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Enhancing Security 
and Privacy in 
Traffic-Monitoring Systems

I
ntelligent transportation systems increas-
ingly depend on probe vehicles to monitor
traffic: they can automatically report posi-
tion, travel time, traffic incidents, and road
surface problems to a telematics service

provider. This kind of traffic-monitoring system
could provide good coverage and timely infor-
mation on many more roadways than is possi-
ble with a fixed infrastructure such as cameras

and loop detectors. This
approach also promises signif-
icant reductions in infrastruc-
ture cost because the system
can exploit the sensing, com-
puting, and communications
devices already installed in 
many modern vehicles.
Although these applications

can improve travelers’ safety, optimize traffic,
and provide a new revenue source for car man-
ufacturers, they also raise questions about pri-
vacy. Because users’ vehicles provide data sam-
ples that include their current positions and user
identities to location-monitoring services, the dri-
vers can be tracked. Unfortunately, anonymous
data collection doesn’t solve this privacy prob-
lem. First, it conflicts with security—in particu-
lar, data integrity—which requires user identifi-
cation. Second, even if location samples are
anonymous, users can be reidentified through
data mining techniques (so-called inference
attacks).

The architecture we propose meets these pri-
vacy and data integrity requirements. It addresses

privacy by separating the communication and
authentication tasks (which rely on pseudonyms
or identities) from data analysis and sanitization
(which require access to detailed position infor-
mation). Because these functions share only well-
defined messages, only anonymous position
information is available at the traffic-monitoring
service.

We conducted a case study to evaluate how vul-
nerable this information is to inference attacks,
and found that clustering techniques can auto-
matically identify many vehicles’ likely home lo-
cations in a typical suburban scenario. This is
grounds for concern, because attackers could link
home locations to household names using geo-
coded address databases to identify drivers. How-
ever, the results also show that data suppression
techniques such as reducing sampling frequency
effectively lower such reidentification risks.

Traffic-monitoring with probe vehicles
Our traffic-monitoring application estimates

travel time for different routes using real-time
traffic flow information. It derives that infor-
mation from probe vehicle speed on different
road segments. Probe vehicles monitor the road
environment through in-vehicle sensors.1

Xiaowen Dai and her colleagues have deter-
mined that we can derive useful traffic flow
information if 5 percent of vehicles act as
probes.2 This approach promises reduced in-
frastructure installation and maintenance costs
while extending sensing coverage to less-trav-
eled roadways.

This architecture separates data from identities by splitting
communication from data analysis. Data suppression techniques can
help prevent data mining algorithms from reconstructing private
information from anonymous database samples.
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Figure 1 shows a typical traffic-mon-
itoring architecture comprising three
entities: probe vehicles, a communica-
tion service provider (CSP), and a tele-
matics service provider (TSP)—perhaps
a subsidiary of a vehicle manufacturer.
Telematics is the use of GPS technology
integrated with computers and mobile
communication technology in vehicles.
The TSP connects vehicles to a main
server, perhaps through base stations
leased from CSPs. Probe vehicles carry
GPS receivers and communication infra-
structure such as cellular links to peri-
odically report data records (latitude,
longitude, time, and speed parameters)
to the traffic information system. From
this information, the system can estimate
current mean vehicle speed and then feed
it into navigation systems or use it to
build a real-time congestion map (for
example, by calculating a congestion
index). It can also use vehicle speed to
estimate traffic density and volume using
Greenshields’ equation.3 The system can
then broadcast estimated traffic infor-
mation to subscribers through a Web
interface, where drivers can access it
through their navigation systems or from
home or office computers.

Security and privacy
challenges

The primary security and privacy chal-
lenges that traffic-monitoring applica-
tions face are to ensure the integrity of
data samples containing speed and po-
sition information and to maintain pri-
vacy for the drivers who supply the sam-
ples. (For more information, see the
“Related Work in Security and Privacy”
sidebar.)

Data integrity
The integrity of the computed con-

gestion index relies on genuine speed
and position data from the probe vehi-

cles. Malfunctioning probes and mali-
cious parties who modify sensor read-
ings can affect data integrity. Although
malicious attacks on traffic monitoring
might sound far-fetched, they appear
quite plausible if you consider the gray-
market devices people now buy to re-
duce travel time (such as infrared trans-
mitters to change traffic lights). These
new devices might manipulate the con-
gestion index to divert traffic away from
a road to reduce a particular driver’s
travel time or toward a particular road-
way to increase revenue at a particular
store. Other service providers might also
try to dilute the information quality of
a competing traffic-monitoring service.

