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Abstract—In this paper, we consider the problem of tracking
fine-grained speeds variations of vehicles using signal strength
traces from GSM enabled phones. Existing speed estimation
techniques using mobile phone signals can provide longer-term
speed averages but cannot track short-term speed variations.
Understanding short-term speed variations, however, is impor-
tant in a variety of traffic engineering applications—for example,
it may help distinguish slow speeds due to traffic lights from
traffic congestion when collecting real time traffic information.
Using mobile phones in such applications is particularly attractive
because it can be readily obtained from a large number of
vehicles.

Our approach is founded on the observation that the large-
scale path loss and shadow fading components of signal strength
readings (signal profile) obtained from the mobile phone on any
given road segment appears similar over multiple trips along the
same road segment except for distortions along the time axis
due to speed variations. We therefore propose a speed tracking
technique that uses a Derivative Dynamic TimeWarping (DDTW)
algorithm to realign a given signal profile with a known training
profile from the same road. The speed tracking technique than
translates the warping path (i.e., the degree of stretching and
compressing needed for alignment) into an estimated speed trace.
Using 6.4 hours of GSM signal strength traces collected from a
vehicle, we show that our algorithm can estimate vehicular speeds
with a median error of ± 4mph compared to that of using a GPS
and can capture significant speed variations on road segments
with a precision of 68% and a recall of 84%.

I. INTRODUCTION

This paper considers the problem of estimating fine-grained

speed and detecting temporary speed variations of a vehicle

from cellular handset signals. More fine-grained speed traces

could benefit a number of transportation applications. For ex-

ample, fine-grained speed trace could improve estimating and

pinpointing traffic congestion, particularly on arterial roads

with traffic signals. Since fine-grained speed traces reveal

where on a road segment vehicles slow down, it becomes

easier to distinguish speed variations due to congestion from

slowdowns due to red traffic lights. Fine-grained speed traces

also reveal whether traffic is flowing slow but smoothly or

in a stop-and-go fashion. It can also show where frequent

lane changes occur that cause traffic shock waves. These

factors have a significant effect on accident rates and gasoline

consumption, and would therefore be important to monitor on

a larger scale. Techniques to determine vehicle speed from cell

phone signals are particularly useful because they do not incur

the high infrastructure costs of traffic cameras or loop detectors

embedded into the roadway [7], [6], [11]. While fine-grained

speed traces can also be obtained through networked in-vehicle

GPS devices, cell phone signals can readily be collected

from a much larger number of vehicles. Cell phone signal

strength readings also impose no energy overhead, at least

when collected at the base station. Existing speed estimation

techniques from cell phone communications are limited to

estimating average speeds over road segments. One approach

derives speed from the time between two handoffs [21], [10].

In our own prior work [4], we have also shown how average

speeds can be estimated by matching a cell phone’s signal

strength trace against a known trace from this road segment.

While these solutions can cover most of the arterial roads, the

average speed estimates are typically over road segments of

about 100m and cannot track vehicle’s exact speed variations.

Our Approach. In this paper, we propose a speed trace

estimation technique based on a Derivative Dynamic Time

Warping (DDTW) algorithm that aligns a received signal

strength (RSS) trace from a moving cell phone handset with

a reference trace for a given road segment to estimate speed.

The technique relies on the observation that large scale path

loss and dominant shadow fading effects usually remain quite

constant at the same location. To illustrate this insight, Fig. 1

plots the instantaneous speed and RSS trace from the associ-

ated cell tower for two vehicle trips along the same stretch of

a road. The vehicle drove roughly at the same speed during

the first 150 seconds of both trips, but then it slowed down in

the first trip and sped up in the second.1 The graph shows how

the RSS traces remain similar over the first part of the trace,

where the vehicle traveled at the same speed, and depart when

the vehicle varied its speed in the later part of these two trips.

Note also, how the trace from the slower trip is essentially a

stretched version of the faster trip in the second part of the

1The car travelled the same distance in both cases and stopped at the same
physical location. However, due to the speed difference, the first trip took
about 300 seconds while the second only lasted 200 seconds.



trace. For example, the dip below an RSS value of 20 dB,

occurs in the same location in both trips but due to the speed

difference the graph shows them at different times.
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Fig. 1. Stability of RSS over time

The key idea underlying our technique is to stretch (or

compress) the RSS trace until it best matches the reference

trace. The stretch factor can vary over the length of the

trace. Since the instantaneous speed over the reference trace

is known, the algorithm can then convert these stretch factors

into instantaneous speed estimates for the test RSS trace. Thus,

our approach can perform vehicular speed tracking and detect

bottlenecks on road segments effectively. We assume that

training RSS profiles and their speeds are available for road

segments under study. These could be collected as part of the

service provider signal measurements to determine coverage.

