Dl
ins(T

l
ij) = wl

ins, Dl
r(T

l
ij) = wl

rT
l
ij , and tt(D) = D/θ,

(5)
where wl

ins and wl
r are weight parameters and θ is the through-

put of a short-range wireless link.
Outsourced tasks and the other remaining tasks can be

processed in parallel. Then, the latency for task l becomes

tml
i = δli

i · MAX(tml
i (∆T l

ii), t
l
i1, t

l
i2, ..., t

l
iN ), (6)

3.3 Trade-off between gain and energy con-
sumption

As we mentioned in Section 1, we intuitively know that
sharing resources with nodes close to you should be more
efficient and effective than sharing with distant nodes.

There is a trade-off between the gain from cooperating
with distant nodes and the energy consumption. Increasing
the number of cooperating nodes might enable the nodes to
obtain a greater gain, since the nodes would share a larger
amount of remote resources. To increase the number of co-
operating nodes, the nodes must improve their communica-
tion range. Suppose that there are three nodes i, j and k.
The distances between each pair of nodes are dij , djk, and
dik, respectively. Here, dik and djk are larger than dij . In
order for node i to share resources with node j, node i has
to transmit messages to node j. In that case, the commu-
nication range of node i has to be longer than dij . If node
i and j cooperate with node k, their communication ranges
have to be longer than dik and djk respectively. Nodes i and
j can obtain greater gain by sharing resource with node k,
while they require a larger energy for transmission to obtain
more communication range.

Energy is consumed when nodes send/receive data. The
values Etx(D, d) and Erx(D) represents the consumed en-
ergy in sending and receiving a message, where D is the
data size of sent or received data, and dr is the required
communication range to share resources with a node, which
is almost the same as the geographical distance between a
sender and a receiver. Etx(D, d) and Erx(D) monotonically
increase as D and d increase. In particular, they increase
exponentially as d increases while maintaining the signal to
noise ratio (SNR) [7]. Energy is also consumed when nodes
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process tasks. Eml(T l) is the consumed energy for process-
ing the task T l while using resource ml. It also mono-
tonically increase as the amount of tasks increases. Here,
we simply define Eml(T l) = eml · T l, Erx(D) = erx · D,
Etx(D, d) = etx · (d)2 · D, where eml indicates the energy
consumed in a second for fully usage of the resource ml;
erx indicates the energy consumed to receive a data size of
1 Byte; etx indicates the energy consumed to send a data
size of 1 Byte to a node distance of 1 m. Then, the energy
consumed by node i when sharing resources with node j is

Eij =
X

l∈Lji

{erxwl
ins + eml∆T l

ji + etx(dij)
2wl

r∆T l
ji}

+
X

l∈Lij

{etx(dij)
2wl

ins + erxwl
r∆T l

ij}, (7)

where Lij is the set of labels for tasks outsourced to node j
by node i. In addition, node i has to complete the remaining
tasks. Then, the total energy consumption of node i becomes

Ei = eml

X

l∈L

(∆T l
ii) +

X

j∈N,j 6=i

Eij . (8)

4. RESOURCE SHARING OPTIMIZATION
We consider a case where a coordinator ideally knows all

information such as Rm
i and T l

i . The coordinator instructs
every node to allocate their tasks to other nodes in order to
i) maximize the sum of the gains of all nodes or ii) maximize
the product of gains of all node. First we discuss the general
case. Then, we explicitly formulate an optimization problem
for a specific case where two nodes shares resources.

4.1 Objective

4.1.1 Maximizing sum of gains in utility
The simplest objective is to maximize the sum of the gains

of all nodes. It is written as

objective: max
∆Tij (i, j∈N)

X

i∈N

(Ui(ti) − Ui(t
′
i)), (9)

where ∆Tij = {∆T l
ij : l ∈ L} and t′i is a service latency when

node i does not share resources. If we can define the utility
function as Ui(ti) = −a · ti + b (ti > 0), the problem to
maximize the sum of the gains in utility of all nodes is equal
to the problem of maximizing the sum of reduced service
latencies. Then, the objective can be written as,

objective: max
∆Tij (i, j∈N)

X

i∈N

(t′i − ti). (10)

As described in [9], a nonnegative, nonzero weighted sum
of convex (concave) functions is convex (concave). Then, if
ti is convex or concave for ∆Tij , the objective is concave or
convex for ∆Tij , respectively.

4.1.2 Maximizing Product of gains in utility
An objective of the optimization problem should be

objective: max
∆Tij (i, j∈N)

Y

i∈N

(t′i − ti). (11)

This objective is based on the idea of the Nash bargaining
solution, which is a solution that brings Pareto efficiency and
proportional fairness. However, the objective is not neces-
sarily convex, which makes the optimization problem hard
to solve.

