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ABSTRACT
Driver distraction due to in-vehicle device use is an increas-
ing concern and has led to national attention. We ask whether
it is not more effective to channel the drivers’ device and
information system use into safer periods, rather than at-
tempt a complete prohibition of mobile device use. This
paper aims to start the discussion by examining the feasibil-
ity of automatically identifying safer periods for operating
mobile devices. We propose a movement-based architecture
design to identify relatively safe periods, estimate the dura-
tion and safety level of each period, and delay notifications
until a safer period arrives. To further explore the feasibility
of such a system architecture, we design and implement a
prediction algorithm for one safe period, long traffic signal
stops, that relies on crowd sourced position data. Simula-
tions and experimental evaluation show that the system can
achieve a low prediction error and its converge and predic-
tion accuracy increase proportionally to the availability of
the amount of crowd-sourced data.

CCS Concepts
•Information systems→Mobile information process-
ing systems; •Human-centered computing→Ubiqui-
tous and mobile computing systems and tools; Empir-
ical studies in ubiquitous and mobile computing; •Applied
computing → Transportation;
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Safety Driving, Smart Phone Application, Safety Aware No-
tification
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1. INTRODUCTION
Distractions due to frequent interruptions from mobile de-

vices are an increasing concern [21]. This concern is most
prominent where serious safety risks arise—for example when
driving cars, handling construction equipment, or operating
trains. In the United States, studies estimate that phone
distractions contribute to 445 fatalities annually [20]. For
this reason, laws in many states and countries do not allow
handhold phone usage or texting while driving.

While these laws generally appear sensible, technology
evolves quickly, which raises many questions about their
effectiveness. First, wearable devices lead to uncertainty
about the applicability of the laws and make enforcement
of these laws evermore difficult, since it is often not clear
whether a wearable device was actively used or simply worn [24].
Second, growing mobile device usage leads to increasing so-
cial pressure to respond to messages without delay. Third,
cars make an increasing amount of information available
through in-vehicle user, navigation, and entertainment in-
terfaces.

Vehicle user interfaces are, of course, designed with the
driver in mind and must follow specific guidelines [7]. Given
the trend towards mobile operating systems for cars (e.g.,
Android Auto or Apple CarPlay) the boundary is becoming
increasingly fuzzy. If such systems eventually allow third-
party apps for cars, will all apps be carefully screened for
distraction potential? Also, due to the longer life cycle of ve-
hicles, outdated user interfaces and technology can be more
distracting to use than up-to-date mobile devices.1

Given this increasing uncertainty, we ask whether it is not
more effective to channel the driver’s device and informa-
tion system use into safer periods, rather than completely
prohibiting handheld mobile device use. The need for driver
attention is highly variable during most trips, which means
that there are periods where device use can be relatively safe.
The safest period is likely when the vehicle is stopped, which
frequently occurs at traffic lights or occasionally during traf-
fic congestion. The trend towards automated driving can be

1Compare, for example, the time needed to enter and find
a navigation destination on an older built-in car navigation
system with the time needed on a modern phone navigation
app. Of course, this function was never intended to be used
while driving but this is unlikely to hold in practice.



expected to create additional periods that are relatively safe.
While current production systems still require the driver to
supervise the system, technology road-maps foresee that the
vehicles will eventually be able to drive parts of a trip with-
out driver supervision. Could we achieve an overall gain in
safety if the mobile system can steer potential interactions
into such periods and away from more dangerous periods?

A conclusive answer to this question, however, also re-
quires additional consideration of human behavioral, ethical,
and legal dimensions. More generally, whether mobile oper-
ating systems should manage user attention has been asked
by Garlan [8] and more recently by Lee and colleagues [16].
To date, however, no unifying approach for estimating the
user capacity for attention has emerged. We argue therefore
that development should start with the most pressing need,
in particular the driving context, and attempt to move the
discussion to a more concrete technical proposal.

Therefore, this paper aims to start this discussion by ex-
amining the technical feasibility and by proposing a technical
approach realized by stop time prediction. In particular, we
propose a movement-based system that identifies relatively
safe periods, estimate the duration and safety level of each
period, and delay notifications until a safer period arrives.
To demonstrate the feasibility of this approach, we develop
an algorithm that predicts the frequently occurred traffic
light waiting periods to determine the safe periods. Our al-
gorithm can be deployed in a crowdsourcing environment,
the performance increases as the availability of the crowd-
sourced data increases. Our system shows the possibility of
determining the safe periods through stop time prediction
by using the limited crowd-sourced traffic data.