Various entities can compromise data
integrity:

• Compromised vehicles. Drivers or
third parties could modify the hard-
ware or software to report incorrect
vehicle positions or speed readings.
(Such modifications have occurred in
European trucks’ tachographs, which
are supposed to record vehicles’ driv-
ing times and speed to let authorities
check adherence to mandatory driver
rest periods.4

• Impostor devices. A device could
spoof other authorized devices. This
compromise is of particular concern
in the form of a Sybil attack,5 in
which a device illegitimately claims
multiple entities. Traffic-monitoring

accuracy will degrade more if many
vehicles simultaneously report incor-
rect information.

• Network intermediaries. The trans-
mission of vehicle data over wireless
and wired communication links en-
ables intermediate network entities to
modify reports.

Privacy
Proactively addressing privacy con-

cerns in the architecture increases the
potential for users to adopt the traffic-
monitoring service and reduces the risk
of public data-handling mishaps. Loca-
tion information collected by probe vehi-
cles raises privacy concerns because it’s
often precise enough to pinpoint the
buildings that drivers visited, at least in
suburban areas where each building has
its own parking lot. Reconstructing an
individual’s route could provide a de-
tailed movement profile that allows sen-
sitive inferences. For example, recurring
visits to a medical clinic could indicate
illness; visits to activist organizations
could hint at political opinions. While
everyone’s location traces deserve pro-
tection, those of political leaders, celebri-
ties, or business leaders would likely un-
dergo particular scrutiny. For example,
frequent meetings between chief execu-
tives might indicate a pending merger or
acquisition—highly desirable informa-
tion for competitors and stock market
speculators.
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Figure 1. traffic-monitoring architecture
comprising three entities: probe vehicles,
a communication service provider, and a
telematics service provider.



Various entities can compromise 
privacy:

• Eavesdroppers. Unauthorized third
parties could monitor network trans-
missions for vehicle position readings
and unique identifiers that would let
them track vehicles. In particular, third
parties could monitor wireless trans-
missions around particularly sensitive
locations to record which vehicles
recurrently visit this area. Network
identifiers, such as the international
mobile subscriber identifiers (IMSI) in
the GSM (Global System for Mobile
Communications) cell phone system,
help identify recurring visits.

• Spyware. People with access to the
on-board vehicle system could install
software that directly reports vehicle
positions to unauthorized network
servers.

• Insiders. Privacy breaches through
insiders are particularly insidious at
the traffic-monitoring server (we’ll
describe this in detail later), which

receives and stores reports from large
numbers of different vehicles. Al-
though access control mechanisms
provide some protection, several indi-
viduals, such as system administrators,
typically have root access to the sys-
tem. (On 8 April 2006, Information
Week posted a chronology of data
breaches reported since the Choice-
Point incident. ChoicePoint, which
maintains and sells background files
on every American adult by selecting
from public and private records,
reported on 15 February 2005 that
their 145,000 customers were at risk
for identity theft. Most incidents were
due to current, authorized employees
in the victim companies.)

There’s tension between integrity and
privacy requirements. A true privacy
compromise requires not only deter-
mining the places visited but also identi-
fying the vehicle and driver. Thus, pri-
vacy can be significantly enhanced if the
vehicles anonymously report position

and speed information. The system can
better maintain integrity, however, if the
vehicles identify themselves and their
identities can be authenticated. Strong
authentication combined with an auth-
ority that issues and registers vehicle id-
entities can prevent a Sybil attack, per-
haps the main concern with regard to
data integrity.