4.2 Constraints
Next, we discuss constraints. In this paper, we consider

constraints for task amounts and incentives on service la-
tency and energy consumption. The constraints are written
as:

subject to:

T l
i =

X

j∈N

∆T l
ij (for any i and l), (12)

∆T l
ij ≥ 0 (for any i,j and l), (13)

Eth
i > Ei − E′

i (for any i), (14)

t′i > ti (for any i), (15)

where Eth
i is threshold for energy consumption and E′

i is
energy consumption of node i without resource sharing.

Eqs. (12) and (13) mean that the size of tasks should be
positive, and nodes cannot outsource more tasks than the
nodes have. Eq. (14) and Eq. (15) mean that node i is
motivated to join the resource sharing only if its additional
energy consumption is kept smaller than its threshold Eth

i

and if the resource sharing reduces its service latency. Why
we consider the constraints is that we can expect that nodes
do not share their resources without ensuring an incentive
for the sharing. Resource sharing can reduce not only service
latency but also energy consumption [8]. These reductions
can be incentives for resource sharing, but we expect that
these two do not go together since there are trade-offs, as
discussed in Section 3.3.

From Eq. (8), Ei and
P

j∈N ∆T l
ij are the sum of an affine

function. Then constraints except for ti are evidently convex
or concave for ∆T l

ij . If we use objective (i) and ti is convex or
concave, the optimization problem becomes a convex opti-
mization problem, which can make optimization easier than
the general case since any local solution must be a global
solution.

4.3 Case study: Resource sharing in two-node
case

We discuss a simple case where a node shares computa-
tional, communication and information resources with an-
other node to minimize the latency for a service composed
of a computational task and a communication task.

We consider a scenario where two nodes 1 and 2 share their
computational and communication resources, the amounts
of which are indicated by R1

i and R2
i respectively (i = 1 or 2).

A common service requested by nodes 1 and 2 consists of a
computational task and a communication task, the amounts
of which are T 1

i and T 2
i , respectively (i = 1 or 2.) The

latency of each task is assumed to be T l
i /Rl

i as described in
Section 3.1.

Here, we assume that these two tasks can be processed in
parallel. In this case, as discussed in Section 3.1, the service
latency of node i when they do not share resources becomes

ti = MAX(δ1i
i

T 1
i

R1
i

, δ2i
i

T 2
i

R2
i

). (16)

From Eqs. (5) and (6), when node i and j share their
resource, the latency for a task l of node i is

tl
i = δli

i MAX(
T l

i − ∆T l
ij + ∆T l

ji

Rl
,

tt(Dins(T
l
ij)) + δli

j

T l
ij

Rl
i

+ tt(Dr(T
l
ij))). (17)
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In this scenario, from (17), either ∆T l
ij or ∆T l

ji should be

0 at the optimal equilibrium. We define ∆l
ij as

∆l
ij =



∆T l
ij (∆T l

ji = 0);
−∆T l

ji (∆T l
ij = 0).

(18)

Then

∆T l
ij − ∆T l

ji = ∆l
ij . (19)

From Eq. (19), Eq. (17) can be described as

tl
i(∆

l
ij) =

8

>

>

>

<

>

>

>

:

δli
i MAX{T l

i −∆l
ij

Rl
i

,

wins∆l
ij

θ
+ δli

j
∆l

ij

Rl
i

+
wr∆l

ij

θ
}. (∆l

ij > 0);

δli
i

T l
i −∆l

ij

Rl . (∆l
ij ≤ 0).

This function is convex, since, as proved in [9], if f1 and
f2 are convex functions then their pointwise maximum f,
defined by f(x) = max{f1(x), f2(x)}, is also convex.

Next, we discuss the energy consumption. From Eq. (8),
the energy consumption of node i when sharing resources is

El
i =

8

>

>

<

>

>

:

δli
i {el · (T l

i − ∆l
ij) + etx · (dij)

2 · wins∆
l
ij

+erx · wr∆
l
ij} (∆l

ij > 0);
δli

i el · (T l
i − ∆l

ij) − erx · wins∆
l
ij

−etx · (dij)
2 · wr∆

l
ij (∆l

ij ≤ 0).

The function is continuous and obviously convex for δ(Il
i , R

info
i )

= 0 or 1.
Using the above functions, we can write the optimization

problem as:

objective: max
∆1

ij ,∆2
ij

Gi + Gj (20)

subject to:

Gi = MAX(δ1i
i

T1
i

R1
i

,δ2i
i

T2
i

R2
i

)−MAX(t1i (∆1
ij),t2i (∆2

ij)),

Gj = MAX(δ
1j
j

T1
j

R1
j

,δ
2j
j

T2
j

R2
j

)−MAX(t1j (−∆1
ij),t2j (−∆2

ij)),

Gi, Gj ≥ 0,

T l
i ≥ ∆l

ij ≥ −T l
j (l = 1 and 2),

Eth
i > E1

i − e1T
1
i + E2

i − e2T
2
i .