2. RELATED WORK
Reducing phone distractions while driving has been the

subject of much previous research.
Reducing Interactions while Driving. The most di-

rect way to eliminate the distraction from drivers’ phones is
to completely ignore incoming calls and texts. For instance,
quite a few smartphone applications, e.g., OneTap [4], AT&T
DriveMode [2], and Live2Txt [3], use GPS information to au-
tomatically sense when a user is driving and suppress all the
notifications that could distract the drive from the road. In-
stead of using GPS information, Agent [1] assumes users are
driving when their smartphones are connected to vehicles’
Bluetooth systems, and automatically responds a message
to people who call or text the drivers with their driving
status. There are strict approaches that utilize additional
hardware installed in vehicles to completely interfere cellu-
lar signals [5, 23] to eliminate distractions from phone usage
while driving. Lindqvist and Hong [17] move a step further
to discuss how drivers’ phones could interact with callers by
context-awareness. They propose to let callers know callees’
driving status and allows the callers to decide whether to call
or text the callees later. In order to obtain people’s driving
status, a variety of approaches have been proposed to distin-
guish drivers’ phone from passengers [26, 25, 18]. However,
all these papers seek to reduce drivers’ interactions with their
phones during driving without considering the context and
human behavior.

Intelligent Notification. Some researches have focused
on managing smartphone notifications intelligently. Horvitz
et al. [12] propose to apply the Bayesian model to infer users’
available attention level and compute expected costs of inter-
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Figure 1: Average time interval between stops with respect
to stop duration.

ruptions and deferring alerts based on calender information.
However, the system is limited by the Bayesian model itself,
namely whether there is a strong relationship between cur-
rent and previous contexts. Ho and S.Intille [11] find that
there are potential self-initiated task interruptions that lie
in physical activity changes, such as the time when a user’s
status transits from sitting to standing may indicate that
the user is taking a break, which might be the best time to
push a reminder notification. However, such transitions of
human activities and their context are hard to detect with
only mobile devices. Mehrota et al. [19] construct a machine-
learning model to predict the acceptance of a notification
by analyzing its content and context Lee et al. [16] argue
that users’ attention should be managed as a resource that
should be considered when evaluating every potential inter-
action, in addition to its importance. However, all these
papers mentioned above only consider general notification
contexts, which may not fit into real-life scenarios with sig-
nificant safety concerns, such as smart phone notification
while driving.

3. CHANNELING DRIVER ATTENTION
Using mobile devices when driving is often viewed as a

dangerous behavior that might lead to accidents. While
much work aims to avoid driving distraction by blocking
notifications from their mobile devices, we do observe the
existence of relatively safer periods that drivers can use to
operate their mobile devices, such as while stopped at a traf-
fic light, blocked in traffic congestion, or waiting at a gas sta-
tion, etc. What if mobile devices were able to channel the
drivers’ attention to devices into such relatively safer peri-
ods, instead of completely blocking notifications of driver’s
mobile devices while driving? To answer this question, let
us first explore the answers of the following three questions.

How common are safe opportunities to interact
with information systems during driving? The safest
opportunities to interact with devices are when the vehicle
is stopped. We therefore analyze typical stop times during
trips using a public data set [13] of driver telematic traces
from an European insurance company[9]. This data set con-
tains 547,200 trips from 50,000 anonymized drivers, and the
average duration of each trip is 10.85 minutes. We processed
all the trips and show the length of stop intervals with re-
spect to a given stop duration in Fig 1. For example, a stop
longer than 9.56s (which is the minimum time requirement
to reply a short text message, details discussed in the next
paragraph) occurs every 3.96 minutes. Thus, for a 10min
trip, one would expect about 2.5 such opportunities.

Many of these safe opportunities occur when vehicles are
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Figure 2: The distribution of waiting time.

waiting at traffic lights. Since the prior data set does not
provide any information about the reason for each stop, we
analyze traffic signal waiting time data separately from an
adaptive traffic signal system on a segment of U.S. Route 1
in New Jersey, which parallels the east coast of the United
States and is an important part of commute routes of many
local residents. This data set obtained from the NJ Depart-
ment of Transportation (NJDOT) consists of the records of
22 intersections along U.S. Route 1 over the recent 9 months
and includes the waiting time of the first car in queues. As
shown in Fig 2, in 92% of cases the first car’s waiting dura-
tion is more than 10s, and in 32% of cases it exceeds 60s.