Architecture for anonymous
data collection

To resolve the tension between data
integrity and privacy, the architecture
assigns the authentication and filtering
functions and the actual data analysis to
separate entities. One entity knows the
vehicle’s identity but can’t access precise
position and speed information; the
other entity knows position and speed
but not identity. The architecture also
relies on encryption to prevent eaves-
dropping, tamper-proof hardware to
reduce the risk of node compromise and
spyware installation, and data sanitiza-
tion to further strengthen data integrity.
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T o allow authentication of messages from vehicles while main-

taining a degree of anonymity in vehicular networks, Maxim

Raya and Jean-Pierre Hubaux propose frequently changing the sign-

ing keys.1 To implement this, you could preload each vehicle with

numerous anonymous public�private key pairs. Using asymmetric

keys can eliminate the key agreement step in this solution. But storing

keys in vehicles might allow a Sybil attack unless trusted computing

hardware protects the keys. To implement this, Bryan Parno and

Adrian Perrig propose installing reanonymizers (hardware that issues a

fresh ID in response to valid, temporary certificates) in stoplights or

tollbooths at regular intervals to refresh vehicles’ anonymous keys.2

These solutions are primarily intended for vehicle-to-vehicle commu-

nications. Our proposed architecture for vehicle-to-infrastructure

communication uses fewer keys and enables easier key revocation

when vehicles’ keys have been compromised.

Researchers have also addressed the question of balancing secu-

rity and privacy in application areas such as electronic cash and

electronic voting. Pioneered by David Chaum and Eugène Van

Heyst,3 many proposals rely on group signatures that can verify a

message sender’s group membership while maintaining the

sender’s anonymity. Dan Boneh and his colleagues reduced the

size of group signatures, potentially enabling their use in challeng-

ing wireless network environments.4 Although group signatures

provide a possible alternative solution, they also require a trust-

worthy third party to enable key revocation (to determine the

original signer) and lead to large message overhead of about 200

bytes per signature. We’ve opted for less complex cryptographic

primitives.
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Figure 2 illustrates the entities and
cryptographic schemes involved in
transmitting a data sample from a
vehicle. We distinguish the communi-
cation server (CS) from the traffic ser-
ver (TS). The CS, which a CSP pro-
vides, maintains network connections
and authenticates users but doesn’t
access location and speed data. The
TS receives anonymous data from the
CS, decrypts and sanitizes it, and
computes the real-time congestion
maps. In a real implementation, a cel-
lular-phone service provider could
provide the CS, and a TSP could pro-
vide the traffic server. The two par-
ties would likely enter a contractual
relationship as business partners that
would prohibit the exchange of any
privacy-sensitive information beyond
that specified in this architecture. To
further increase user confidence, an
independent agency could audit the
information exchange between these
parties.

One pair of keys enables encryption
between the TS and vehicles. Every ve-
hicle knows the TS’s public key KTS

and uses it to encrypt a location sam-
ple. We refer to this encrypted mes-
sage as a data segment. Since the TS

can decrypt the DS only with its pri-
vate key, this layer of encryption pro-
tects location privacy against eaves-
droppers. 

The CS shares a separate symmetric
key Kveh with each vehicle and knows
the network identifiers (such as IMSI
in GSM networks). Using this key, the
CS can authenticate incoming data
samples and ensure that authorized
probe vehicles are transmitting them.
If they’re valid, the CS then removes all
network identifiers and the message
authentication code from the vehicle
and attaches its own MAC using a
third key KCS established between the
TS and the CS.

Key distribution and storage
The proposed architecture requires

storing Kveh in vehicles. If an intruder can
easily extract secret vehicle keys from
multiple cars, the intruder could insert
large numbers of incorrect data samples
into the traffic-monitoring system. Thus
the key should be stored in tamper-proof
hardware. The TS’s public key KTS, on
the other hand, need not be stored in
tamper-proof hardware as long as users
(or vehicles) can verify its integrity and
authenticity.

Vehicles’ keys initially can be embed-
ded by the manufacturer and updated
during regular government vehicle in-
spections or regular maintenance. This
lets the manufacturer or inspection
agency replace keys if they’ve been com-
promised. If more frequent key updates
are necessary, we can extend the archi-
tecture to allow over-the-air provision-
ing of new keys.

A sanitizer for traffic-monitoring
systems

The cryptographic authentication mech-
anisms can address Sybil attacks (pro-
vided that the keys are hard to generate)
and message modifications by network
intermediaries, but they can’t prevent in-
correct reports from compromised vehi-
cles. So, the TS should sanitize received
data.

Techniques for sanity checking include
outlier detection, consistency checking,
and rule-based classification.6,7 We can
leverage these techniques to build a san-
itizer component for traffic-monitoring
systems. For example, the sanitizer could
test data integrity by comparing an an-
onymous vehicle’s claimed speed on a
specific road segment at a specific time
with
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Figure 2. Traffic-monitoring architecture to ensure data integrity and anonymous data collection.
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• statistics that other vehicles report in
the same situation,

• statistics collected one month earlier
in the same situation, or

• adjacent location sample data re-
ported by the same vehicle.