We also assume that the approximate starting location and the

road segment the vehicle travels on is known, for example by

monitoring handoff locations as shown in prior work [12].

The rest of the paper is organized as follows: We first

perform an overview of general vehicular speed estimation

techniques in Section II We then describe our technical ap-

proach in terms of DDTW algorithm, and explain how speed

estimation and tracking is performed in Section III. We next

present how to predict road bottlenecks by detecting vehicular

slowdowns in Section IV. We collect traces from real traffic

drives and compare the performance of our mechanism with

existing algorthms in Section V, then conclude in Section VI.

II. BACKGROUND

In this section, we first review existing studies on vehicular

speed estimation. We then describe the baseline algorithms

that we compare with our approach in this work.

The existing work on vehicular speed estimation can be

classified based on the modality of sensing as follows.

Fixed Infrastructure based sensing: By far the most

common of highway speed estimation system is the inductive

loop detectors [7], [6], [11] which are based on on-road sensors

embedded in the pavement. Traffic cameras [9] have also been

installed on roads that uses a sequence of image captured on

several cameras on the road to calibrate the speed of a moving

vehicle. [7] has shown that speed estimation accuracy using

loop detectors for a vehicle traveling at over 50mph can be in

the order of 20mph to 120mph. Besides that, they suffer from

their limited reliability and high installation cost, which makes

it hard to maintain significant coverage on the road network.

Smartphone based sensing: Using GPS enabled smart-

phones for sensing [12], [1] has gained huge popularity in

the recent times due to its negligible deployment cost. These

techniques, if adopted by a large number of users, can provide

very accurate speed estimation on most roadways. However,

frequent sampling of the GPS unit can result in fast battery

drain on the mobile phone. [22] tried to overcome some of the

energy limitations by sub-sampling the GPS and combining

the Wi-Fi outdoor positioning along with map-matching to

estimate speeds with high accuracy. Still, energy consumption

remains higher than approaches that use existing phone sig-

nals. It also require software modifications on each handset

which makes bootstrapping the service more difficult.

Cellular phone based sensing: Unlike the smartphone

based sensing, these techniques rely on the location of the

cellular phone over time calibrated either using triangulation

of the GSM signal strength [24] over time or Fingerprint

matching of the phone successive signal strength readings [5]

or the location where the cellular phone handsoff between

towers [21], [10]. Our previous work [4] uses the stability

in signal strenth profiles on a road segment to derive average

speed estimate. [20] uses the rate of change of RSS between

successive samples to determine the speed. While all of the

above techniques can overcome the bootstrapping (since the

provider already has access to the signal strength information

from phone) and energy issues that were present in smartphone

based sension, these can only estimate average speeds over

segment of length typically over 100m. Therefore, they cannot

be used to track small variations in speed that are important

for several traffic engineering applications. We differ from all

the above techniques by estimating speeds with high accuracy.

In addition, we are the first to show the possibility of using

GSM signal strength for tracking temporary speed variations

(for, example bottlenecks causing slowdowns).

Doppler shift-based sensing: Finally, [23], [25] makes

use of the doppler shift in frequency caused by the moving

transmitter to estimate speed. [23] can only perform coarse

speed classification while [25] can predict the actual speed

of the mobile. But the latter assumes the presence of strong

Line of Sight(LOS) component between the transmitter and

the receiver which can make this technique impractical.

We further choose two representative algorithms, Localiza-

tion Algorithm and Normalized Euclidean Distance Algorithm,

which can be used to perform vehicular speed tracking and

detect the bottlenecks in road segments. These two algorithms

will be used as the baseline approaches to compare with our

mechanism in Section V. Note that the performance of the

localization algorithms for tracking speed variations are similar



to our prior speed estimation algorithm [4]. We therefore

only include the more general and better known localization

algorithm as a baseline algorithm.

Localization Algorithm: This method estimates the speed

of a mobile phone between two points by estimating the

phones’ locations at the two points, calculating the distance

the phone has travelled and dividing it by the time travelled.

In this paper, we use the fingerprinting [17] algorithm for

determining phone’s location. The algorithm uses the RSS

fingerprints obtained from 7 neighboring towers at different

known locations as the training. When an RSS fingerprint is

obtained from a mobile at an unknown location, the algorithm

estimates the euclidean distance in signal space between this

obtained fingerprint and all the training fingerprints and deter-

mines the location to be the location of the training fingerprint

that yields the minimum euclidean distance.