How much time is needed for short interactions?
Experiments show that people only need 9.56s to text a 10
characters message [10]. In real life conditions, the aver-
age interaction duration with finance applications (such as
Bank of America, Google Finance, iStockManager), travel
applications (e.g., Google Maps, Yelp and Waze) and com-
munication applications (e.g., Google Mail, Handcent SMS,
K-9 Mail) on an Android phone is 37.01s, 44.72s, 46.92s re-
spectively [6].

How much would interactions be delayed? The sys-
tem could channel driver interaction with mobile informa-
tion systems into such short interactions when the vehicle
is stopped by delaying notifications and incoming messages
until such an opportunity arises. The time interval between
two different stops of suitable duration is the upper bound of
for the arising interaction latency. Fig 1 shows the latency
of four different kinds of interactions, which we discussed in
the second question. As can be seen from Fig 1, this would
result in 230.54s latency to reply a text message. For fi-
nance, travel and communication applications, we need at
most 568.64s, 687.58s and 723.95s until we encounter a suit-
able stop. Therefore, the analysis of data sets shows that we
could expect multiple safe chances to interact with informa-
tion systems within a reasonable delay.

4. SYSTEM DESIGN
Next we discuss the architecture design of the system and

illustrate the feasibility of the design by showing an exam-
ple system under the context of the driver waiting at traffic
lights.

4.1 System Architecture

4.1.1 Overview
We propose a system that channels the driver’s devices

usage into safer time periods rather than a complete prohi-
bition on some devices and unregulated use of others while
driving. The main goal of the system is to steer potential

interaction into safe time periods (i.e., when vehicles are
stationary) by delaying the notifications from various ap-
plications (e.g. the incoming text or chat messages), until
a sufficiently long safety period arises. The system focuses
on notifications that can distract and encourage a driver to
interact with the device, but does not prevent drivers from
starting interactions. We envision that the system would ad-
dress a significant number of interactions that lead to drivers’
distractions.

Based on the heuristic that the risk of a driver’s interaction
with the device is at its lowest when the vehicle is stationary,
the system could utilize the vehicle’s stop periods as the po-
tential safe interaction periods. A movement-based approach
can be used to detect vehicles’ stop events by leveraging in-
ertial motion sensors of mobile devices, such as accelerome-
ters and gyroscopes. Such an approach could provide high
stop detection accuracy at relatively low power consump-
tion. The system could then predict the stop duration for
each event and further improve its prediction accuracy by
crowd sourcing driving behavior from other drivers. By also
considering the context of each stop, the system could de-
rive how safety the current stop is, and output it together
with predicted stop duration as a feature vector. Finally,
the system schedules the notifications and only releases the
notifications that can be interacted during safer stop dura-
tion. Notification prioritization, interaction friendly delivery
channels should be also considered when pushing notifica-
tions to the driver.

Fig. 3 illustrates the architecture design of the system.
Interaction Period Detection module is responsible to detect
and classify the stop periods through inertial and GPS data.
For a detected stop period, Period Feature Extraction mod-
ule will be able to extract the period feature vector, which
will be the input of Device Usage Recommendation module
to channel safer notifications. We note that, to steer inter-
actions into safe periods, the mobile device should firstly be
aware that their owner is driving. Existing work [26, 25, 18]
have solutions to distinguish between drivers and passengers.
Although these techniques are not perfectly accurate, a false
positive would result in only a small delay in a notification,
which is usually tolerable, and a false negative would simply
lead to a notification being delivered while driving, as is the
case right now.

4.1.2 Potential Interaction Period Detection
As potential interaction periods usually happen when ve-

hicles are stationary, the system devises a Stop Detection
module using inertial data to detect vehicle stops. Com-
pared to GPS based approaches, inertial sensors in mobile
devices have relatively lower power consumption. Once a
potential stop is detected, the Stop Classification module
requests for an accurate GPS location to further differenti-
ate different types of stops (e.g., waiting for traffic lights,
stuck in traffic jams and staying in gas stations) based on
the location context of the stops. For example, the driving
trajectory and corresponding map information, as the loca-
tion context of stops, could be used to distinguish whether
the vehicle is on or off the road and whether it is at a point
of interest such as a gas station. If the vehicle stops on the
road where the map indicates traffic congestion, the driver
is probably stuck in a traffic jam.