For example, if a malicious vehicle sends
a fake message reporting low speed (a
severe traffic jam) but the sanitizer finds
that most probe vehicles on the same

road segment at a similar time report
high speed, the system can easily detect
this as an unreliable message.

We can extend the system to actively
blacklist vehicles that submit apparently
incorrect data. Because only the CS
maintains identities, the TS must return
the message with the incorrect data to
the CS. The CS in turn looks up this mes-
sage’s originator (this requires buffering
messages for a certain time window) and
drops all further messages from this vehi-
cle until the CS can establish its integrity
through other means.

Discussion
As we’ve already said, this architecture

can provide privacy guarantees against
basic eavesdropping and insider attacks
through encryption and the separation
of identity and position information.

More sophisticated intrusions at the
CSP and the TSP are also possible.

CS integrity
The proposed architecture assumes

that the CS is trustworthy with respect
to data integrity. The architecture pro-
vides no cryptographic protection 

against the CS spoofing, replaying, or
dropping messages. To relax this trust-
worthiness assumption, the sanitizer
could easily filter replayed messages at
the TS, because no two messages should
contain the identical GPS time stamp
and position. We could also add a basic
degree of protection against spoofed
messages through an additional sym-
metric key, KINT, that all vehicles and
the TS share. Vehicles can use this key

to generate a MAC for each location
update message that the TS can verify
without being able to identify the vehi-
cle. However, vehicles and the TS
would need to update this key regularly
because a key shared by many vehicles
is difficult to keep secret. Identifying
dropped messages proves most difficult.

For a more comprehensive solution,
the TSP should continuously monitor the
traffic data’s quality by cross-checking
with other data sources and monitoring
consumer complaints. Monitoring should
let the TSP identify if the CS has inserted
a continuous bias in the data. It might also
make an additional authentication key
(KCS) unnecessary.

In this architecture, we’ve deliberately
emphasized privacy protection, because
privacy leaks are often more difficult to
identify than integrity problems. Be-
cause the CSP and TSP will enter a
mutually beneficial contractual rela-
tionship, both parties will want to main-
tain data integrity and monitor the pos-
sibility of insider attacks. Individual
drivers, however, have fewer resources
to verify that their private data hasn’t
been compromised.

Location privacy at the CSP 
The proposed architecture provides

location privacy to drivers with respect
to the CSP, because only the TSP knows
the secret key to decrypt the GPS sam-
ples. Although the CSP could probably
use wireless network localization meth-
ods to obtain the mobile node’s position,
these methods would be significantly less
accurate.

For example, cell phone localization
techniques in the US were designed to
Federal Communications Commission
specifications. The E911 Phase II man-
date states that a system should be able
to locate 67 percent of calls within 100
meters and 95 percent of calls within
300 meters. So, we can expect com-
monly used technologies such as Uplink
Time Difference of Arrival to provide
an order-of-magnitude less accuracy
than in-vehicle GPS, which typically
achieves better than 10-meter accuracy.
Assisted GPS technology, which relies
on GPS chips in cell phone handsets,
might be more precise. A-GPS could be
easily disabled, however, for in-vehicle
deployment.

Location privacy at the TSP
Because the TSP database mixes an-

onymous location samples from all vehi-
cles, private information is hard to ex-
tract. If multiple vehicles cross paths,
discerning which sample belongs to which
vehicle is difficult. Nevertheless, breaches
can still occur—intruders can access
decrypted location samples from the
TSP’s database.

Here are two risk scenarios arising
from data mining techniques in which
privacy might be compromised even if
an anonymous data collection architec-
ture is deployed:

• Home identification. An intruder
might identify a home’s location from
probe vehicle drivers as a first step
toward identifying a particular driver.

Because the TSP database mixes anonymous

location samples with all vehicles, private

information is hard to extract. Nevertheless,

breaches can still occur.



• Target tracking. An intruder might
reconstruct paths from anonymous
traces and use them to link the driver
to sensitive places that he or she visited. 

Although these techniques are most use-
ful in conjunction—a privacy compro-
mise requires both identifying the driver
and acquiring sensitive information
about the individual—we concentrate
here on home identification.