Normalized Euclidean Distance Algorithm: This algo-

rithm detects speed changes during speed tracking, e.g.,

slowdowns, by calculating the normalized euclidean distance

between consecutive GSM measurements and declaring a

slowdown when the distance falls beyond a certain thresh-

old.The normalized Euclidean distance between two RSS

measurements A and B, having n common cell towers is

defined as:
√

(a1 − b1)2 + (a2 − b2)2 + ....+ (an − bn)2/n (1)

Note that Euclidean distance between successive samples

from a mobile phone is directly proportional to the distance

the phone moves in physical space, which in turn depends on

how fast the phone moves. While we cannot derive an accurate

speed estimate from this relation, we can still predict regions

where there are slowdowns. We experimented with multiple

other metrics suggested in [20], but found the normalized

euclidean distance to work the best. Hence, we chose to use

this algorithm for comparison with our mechanism.

III. SPEED TRACKING

Our speed tracking technique comprises two components.

First, the Derivative Dynamic Time Warping Algorithm

(DDTW) algorithm aligns a given signal profile with a known

training profile. Second, the speed tracker will convert a

warping path produced by the DDTW algorithm into a speed

trace for the vehicle. This approach assumes that a training

signal profile from the same road segment is available, which

was collected at a known speed. Similar measurements are

often carried out by cellular service providers to create cellular

coverage maps. The testing signal profiles can be either

obtained on a cell phone handset itself, or at the base station (if

the cell phone is on an active call). The speed trace produced

by this technique can then also serve as input for the slowdown

estimation technique described in the following section.

A. Derivative Dynamic Time Warping Algorithm

To find the optimal alignment between sequences of signal

strength measurements for speed estimation, we apply two

sequences of signal strength measurements, one called the

training and the other called the testing, to the Dynamic

Time Warping (DTW) Algorithm. Dynamic Time Warping

is a classic dynamic programming algorithm which has

been widely used for optimal alignment of two time series

datasets and was particularly popular for applications like

speech processing[15], [19], data mining[16], [14], and gesture

recognition[8].

In particular, we use a variant of the DTW algorithm

called Derivative Dynamic Time Warping (DDTW) [13],

which exploits the same principle as DTW but for the input

data, where, instead of the time-series of RSS, we use the

time-series of derivative of RSS. As observed previously [13],

if the two RSS profiles varied only on the time axis and

not on the absolute values of RSS at any given location,

DTW would have been sufficient. But RSS in an outdoor

environment typically suffers varying amount of shadow

fading under different environmental conditions which also

alters its absolute value in any given location. DDTW can

overcome this difference in the y-axis by working with

derivatives of RSS where only the slope of RSS matters and

not the absolute values. For example, if A = (a1, a2, ...aM )
is a time series of RSS measurements collected over M
time points, the input to DDTW is A′ = (a′1, a

′

2, ...a
′

M ), the
derivative of A which is defined as

a′i =
(ai − ai−1) + (ai+1 − ai−1)/2

2
1 < i < M. (2)

Given two RSS profiles - A and B with lengths of M and

N samples respectively, DDTW constructs a distance matrix

d[M ×N ] which is defined as:

d(i, j) = (a′i − b′j)
2 (3)

where a′i and b′j are the ith and jth elements of the derivative

of the RSS profiles A and B respectively. With this d[M×N ]
as the input to the algorithm, DDTW returns a warping path

P = (p1, p2, ....pk) where pl = (x, y) ∈ [1 : M ] × [1 : N ]
for l ∈ [1 : k] as shown in Figure 3. The warping path must

satisfy the following conditions:

1) Boundary Condition: p1 = (1, 1) and pk = (M,N).
This ensures that the warping path always starts at (1, 1)
and ends at (M,N).

2) Monotonicity Condition: If pk−1 = (c, d) and pk =
(e, f), we have e − c ≥ 0 and f − d ≥ 0. The

monotonicity condition ensures that the matching always

progresses in the forward direction of time.

3) Global Constraints: Global constraints are constraints

that limit the region in which the warping path can

exist. In addtion, global path constraints also guarantee

the existance of a path from (1, 1) to (M,N). Fig-

ure 3 illustrates the region for warping path generation.