4.1.3 Period Feature Extraction



Figure 3: Architecture Design.

We find that the types of stops provide two important fea-
tures for determining the safe period for interaction: period
duration and safety levels of stops. Given a specific type
of stop, the system should be able to predict the stop du-
ration through the Period Duration Estimation module. In
the case of waiting for traffic light, the stop duration could
be predicted by current traffic phase schedule and a traffic
queue discharge model, which will be discussed in Section
4.2. If a driver got stuck in traffic, we could make conser-
vative predictions based on the frequency he stops during
recent period, with the intuition that the heavier traffic will
cause less frequent but longer duration stops. For staying in
gas station, the historical time to fill up the vehicle and the
popularity of the gas station could be used to estimate the
stop duration. Additionally, the Crowd Sourcing Calibra-
tion module is devised to improve the prediction accuracy
and predict future trends by exploiting the real time param-
eters extracted from other drivers’ devices, such as the traffic
schedule during waiting for traffic light, the traffic condition
when drivers stuck in traffic and the gas station popularity
if someone stops for gas refill.

The Safety Level Classification module derives another pe-
riod feature, safety level, to describe how safe the each stop
period would be for in-vehicle device interaction. The safety
level mainly depends on the type of the stop, such as stay-
ing in a gas station would provide higher level of safety for
interaction than that of stuck in a traffic jam. For the same
type of stops, the system could also fine-tune the safety level.
For example, the heavier the traffic congestion is, the higher
the safety level of the stop faces. After obtaining the safety
levels, a period feature vector is built for each stop to help
determine the right safety period for device interaction dur-
ing driving.

4.1.4 Device Usage Recommendation
After determining stop periods and their safety level, our

system can intelligently deliver appropriate notifications, which
can be handled within the estimated stop period through
user friendly interaction channels in safe periods. Towards
this end, the Notification Analyzer can extract the character-
istics of notifications, such as the urgency of notifications and
users’ expected interaction time with notifications. Based on
the characteristics of notifications, Notification Manager will
be responsible for orchestrating notifications such as block-
ing the notifications and forwarding to appropriate deliv-
ery channels(i.e., screen displays,audio alarms, head-up dis-
plays) in a timely and non-distracting manner.

4.2 Case Study: Traffic Light Waiting Time
Prediction

Waiting for a traffic light provides the most potential for
drivers to interact with in vehicle devices, since it enables
more frequent and longer stop periods. Therefore, we im-
plement an example system under the context of waiting
for traffic lights by extending the architecture design in Sec-
tion 4.1. Specifically, we realize the period duration estima-
tion to estimate the traffic light waiting duration through
predicted traffic schedules based on previous work of traf-
fic schedule prediction [15]. Since the traffic schedule is not
invariant, we further propose a crowd sourcing calibration
mechanism, which could not only fast converge the predic-
tion accuracy based on few samples, but also increase the
prediction performance with proportional to more samples.

4.2.1 Implementation Overview
Based on the architecture shown in Fig 3, we extend and

implement an example system under the context of wait-
ing for traffic lights. Fig. 4 illustrates the details of the
expanded blocks. In the example system, we mainly focus
on the extension of Period Duration Estimation and Crowd
Sourcing Calibration modules under the context of traffic
light waiting time prediction. Other cases distinguished by
the Stop Classification module could have their own detail
design and implementation for the Period Duration Estima-
tion and Crowd Sourcing Calibration modules. The modules
with slash shadows in Fig. 4 will not be implemented and
discussed in this case study.