MAX(t1i (∆
1
ij), t

2
i (∆

2
ij)) is convex.1 Then, Gi and Gj are

evidently concave functions. As described in [9], a nonneg-
ative, nonzero weighted sum of convex (concave) functions
is convex (concave). Then, Gi + Gj is concave. As men-
tioned above, other constraints are also convex. Therefore,
the optimization problem is a convex optimization problem.

While we have discussed the 2-node case with 2 tasks thus
far which lends itself to formulation as convex optimization,
the extension to the general case of N-nodes with L-tasks
may not necessarily yield such convex optimization formu-
lations. We instead outline a heuristic approach below that
will be an aspect of further study. Specifically, a heuristic
for the N-node optimization problem can be to use subsets
of the 2-node optimization problems, where these subsets

1We define t1i (∆
1
ij , ∆

2
ij) = t1i (∆

1
ij)+0·∆2

ij and t2i (∆
1
ij , ∆

2
ij) =

t2i (∆
2
ij) + 0 · ∆1

ij . These functions are convex since they are
the sum of convex functions and zero. Then their pointwise
maximum of MAX(t1i (∆

1
ij , ∆

2
ij), t

2
i (∆

1
ij , ∆

2
ij)) also has to be

convex. Since MAX(t1i (∆
1
ij , ∆

2
ij), t

2
i (∆

1
ij , ∆

2
ij)) is equal to

MAX(t1i (∆
1
ij), t

2
i (∆

2
ij)), MAX(t1i (∆

1
ij), t

2
i (∆

2
ij)) is also con-

vex.

may be chosen according to various criteria as described be-
low: minimizing the average geographical distance between
nodes, maximizing the average reduced service latency, or
maximizing the product of reduced service latencies.

5. NUMERICAL EXAMPLES

5.1 Scenario setup
To illustrate our approach, we consider a scenario where

nodes share their communication and computational resour-
ces. The nodes want to use a navigation service. For the
service, node i has to download load information and map
images, and calculate the optimal route. We assume here
that the load information is already stored in the nodes.
Then a latency for downloading the load information is 0.
The total data size of the map images is T 1

i and the num-
ber of operations for calculating the route is T 2

i . Node i
downloads data at a throughput of R1

i and calculates com-
putational tasks at the speed of R2

i . We assume that nodes
can process the image downloading and route calculation
simultaneously. In this case, an optimization problem for
the resource sharing becomes the same as that of (20) when

δli
i = δlj

j = 1 for any l.
Here, we assume that the local resource coordinator men-

tioned in Section 2.2 ideally solves the optimization problem
discussed in Section 4 and determines the optimal allocation
of tasks; however, the constraints for energy consumptions
are not considered in order to observe the adverse effects of
geographical distance. We solve this non linear optimization
problem by using the generalized reduced gradient technique
[10].

We describe the parameters used in the study in the cap-
tions of specific figures. These parameters are chosen con-
sidering the performance of actual CPUs and wireless access
using 3G, LTE, and Wi-Fi. [11, 12, 13]

5.2 Comparative Evaluation
We compare our service-oriented approach with a numer-

ical upper bound and a task-oriented approach.

5.2.1 Numerical upper bound
The numerical upper bound is obtained when the sum of

reduced service latencies is maximized without considering
incentives for nodes. In particular, in this scenario, we solve
the following optimization problem for 2 nodes i and j as:

objective: max
∆1

ij ,∆2
ij

Gi + Gj (21)

subject to:

Gi = MAX(
T1

i
R1

i

,
T2

i
R2

i

)−MAX(t1i (∆1
ij),t2i (∆2

ij)),

Gj = MAX(
T1

j

R1
j

,
T2

j

R2
j

)−MAX(t1j (−∆2
ij),t2j (−∆2

ij)),

T l
i ≥ ∆l

ij ≥ −T l
j (l = 1 and 2).

5.2.2 Task-oriented
In the scenario of a task-oriented method, the coordina-

tor first allocates communication tasks for minimizing the
average latency for downloading map images and then al-
locates computational tasks for minimizing the average la-
tency for calculating the optimal route. Then, the task-
oriented method first solves the optimization problem of Eq.
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Figure 7: Average reduced service latency and fair-
ness index as a function of communication resource
of node i. Nodes i and j share computational and
communication resources. Parameters are as fol-
lows: dij is 1 m; T 1 = 5 MByte; R1

i is variable; R1
j is

10 Mbps; T 2 is 50 G floating-point operation; R2
i is

12 G floating-point operation per second (FLOPS);
R2

j is 27 G FLOPS.