The region enclosed within the parallelogram is the

region that corresponds to the global constraints. In

Figure 3, EMAX is defined as the maximum allow-

able expansion (or compression) in time axes of one

time series with respect to the other, and is chosen

to be max(2, ⌈max(M,N)/min(M,N)⌉). The ratio
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Fig. 2. DDTW local constraints that restrict the admissible paths to every location within the matrix:
(a) C(i, j) = d(i, j) + min(C(i− 1, j − 1), C(i, j − 1), C(i− 1, j))
(b) C(i, j) = d(i, j) + min(C(i − 1, j − 1), C(i− 1, j − 2) + d(i, j − 1), C(i− 2, j − 1) + d(i− 1, j))

(c) C(i, j) = min
[

min1≤r≤EMAX

(

C(i− 1, j − r) +
∑j

j1=j−(r−1)
d(i, j1)

)

,min2≤r≤EMAX

(

C(i − r, j − 1) +
∑i

i1=i−(r−1) d(i1, j)
)]

⌈max(M,N)/min(M,N)⌉ defines the amount of ex-

pansion of one trace relative to the other. Accordingly,

the sides of the parallelogram are set to have slope values

of EMAX and 1/EMAX .

4) Local Constraints: Finally, Local constraints define the

set of admissible step-patterns. There are three types of

step progression: horizontal, vertical and diagonal. As

shown in Figure 2, different kinds of local constraints

are possible. For example, Figure 2(a) shows the most

unrestrictive step constraint where (i, j) can be reached

from one of its three neighbours (i − 1, j − 1), (i −
1, j), (i, j − 1). Whereas Figure 2(b) and 2(c) illustrate

more constrained progressions where a diagonal progres-

sion is forced for every EMAX horizontal or vertical

progressions.

To generate a warping path, DDTW constructs a cost matrix

C[M × N ] which represents the minimum cost to reach

any point (i, j) in the matrix from (1, 1) using a dynamic

programming formulation. For example, in Figure 2(a), (i, j)
can be reached from one of its three neighbours, namely,

(i− 1, j− 1),(i− 1, j), and (i, j− 1), and the algorithm picks

the neighbour that has the minimum cost. This relation can be

shown as:

C(i, j) = d(i, j)+min(C(i−1, j−1), C(i, j−1), C(i−1, j)).
(4)

However, using an unconstrained local constraint as shown

in 2(a) can lead to an undesirable effect called “singularities”

[13] where either one sample point in the testing is mapped to

a very large number of samples in training (unrestricted hori-

zontal progression) or many points in testing map to the same

point in training (unrestricted veritical progression). This effect

as observed previously[15] can be minimized by using a more

constrained topology for forward progression. In this work,

we thus take an approach of using the constrained DDTW

with a maximum expansion of EMAX . our local constraints

resemble the ones in Figure 2(b) and 2(c). For example, 2(b)

forces a diagonal progression before every horizontal or vetical

progression, whereas 2(c) allows upto (EMAX) horizontal or
vetical progressions before forcing a diagonal progression.

For a complete description of local constraints, we refer the

readers to [15]. The local constraints that we use in this work

allow upto EMAX vertical or horizontal progressions before

forcing a diagonal progression and the cost matrix C(i, j)
corresponding to this local constraint can be formulated as

C(i,j)=min
[

min1≤r≤EMAX

(

C(i−1,j−r)+
∑j

j1=j−(r−1)
d(i,j1)

)

,

min2≤r≤EMAX (C(i−r,j−1)+
∑i

i1=i−(r−1) C(i1,j))
]

. (5)

Note that the optimal path to (i, j) depends only on the values

of (i′, j′) where i′ ≤ i and j′ ≤ j. From the cost matrix,

the algorithm derives a warping path P by back-tracking

the constructed cost matrix from (M,N) to (1, 1). While

backtracking, the path that the algorithm chooses from any

point (i, j) will be the (i′, j′) that resulted in optimal C(i, j).
We will next explain how we use the warping path to estimate

the speed of the testing trace.

B. Estimating Vehicular Speed from DDTW’s warping path

The DDTW algorithm returns a warping path P between

the points (1, 1) to (M,N). This warping path defines the

optimal alignment between the two time series, which in this

case are the RSS measurements from the training and testing

drives. As explained in Section I, there is a direct correlation

between the speed of vehicle and the overall shape of the RSS

curve. Therefore, an optimal alignment of the RSS curves from

the training and testing drives can yield a corresponding speed

estimate of one drive relative to the other.