The system work flow starts with Interaction Period De-
tection module as shown in Fig. 4, which is responsible for
(1) detecting when the driver stops through inertial and GPS
data, (2) determining which traffic light the vehicle is waiting
for based on driving direction and map information. Once
a stop event is detected, the system starts to estimate the
vehicle waiting duration, which includes two parts: waiting
time before the traffic light turning to green and waiting
time for vehicle queue discharging. To estimate these two
waiting times, the system performs the Waiting Time Pre-
diction and Queue Discharge Model, respectively. When the
vehicle moves, the ground truth of waiting time prediction
is fed back to the system, and the Sample Pool Update mod-
ule is triggered to add the new sample of waiting time into
the sample pool. The system further calculates the error of
predicted waiting duration in the Error Checking and decide
whether to perform the Sample Pool reconstruct according to
the most recent sample. After updating the sample pool, the
system recalculates the cycle length and offset through the



Figure 4: Wait for traffic light case study.

Cycle Length Prediction and Offset Calculation. The output
would be the latest predicted set of Cycle Length and Offset,
which will be used to the next waiting time prediction.

4.2.2 Traffic Schedule Prediction Background
To predict the traffic light waiting time, we estimate the

waiting duration based on predicted traffic light schedule.
The schedule for a specific direction of an intersection could
be modeled with the length of cycle. Without loss of gen-
erality, a cycle is defined as a complete sequence of signal
indications, which starts with a green phase followed by a
yellow phase and a red phase. To simplify the model, the
yellow phase is considered the same as the red phase. Thus
the length of cycle is the time duration of a complete cycle.

There are two kinds of traffic light systems with differ-
ent scheduling of traffic lights. The adaptive traffic light
system automatically changes the length of cycles according
to current traffic conditions, while the pre-timed traffic light
system uses predefined length of cycle in different time spans
of a day. Our system is designed to be able to work for both
these two kinds of traffic light systems.

In this work, we predict the length of cycle based on Ker-
per et al.’s work [15], which keeps optimizing the estimated
cycle length with respect to the resulting error in the off-

set. We search the cycle length (x) in a specific space (
−→
X ),

through minimizing the mean squared error (MMSE) of off-
set calculations as shown in Formula 1:

argmin
x∈
−→
X

m∑
i=1

(dti − d̄t)2

dti = t̄cycleStarti mod x,

d̄t = (1/m) ∗
m∑

j=1

dtj ,

(1)

where tcycleStarti is the time when a cycle starts (i.e., when
the traffic light changes to green), dti is the offset with re-
spect to current cycle length (x) and tcycleStarti and d̄t is
the average offset calculated by all tcycleStarti samples. The

search space of cycle length in our system is from 50s to 200s,
which covers most range of cycle length in real traffic light
systems.

4.2.3 Traffic Light Waiting Duration Estimation
In order to predict the traffic light waiting time, the sys-

tem use Queue Discharge Model to predict how long the
vehicle takes to leave the queue, and perform Waiting Time
Prediction to estimate how long the vehicle would wait until
the traffic light changes to green phase.

Algorithm 1 Traffic Light Waiting Duration Estimation

Input: stop event, cycle length, offset
Output: estimated stop duration
1: function DurationEstimation(stop event, cycle

length, offset)
2: add stop event into the global queue;
3: if Poolall.size>=2 then
4: TGreentoLeave ← QModel(distance);
5: T StoptoGreen ← DPredict(cycle length, offset);
6: Twaiting ← T StoptoGreen + TGreentoLeave;
7: return Twaiting;
8: else
9: return null;

10: end if
11: end function

The detailed process of duration estimation is shown in
Algorithm 1. We assume the system maintains a global stop
event queue that collects all the stop events occurring dur-
ing the current cycle. Each entry in the queue is a stop
event that records the time when the vehicle stops and the
distance between vehicle’s stop location to the center of the
intersection. Our algorithm takes a stop event, and a set of
cycle length and offset predicted by calibration module as
the input to estimate the traffic light waiting duration. (No-
tice that, the set of cycle length and offset could be empty
if the system has not make the first guess.) As a starting
point, the algorithm put the input stop event into the global
stop event queue in Line 2. Poolall is introduced to store
the cycles of data samples which could be used to predict
latest cycle length and offset, each element of Poolall is a
sub-pool which stores all the data samples within one cy-
cle. Thus the size checking of Poolall in Line 3 makes sure
there are at least 2 cycles of samples could be used to per-
form the estimation, which means the calibration module
should have already make a prediction for the cycle length
and offset. If there are enough sample of stop events in the
Poolall, the algorithm predicts the waiting time when the
traffic light turning to green phase (TStoptoGreen) and the
waiting time for vehicle queue discharging (TGreentoLeave),
and calculate the estimated waiting duration (Twaiting) for
the stop event through Line 4 to 6. To predict the duration
that a vehicle takes to leave the waiting queue, we use a sim-
ple linear queue discharge model [22] to get the waiting dura-
tion based on vehicle’s stop distance which implemented by
QModel(distance). The duration of waiting for traffic light
turning to green could be predicted by Equation 2 which
implemented as DPredict(cycle length, offset):

T StoptoGreen = mod((tstop −Offset),Cycle Length), (2)

where tstop is the time when the vehicle actually stops, vari-
ables Offset and Cycle Length are inputs that updated by



the Crowd Sourcing Calibration.