(22) with l = 1 and determines ∆1
ij . After that, it solves the

optimization problem of Eq. (22) with l = 2 and determines
∆2

ij .

objective: max
∆l

ij

Gl
i + Gl

j , (22)

subject to: Gl
i = T l

i /Rl
i − tl

i(∆
l
ij),

Gl
j = T l

j/Rl
j − tl

j(−∆l
ij),

T l
i ≥ ∆l

ij ≥ −T l
j .

5.3 Numerical results

5.3.1 Basic performance
We observe the average reduced service latency and a fair-

ness index. The fairness index is defined as

F (G) =
(
P

i∈N Gi)
2

|N |
P

i∈N G2
i

, (23)

where G = {Gi : i ∈ N}. The fairness index becomes lower
than 1/N only when ∆ti (i ∈ N) includes a negative value,
which means the resource sharing works to the detriment of
some nodes.

Figure 7 plots the average reduced service latency and fair-
ness index as a function of the communication resource of
node i in the two node case. As we can see in Figure 7, when
node i does not have enough communication resources, nodes
do not share any resources in the service-oriented method.
This is because, as we can see from the result of the fairness
index, when node i has few communication resources, node j
increases its service latency by providing both its computa-
tional and communication resources to node i. When node i
has communication resources grater than 10 Mbps, the av-
erage reduced service latency with resource sharing using
the service-oriented method is almost the same as the upper
bound and is larger than that of the task-oriented method.

Next, we consider a 3-node example,2 where nodes i, j,
and k share their communication and computational resour-
ces. Figure 8 plots the average reduced service latency and

2We easily extend two node case to three node case by
considering following simple assumption: when node i re-
ceives two tasks ∆l

ji and ∆l
ki, the latency of these tasks are

tl
ji = tl

ki = (∆l
ji + ∆l

ki)/R
ml
i .
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Figure 8: Average reduced service latency and fair-
ness index as a function of communication resource
of node i. Three nodes share computational and
communication resources. Parameters are as fol-
lows: dij, djk and dik are 1 m; T 1 = 5 MByte; R1

i

is variable; R1
j and R1

k are 10 Mbps; T 2 is 50 G

floating-point operation; R2
i is 12 G FLOPS; R2

j is

27 G FLOPS; R2
k is 4 G FLOPS;
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Figure 9: Energy efficiency as a function of distance
between nodes i and j. Two nodes share computa-
tional and communication resources.

fairness index as a function of the communication resource of
node i. In this case, the average reduced service latency with
the service-oriented method is almost the same as that of
the upper bound and is larger than that of the task-oriented
method. The fairness index of the service-oriented method
is always larger than that of other methods. This result sug-
gests that, as discussed in Section 3.3, if the number of nodes
increases, the service-oriented method would reduce service
latency more than the other methods without reducing the
fairness index.

5.3.2 Energy consumption
Next, we discuss the effect of geographical distance. We

define the energy efficiency as

(
P

i∈N t′i) · (
P

i∈N E′
i)

(
P

i∈N ti) · (
P

i∈N Ei)
, (24)

where Ei is the energy consumed for a service of node i while
sharing resources. ∆t′i and E′

i are the service latency and
the energy consumption for a service of node i without shar-
ing resources, respectively. If the energy efficiency becomes
lower than 1, nodes should not share their resources. Fig-
ure 9 plots the energy efficiency as a function of distance
between nodes i and j. We can see that the service-oriented
method is more energy-efficient than the task-oriented one.
However, when the distance becomes large, energy efficiency
of the service-oriented method drops lower than 1. This
means that, as we mentioned in Section 3.2, we should limit
the sharing of resources while considering geographical dis-
tances.
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6. CONCLUSION
In this paper, we proposed an architecture and mathemat-

ical framework for heterogeneous resource sharing based on
the key idea of service-oriented utility functions. Since het-
erogeneous resources are often measured/quantified in dis-
parate scales/units (e.g. power, bandwidth, latency), we
presented a unified framework where all these quantities
were equivalently mapped to ”time” resources. We formu-
lated optimization problems for optimizing various metrics
based on such service-oriented utility functions and solved
them via convex optimization approaches. Our numerical re-
sults show that the service-oriented heterogeneous resource
sharing reduces service latencies effectively and achieves high
energy efficiency, making it attractive for use in the mobile
cloud. While the numerical scenarios studied in the paper
have considered only the cases of 2 or 3 nodes, the approach
outlined here is extensible to larger sets of nodes. The prob-
lems of scalability and distributing these algorithms as the
number of nodes increase are of interest as topics of future
study.
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