We define three kinds of matching between training and

testing traces: Type-1, Type-2, and Type-3. If one point in the

testing trace is mapped to k points in the training trace as

shown in Figure 3(b), the resulting speed estimate for the

testing trace is k times that of the training. We call this as

Type-1 matching as shown in Figure 3(a). The figures illustrate

this for k = 2. Similarly, Type-3 matching is when k points in

the testing trace are mapped to one point in the training trace,

speed of the testing trace is 1/k times the training speed.

Finally, Type-2 match is when one point in testing maps to

exactly one point in training trace. In this case, speed of testing

equals speed of training.

We note that the estimated speed from time warping is

always a multiple of the training speed. For example, if the

training speed at any instance is 20mph, the resulting testing
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Fig. 3. Illustration of vehicle speed estimation from DDTW.

speed can only be multiples of 20mph such as 60mph, 40mph,

20mph or 10mph. Figure 3(b) plots the speed estimation

from a warping path when the training speed is a constant

at 20mph. The speed estimates from different segments of the

warping path are depicted based on Type-1, Type-2, and Type-

3 matches. Furthermore, the resulting speed estimates from the

testing trace versus the training speed are illustrated in Figure

3(c).

We observed that there are speed fluctuations from the

estimated speed. In order to remove these fluctuations, we

apply a moving window smoothing filter over the estimated

speed which averages the speed estimates within the entire

window to produce a single speed. The choice for the window

size should not be too large since this might smooth out all

variations leaving a very coarse speed estimate. Similarly,

having a very small window size may result in the overall

speed estimation to be highly fluctuating. We will evaluate

the length of the optimal smoothing window in Section V.

IV. SLOWDOWN DETECTION

In practice, most traffic engineering applications do not

require the instantaneous speeds of vehicles and are more

concerned about regions of bottlenecks. Such bottlenecks in

road networks can in turn be detected from vehicular speeds

by observing the regions where vehicles typically slowdown

or by observing the normalized euclidean distance where the

normalized euclidean distance between successive samples go

below a threshold. We will next provide a formal definition of

slowdown and describe the scheme for slowdown detection.

We define a slowdown as a sudden reduction in the speed of

a moving vehicle by more than τ mph to a value below µ mph.

The duration of the slowdown is the period of time the speed

remains below µ mph. A slowdown is detected by sequentially

scanning the input trace. The input trace can be the groundtruth

speed data derived from GPS readings, DDTW estimated

speed, speed estimate from the Localization algorithm, or the

Normalized Euclidean Distance from Normalized Euclidean

Distance algorithm. Our scheme identifies peaks and dips in

the input trace. A peak occurs in the input trace at any given

point when its first derivative (slope) at that point changes

from positive to negative. Similarly dips occur when the slope

changes from negative to positive. Our scheme initially assign

a very low value to the first detected peak and a very high value

to the first detected dip. As the scheme proceeds scanning the

trace, the peak value is adjusted to the highest observed peak.

Similarly, the dip value is adjusted to the lowest observed dip.

After every adjustment of the peak and the dip, if (peak−dip)
> τ , and dip < µ, a slowdown is declared. The duration of this
slowdown is then the period of time the dip remains below µ.
Finally, the peaks and dips are reset to the lowest and highest

values respectively and the scheme repeats until all slowdowns

are detected in the specific trace.

The main challenge in identifying slowdowns accurately lies

on the choice of τ and µ. We performed an emperical study

on 18 of our GPS traces that lasted for a total of 6.4 hours

and picked a threshold of 25mph for τ since most breaking

events involved slowding down the vehicle from 40-45mph

speed limit in arterial roads to a very slow speed of around

5-10mph. Our choice for µ is 20mph because most residential

regions have a speed limit of 25mph or more and we do not

want to classify those residential regions as bottlenecks.

While a choice of 25mph and 20mph for τ and µ fits

the ground truth speed from GPS, these thresholds need not

be the same for the speeds estimated from either DDTW or

Localization. and the normalized euclidean distance estimated

by Normalized Euclidean Distance algorithm. For example, we

showed in Section III-B that the speed estimate from DDTW

at every instance is a multiple of the training speed which in

turn requires a moving window smoothing filter to be applied

over the estimated speed to get the speed estimate. However,

due to this smoothing, an actual speed change of 25mph in the

ground-truth speed may only correspond to a speed change of

15mph in the estimated speed.