4.2.4 Crowd Sourcing Calibration Mechanism
The schedule of traffic systems are not invariable, even

for pre-timed traffic systems, the cycle length varies due to
pre-set poliiey or pedestrian query. Thus, the system should
not only be able to calibrate and converge its prediction
with latest samples, but also improve its prediction accuracy
proportional to the number of crowd sourced data samples.

Algorithm 2 Crowd Sourcing based Calibration

Input: stop event, groundtruth duration of this stop
1: function Calibration(stopevent, tstopduration);
2: estimate tgreen;
3: add tgreen to sub-pool;
4: errorArray.add(error);
5: if have received ground truth of all stop events in the

global queue then
6: PoolUpdate(Poolall, sub-pool);
7: if Poolall.size<=1 then
8: return ;
9: else if ErrorChecking(threshold) then

10: PoolReconstruct(Poolall);
11: end if
12: cycle length← CLPredict(Poolall);
13: offset← OffCalculate(Poolall, cycle length);
14: Initialize sub-pool and errorArray;
15: end if
16: end function

The work flow of our fast converge and performance pro-
portional calibration mechanism is described in Algorithm
2. The algorithm is called when a previously stopped ve-
hicle moves, thus the ground truth stop duration could be
obtained by the duration between when the vehicle stops
and when the vehicle moves. Based on the ground truth of
the stop duration, the time when the traffic light turning to
green (tgreen) could be calculated through Equation 3:

tgreen = tstop + tstopduration − TGreentoLeave, (3)

where tstop is the time when the vehicle stops and tstopduration
is the ground truth of the stop duration. Since tgreen is
the start point of a cycle, sets of tgreen could be used as
tcycleStarti in Equation 1 to predict the cycle length. All the
tgreen derived from the samples within current cycle would
be stored into a sub-pool, which make sure to include all
samples within one cycle to decrease the noise from Queue
Discharge model for future prediction and contribute to in-
crease the prediction accuracy proportional to the number
of samples. In addition, the absolute prediction error of cur-
rent stop event should also be stored into the errorArray for
future condition checking.

The cycle length re-prediction will only be triggered if the
ground truth of all stop events in the queue has been re-
ceived, which indicates that the system have received the
feedback of all the stop events in the current cycle. We
note that this condition does not hold for cumulative traffic
waiting queues, but it could be solved by using a cluster-
ing method or a maximum queue life cycle. Starting from
Line 6 in Algorithm 2, the sub-pool containing the tgreen will
be added into Poolall as an entry through calling PoolUp-
date(Poolall, sub-pool). Before the system evaluating the

change of schedule, the size of Poolall is checked to distin-
guish whether the system has two or more cycles’ data to
predict the length of cycle. If the size of Poolall is no larger
than 1, the algorithm terminates without updating. Other-
wise, the system evaluates the change of schedule by checking
whether the mean value of errorArray is bigger than a thresh-
old through ErrorChecking(threshold). In case the mean
error is larger than the threshold, indicating that a schedule
change occurs in the current cycle, the algorithm replaces the
Poolall with the subpools of the most recent two cycles by
calling PoolReconstruct(Poolall). This step guarantees
that the calibration mechanism could converge faster than
general mean filters, since the future predictions are based
on most recent data. Finally, the system predicts the new
length of cycle and offset through CLPredict(Poolall) and
OffCalculate(Poolall,cycle length) based on the updated
Poolall, and initialize the sub-pool and errorArray. The up-
dated length of cycle and offset are used for future waiting
time duration estimation in Algorithm 1.