In order to capture this relationship between the ground-

truth speed and the estimates from other algorithms, we

performed a regression analysis using a linear least square fit

over the data sets. The inputs to the regression analysis are the

ground-truth speed from GPS and the output from any of the

three estimation algorithms under study: DDTW, Localization



and Normalized Euclidean Distance. For instance, Figure 4

shows a scatter plot of the ground-truth speed from GPS versus

the estimated speed from DDTW, and the corresponding fitted

line obtained from linear least square fit. The slope of the

fitted line determines that a drop in ground-truth speed by

25mph corresponds to only 15mph drop in the estimated speed

from DDTW. Similarly, a µ value of 20mph in ground-truth

corresponds to 21mph in estimated speed from DDTW. Table

IV summarizes the values for τ and µ obtained using the above

process for the different slowdown estimation algorithms.
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The slowdown detection algorithm takes any of the four

inputs, namely, ground-truth speed trace, estimated speed

trace from DDTW, estimated speed trace from Localization

or normalized euclidean distance trace from Norm.Euc.Dist

algorithm, along with their respective τ andµ values. Figure

5 illustrates the results of slowdown detection performed on

a 1000 seconds long ground-truth speed trace from GPS and

the corresponding estimated speed from DDTW respectively.

We treat the slowdown detection obtained from the GPS data

as the ground truth. The y-axis on the left side corresponds to

the speed of the traces, while the y-axis on the right represents

the duration of each of the identified slowdown locations.

Finally, we will use three metrics: True Positive, False Pos-

itive and False Negative to quantify how well the the different

algorithms detect bottlenecks in Section V. In the slowdown

detection, true positives are the time periods when the ground-

truth slowdowns coincide with the slowdowns estimated in

the result of the algorithm under consideration, i.e.,DDTW

or Localization, or Normalized Euclidean Distance. Wherease

τ µ

Ground-Truth Speed from GPS 25 mph 20 mph

Estimated Speed (DDTW) 15.73 mph 21.28 mph

Estimated Speed (Localization) 4.92 mph 20.84 mph

Norm. Euc. Dist.(Norm. Euc. Distance Al-
gorithm)

4.15 dBm 26 dBm

TABLE I
THRESHOLDS τ AND µ FOR THE SLOWDOWN ESTIMATION ALGORITHMS
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Fig. 5. Figure Illustrating the metrics for quantifying the slowdown detection
performance, namely, false negative, true positive and false positive

false positives occurs when slowdown is detected in our

scheme under consideration but not in the ground-truth. False

negative is when the slowdown exists in the ground-truth,

however, is not detected by our scheme.

V. EVALUATION

In this section, we evaluate the DDTW algorithm in terms

of its ability to estimate instantaneous speed and detect slow-

downs. We first describe our data collection methodology.

Then, we present evaluation results for estimating instanta-

neous speed and detecting slowdowns on residential roads

using GSM signal strength from mobile phones. Next, we

study the sensitivity of DDTW to the alignment error. Finally,

we show the generality of DDTW by presenting its speed

estimation accuracy on a trace collected indoors with WiFi-

based equipment.

A. Data Collection

To evaluate DDTW, we collected two sets of data. The first

set of data was collected outdoors using GSM enabled HTC

Typhoon phones running the Intel-POLS [2] software. The

software records the time, cell tower description (Cell ID,

MNC, MCC, LAC, IMEI), and the received signal strength

from the 7 strongest cells once every second. We used Holux

GPSlim236 GPS receivers paired with mobile phones through

Bluetooth for logging the ground truth location information

for all traces. We collected 18 signal strength traces on a 10

mile long road, located in a residential area with lots of traffic

lights. We chose the road with traffic lights to ensure the highly

variable speed traffic pattern of our traces. We used one of the

18 traces as training and the remaining 17 traces as the testing

traces. In total, the 17 testing traces contain 6.4 hours of data.

The second set of data was collected indoors on a 802.11b

Wi-Fi network. We collected 9 traces in which the experi-

menter placed a laptop equipped with 802.11b WG511T Wi-

Fi card in a cart and moved along a corridor measuring 228
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Fig. 6. Comparison of speed estimation accuracy of DDTW and Localization algorithms.

ft in length thrice at three different speeds ( 1ft/sec, 2ft/sec,

4ft/sec) while sending out packets at the rate of 2 pkts/sec.

Three receivers were placed along the corridor: one closer

to the beginning of the corridor, one in the middle and one

closer to the end of the corridor. The receivers were 802.11b/g

enabled, configured to listen on channel 6 in monitor mode and

log the packets using Tshark [3] packet sniffer utility. In total,

we had 550 seconds of data logged at each of the receivers.

Unless otherwise noted, we used the first set of data for all

experiments in this paper.