5. PERFORMANCE EVALUATION
In this section, we present the performance of our sys-

tem in the case of traffic light waiting time prediction. Our
system is implemented as discussed in Section 4.2, and we
first evaluate the system using practical data we collected
while driving on real road. To further explore the prediction
accuracy on different kinds of traffic systems and the data re-
quirements of how many data samples we need from crowd
sourcing, we also evaluate the system based on simulation
data. We use the prediction error, which is defined as the
absolute value of the difference between prediction waiting
time and ground truth waiting time, to evaluate the system.
If there is more than one sample within a cycle, we evaluate
the system by the mean error of all the samples inside each
cycle.

5.1 Evaluation based on Practical Data
For the practical data collection, we have two drivers driv-

ing around the intersection of Lincoln Hwy and Plainfield
Ave in Edison of New Jersey (USA) in rush hours of two
different days. In the first day, we collect 25 stops between
3 : 30 PM to 4 : 15 PM, and we further collect 18 stops
between 5 : 15 PM to 6 : 00 PM in the second day. In to-
tal, there are 43 stops for a specific driving direction with
a 61.43s average stop duration. During the data collection,
one of the drivers drives a Toyota Camry with a Nexus 5 and
the other driver drives a Honda Civic with a Nexus 6. The
data are collected by an Android APP, which implements
the stop detection module as discussed in Section 4.1.2. The
rest of system are implemented offline on a server to process
the data. The traffic light schedule system in this intersec-
tion is pre-timed, which means the cycle length does not
automatically change based on real time traffic.

The prediction accuracy is shown in Fig 5. Fig 5a shows
the prediction error for the first day, and the mean error is
2.37s. Fig 5b shows the prediction error of the second day
with the mean error 2.50s. There are several peaks in both
figures, those error bars are caused either by the noise of
queue discharge model or the offset changes made by pedes-
trian request. The prediction results demonstrate that our
system could accurately predict waiting time of traffic lights
enabling the opportunities of safer texting while driving.



1 2 3 4 5 6 7 8 9 1011121314151617181920212223

Sample Index

0

2

4

6

8

10

12
E

rr
o

r 
(s

e
c
o

n
d

s
)

(a) Evaluation on the first day
data.
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(b) Evaluation on the second
day data.

Figure 5: Prediction error on experimental data.

5.2 Evaluation based on Simulation Data
To further explore the performance of our system, we eval-

uate the system relying on simulation data by two folds.
Firstly, we simulate both pre-timed and adaptive traffic sys-
tems to evaluate the waiting time prediction accuracy of our
system. Secondly, we try to check the data requirement of
our system to understand how the number of cycles and the
number of samples inside one cycle affect our system perfor-
mance.

5.2.1 Prediction Accuracy Evaluation
In order to simulate the real traffic conditions, we sample

the traffic volume ni (the number of vehicles waiting for a red
light phase) from Poisson distribution. The λi of the Poisson
distribution is sampled from an Uniform distribution of the
range [1, 30], which covers the traffic volume range from off
peak hour to rush hour for most intersections. To simulate
vehicles queue discharge behavior, we use the same model as
introduced in Section 4.2.2 and add a Gaussian noise with
2s variance on it. Besides, we use two different ways to sim-
ulate different traffic control systems. To simulate pre-timed
traffic light system, we just manually specify the cycle length
and green phase length. For simulating adaptive traffic light
system, we use real adaptive system cycle length and green
phase length obtained from NJDOT. During the experiment,
the simulation data generation program will feed the system
for 10 cycles data with two dimensional vectors (i.e., [the
time when a vehicle stopped, the distance between the stop
position and the intersection]), and the time when the ve-
hicle moves after the current red light phase. The average
stop duration of all the simulation data is 44.02s.

Th prediction errors in our simulation sre shown by bars
in Fig 6 corresponding to left y axis, and the cycle length
ground truth used to generate simulation data is shown in
right y axis. The system only has a 1.43s mean prediction
error for the pre-timed traffic system data set, because the
cycle length does not change during these cycles. For the
adaptive traffic system simulation, the mean prediction error
increases to 14.51s, since the cycle length is not stable in this
scenario. During the first five cycles, the cycle lengths vary in
a small range, therefore there is not much error caused by the
variation of cycle lengths. However, there is a tremendous
change of cycle length happened in the sixth cycle, which
causes the highest error bar. Actually, the system tries to
rebuild the sample pool and predict the new cycle length
based on the samples from 6th, 7th and 8th cycle. After this
process, the system prediction accuracy converge quickly and
the mean error decreases into small stable values again in
the last two cycles. From Fig 6, we find that (1) the system
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Figure 6: Prediction error of different traffic systems.

prediction only has errors less than 3s with either stable or
small variant cycle lengths. (2) Tremendous changes of cycle
lengths result in large errors, but the prediction accuracy of
our system converges quickly and the errors decrease within
two cycles after the such changes.