B. Speed Estimation Accuracy

In this section, we evaluate the accuracy with which DDTW

can estimate instantaneous speed and compare it to the accu-

racy achieved by the Localization algorithm, described in Sec-

tion II. We do not include results for the Normalized Euclidean

Distance algorithm in this section since the algorithm can be

used to detect slowdowns only and cannot be used to estimate

speed. Figure 6(a) plots the ground truth (actual) speed of

a vehicle obtained through GPS, as well as the estimated

speeds of the DDTW and the Localization algorithms. The

drive took 1500 seconds to complete. The figure shows that

the speed estimated by DDTW matches the actual speed very

well, whereas the Localization algorithm performs poorly. To

quantify how closely the two algorithms follow the actual

speed, we calculated the Pearson’s product-moment correlation

coefficients between each of the algorithms and the actual

speed. The Pearson’s correlation coefficient measures a linear

dependence between two variables. The coefficient of 1 means

very strong positive correlation. The coefficient of 0 means no

correlation. The Pearson’s correlation coefficients are shown

in the upper left corner of the figure. The actual speed and

the DDTW algorithm exhibit very strong correlation of 0.83.

The Localization algorithm, on the other hand, has a weak

correlation with the actual speed of 0.34. We also calculated

the Pearson’s correlation coefficients for all the testing traces

combined. The correlation between the estimated speed of

DDTW and the actual speed was strong with a correlation

coefficient of 0.75, whereas the correlation between the esti-

mated speed of Localization and the actual speed is poor with

a correlation coefficient of just 0.11.

Figure 6(b) plots the CDF of the error between the actual
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Fig. 7. The effect of the smoothing interval on the F-measure.

and the estimated speeds for both DDTW and Localization

algorithms for all testing traces combined. The results show

that DDTW performs significantly better than Localization,

achieving the median error of 5.2 mph, which is more than

twice lower than 13 mph achieved by the Localization al-

gorithm. The median error of 5.2 mph is encouraging and

we believe is suitable for a wide range of traffic engineering

applications. In the next section, we will evaluate a method that

can be used by an application that detects regions of bottleneck

on a road. This requires detecting when a vehicle significantly

reduces its speed.

C. Slowdown Detection Accuracy

In this section, we evaluate the accuracy with which DDTW,

Localization and Normalized Euclidean Distance algorithms

can detect slowdowns, as defined in Section IV. Recall that a

true positive occurs when an algorithm correctly predicts that

there is a slowdown. A false positive occurs when an algorithm

predicts that there is a slowdown but there is none. A false

negative occurs when an algorithm doesn’t predict a slowdown

and there is one. Please refer to Figure 5 for an illustration of

all these metrics.

We present our results using Precision, Recall and F-

measure [18]. Precision captures the percentage of correct

slowdown predictions and it is defined as the total duration

of true positives divided by the sum of total duration of true

positives and false positives. The higher is the Precision, the

more accurate an algorithm’s estimations are. Recall captures

the percentage of actual slowdowns that were detected and it



is defined as the total duration of true positives divided by

the sum of true positives and false negatives. The higher the

Recall, the more actual instances of a slowdown an algorithm

has predicted correctly. F-measure is used to estimate the

Precision/Recall tradeoff and it is defined as follows:

F = 2 ·
precision · recall

precision + recall
(6)

The higher the F-measure, the better is an algorithm’s

slowdown detection accuracy. In our case, it is possible to trade

off Precision for Recall by changing the smoothing interval,

as defined in Section III-B. Figure 7 plots the F-measure for

different smoothing intervals for the DDTW, Localization and

Normalized Euclidean Distance algorithms.

The figure illustrates that the F-measure for DDTW is

almost twice as high as the F-measure for Localization and

Normalized Euclidean Distance algorithms across the entire

range of smoothing intervals. This indicates that the DDTW

has higher Precision and Recall compared to the other al-

gorithms. We pick the smoothing interval that achieved the

highest recall value for each algorithm, which in this case,

was 50, 90 and 100 for DDTW, Localization and Norm. Euc.

Dist respectively.

Precision Recall

DDTW 0.68 0.84

Localization 0.38 0.63

Normalized Euclidean Distance 0.39 0.59

TABLE II
SLOWDOWN DETECTION PERFORMANCE OF DDTW, LOCALIZATION AND

NORMALIZED EUCLIDEAN DISTANCE ALGORITHMS.

Table II summarizes the Precision and Recall values for

DDTW, Localization and Normalized Euclidean Distance

algorithms for their respective optimal smoothing intervals

derived from their F-Measure in Figure 7. DDTW significantly

outperforms the other two algorithms achieving Precision of

0.68 and Recall of 0.84. Its Precision is 94% higher than

that of Localization and 74% higher than that of Normalized

Euclidean Distance. Its Recall is 40% higher than that of Lo-

calization and 42% higher than that of Normalized Euclidean

Distance.

Next, we study the impact of the duration of a slowdown on

the ability of the algorithms to detect it. The intuition tells that

it should be easier to detect slowdowns of a longer duration.

The duration of a slowdown is defined in Section IV as the

total time the speed remains below the threshold of µ mph.

Figure 8 plots a histogram of the number of slowdowns

of a given length that appear in the trace and the number of

slowdowns that are correctly detected by each of the three

algorithms. Although all algorithms can correctly detect all

slowdowns of 120 seconds or more, only DDTW detects all

slowdowns that are longer than 30 seconds. The algorithms

cannot detect slowdowns of a short duration because of the

smoothing that is applied to average out the oscillations in

speed predictions, which in turn results in smoothing out

abrupt speed changes that last for short durations.

D. Effect of Alignment Error on Speed Estimation Accuracy

In this section, we study the effect of the alignment error

between the training and testing traces on the speed estimation

accuracy of DDTW. Recall from Section III that introducing

an alignment error results in applying DDTW on training

and testing traces that are shifted in time by the value of

the alignment error. Note that although we study the effect

of alignment error of up to 500m, a typical GSM based

localization system has a median localization error of less

than 100m [5]. Therefore, it is reasonable to assume that, in

practice, DDTW would achieve speed estimation accuracy that

is equivalent to the one obtained with a 100m alignment error.

Alignment Error(m) Median Error (mph)

0 5.2

100 6.5

200 7.12

500 8.57

TABLE III
EFFECT OF ALIGNMENT ERROR ON SPEED ESTIMATION ACCURACY

Table III summarizes the median error in miles per hour

for different alignment errors. When a localization systems

provides an accurate location estimate, DDTW suffers from

no alignment errors and has a median speed estimation error

of 5.2 mph. When an alignment error of 100m is present,

the accuracy of DDTW degrades slightly to 6.5 mph. Even in

this case, DDTW performs much better than the Localization

algorithm that achieves the median speed estimation accuracy

of 13 mph.

E. Indoor WiFi-based Experiment

We finally verify if DDTW technique can be used across a

different wireless technology and a different environment for

the same purpose of speed estimation. To this end, we use the

Wi-Fi data in which we performed 9 indoor Wi-Fi experiments

where the experimenter moved between the given two points in

a long(228ft) corridor thrice at three different speeds, namely

: 1ft/sec(0.68mph), 2ft/sec(1.36mph), 4ft/sec(2.72mph) while

sending out packets at the rate of 2 pkts/sec. We had three

Wi-Fi receivers, each recording the RSS from this transmitter.
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We can see from Figure 9 that the estimated speed closely

follows the ground truth. The median error for this receiver
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Fig. 8. No. of slowdowns with different durations predicted by (a)DDTW (b)Localization (c)Normalized Euclidean Distance

is 0.1527mph. The median errors on receiver-2 and receiver-3

were 0.1388mph and 0.1527mph. This result is encouraging

since this proves the generality of the proposed mechanism

across different wireless technologies and shows that it is

effective at detecting even very small speed changes indoors.

VI. CONCLUSION

In this paper, we exploit received signal strength from

mobile phones to track vehicular speed variations and predict

bottlenecks on road segments. Our speed tracking mechanism

is grounded on Derivative Dynamic Time Warping (DDTW)

operating between traces of mobile phone signal strengths. Our

approach makes use of the stability of signal strength mea-

surements over time on any given road segment to optimally

align the training and testing signal strength traces. Tracking

of the speed variations, e.g., slowdowns, is then enabled based

on the alignment produced by DDTW. We experimentally

evaluated our mechanism on real signal strength measurements

captured with mobile phones through various road drives and

showed that our speed tracking has a very high correlation

with the ground-truth speed reported by the GPS and exhibits

a median error within ± 5mph across the 6.4 hours of driving

traces. Moreover, our approach achieves a precision of 68%
and a recall of 84% when predicting bottlenecks in road

segments in terms of vehicular slowdowns. Additionally, to

demonstrate the generality of our proposed speed tracking

technique, we applied our approach on experimental traces

from an indoor environment with walking people carrying Wi-

Fi (802.11b) radios and succesfully showed the effectiveness

of our mechanism across different environments and different

radios.
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