5.2.2 Data Requirement Evaluation
We also evaluate our system in terms of how many data

samples that we need from crowd sourcing. The number of
data samples the system uses has two parameters: one is
the number of cycles we have, the other is the number of
samples within one cycle. Here, we use the same simulation
method mentioned in Section 5.2.1 to generate three hun-
dreds of data sets by specifying three different numbers of
samples within one cycle (Each number of samples within
one cycle generate 100 data sets). Instead of making the cy-
cle length fixed or changing, we add a 2.2s variance (which
is the average cycle length variance of the adaptive traffic
system on Route 1 in New Jersey) on cycle length to archive
a median variant case of traffic systems. And the average
stop duration of the simulation data is 31.14s.

The results are shown in Fig 7. From the perspective of
how the number of cycles affects our prediction accuracy, we
could observe that starting from the 3rd cycle, the system
could perform prediction, and the prediction error decreases
as the number of cycle increasing. After five cycles, all of
the one sample per cycle, three samples per cycle and five
samples per cycle data set prediction could archive the ac-
curacy less than 4.3s. It is because that the more cycles we
have, the more accurately we could predict the cycle length,
so that all of these three curves converges as the number
of cycle increased. But the error is not stable because of
the variance on the cycle length and the noise on queue dis-
charge model. In terms of how does the number of samples
within one cycle affect the system performance, we find on
the figure that the more sample we have within one cycle,
the more accuracy we could archive. It is because that more
samples within one cycle could be used by the crowd sourc-
ing calibration module to decrease the noise from queue dis-
charge model. Therefore, based on the simulation data set,
our system could perform predictions within 4.3s error after
five cycles’ data, and the prediction accuracy is performance
proportional with the number of cycles and the number of
data samples with one cycle.
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Figure 7: Prediction error varies with the number of cycles
and number of samples within one cycle.

6. CONCLUSION AND DISCUSSION
In this paper we explore the possibility of improving the

safety of drivers’ interactions with mobile devices by limit-
ing the interaction periods to relatively safe ones, in partic-
ular when the vehicle is stopped. Preliminary vehicular trip
measurements and smart phone usage show that there are
sufficient stopping periods in most trips to enable short, text
based communication during these periods. To demonstrate
the feasibility, we propose an architecture design and further
implement parts of it under the case of waiting for traffic
lights. The system performs an accurate waiting duration
prediction based on both practical and simulation data sets.
Through both driving experiments on real roads and simu-
lations, we find that the prediction of the current vehicle’s
waiting time at a traffic light depends on the availability of
the data samples of two vehicles ahead of it in the previous
two traffic light cycles, indicating only limited crowd sourced
data is needed to facilitate the prediction. Our fast converge
and performance proportional calibration mechanism enable
the system to correct itself through the increased amount of
the crowd-sourced data. Our results provide confidence to
channel safer notifications while driving.

We further discuss the future research direction focus-
ing on the hardware and software extension of our system.
Towards the hardware end, enabling traffic infrastructures
(e.g., the signal controllers of each intersections) to commu-
nicate their states and action schedules with smart phones
is a key way to improve our approach. Although many dedi-
cated short range communication (DSRC) [14] systems have
been proposed for traffic applications, there is still no uni-
formed public interface to feed drivers with real time traf-
fic information (e.g., traffic schedules and traffic volumes at
intersection level). The development of smart intersection
signal controllers and their interfaces are still open research
topics that can facilitate our system. On the software side,
we will focus on the implementation of our safety level clas-
sification and crowd sourcing mechanism. To quantify the
safety level for each stop event, it is necessary to analyze
the mapping relationship between the types of stop events
and drivers’ attention to enable safe driving. In addition, we
will need to design rules in our crowd sourcing mechanism
to enable robust classifications of the types of stop events,
since there are more complicated causes for stop events in
real world.
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