Home identification. Clustering can be
an effective tool for home identification.8

Clustering analysis provides insight into
data by dividing objects into groups
(clusters) such that the objects in a clus-
ter are more similar to each other than to
the objects in other clusters.

Consider the case in which an autho-
rized, legitimate, but malicious employee
at the TSP accesses GPS trace data col-
lected as defined in our proposed archi-
tecture. Since location samples are anon-
ymous, at most, the adversary can obtain
a collection of GPS location samples
without user identity. In addition,
because of measurement inaccuracies
and the possibility of using different
parking spots, the exact endpoints of a
GPS trace might differ by hundreds of
feet, even though a vehicle visits the same
place.

However, clustering techniques can
smooth out such noisy GPS traces and
allow automatic identification of
repeatedly visited places. Specifically,
clustering algorithms can automatically
group a set of location samples that
likely belong to the same destination:
anonymized location samples with
low-to-zero speed might be candidates
for endpoints, and the centroid of this
cluster of endpoints provides a good
estimate of the destination. We can im-
prove the estimate’s accuracy by know-
ing road topology as provided by digital
road maps such as those from Goo-
gleMap or MapQuest. In our cluster-

ing practice, we’ve developed a set of
heuristic rules to filter out irrelevant
location samples. For instance, we can
differentiate stationary from moving
GPS location samples by looking at
GPS speed information. Also, we can
use time information to distinguish
home locations from other kinds of
destinations. If the marked time is from
4 p.m. to midnight and we detect no
subsequent moving GPS location sam-

ples before the next morning, the des-
tination is more likely to be a home
than a workplace.

Indeed, place identification is a gen-
eral technique to extract potentially
sensitive information about a driver’s
habits and interests.9 This information
is also directly related to the ability to id-
entify a driver from anonymous traces.
Generally, the more information intru-
ders know about a data subject (work-
place, home location, gym visits, fa-
vorite restaurant, and so on), the more
likely they can identify that driver. We
believe that home identification pro-
vides the highest risk, because there’s
usually a one-to-one mapping between
a typical suburban home and a house-
hold, and home owners and occupants
are public knowledge through telephone
white pages or real estate records.

Target tracking. Adversaries can use
target tracking to reconstruct paths
from anonymous samples or seg-
ments,10,11 especially once they’ve iden-
tified a home location. Privacy risks go
beyond knowing a home location once
they’ve linked potentially sensitive in-

formation or places to this home. Tar-
get tracking lets an adversary follow the
traces reported by a vehicle to other
locations, thereby linking information
about other places to the driver’s iden-
tity. However, these techniques don’t
work well in urban areas because build-
ings, bridges, and tunnels often block
GPS signals; they’re more effective in
suburban areas, which contain less
dense GPS traces. 

Sampling frequency and home
identification: a case study

This case study analyzes the effective-
ness of home identification techniques
on the TSP’s data sets. Our objective is to
shed light on the most serious privacy
question raised in the discussion of our
architecture. Is anonymous data collec-
tion enough to protect user privacy? If
not, what sampling frequency provides
enough data without unduly raising the
privacy risk? Intuitively, the privacy risk
decreases when the system operates with
lower sampling frequency (the frequency
with which probe vehicles provide posi-
tion updates). So, a judicious choice of
the sampling frequency is critical in our
proposed architecture. Operating at re-
duced sampling frequency is a basic data
suppression technique that you can
derive from known concepts such as mix
zones12 or cloaking techniques.13 In this
case study, we consider how effectively
this basic approach reduces the home
identification risk. Of course, the chal-
lenge in devising a suppression technique
is to improve privacy while not unnec-
essarily reducing service quality. Other
researchers have looked at the effect on
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Target tracking lets an adversary follow the

traces reported by a vehicle to other locations,

thereby linking information about other places

to the driver’s identity.



service quality,2 so our study concen-
trates on privacy aspects.

Our study uses a data set containing
GPS traces from vehicles driving in the
larger Detroit, Michigan, area. For pri-
vacy reasons, we had no specific infor-
mation about the vehicles or drivers
except that the drivers were volunteers.
Each GPS sample comprises vehicle ID,
time stamp, longitude, latitude, speed,
and heading information. Each vehicle
records a GPS sample every minute
while its ignition is switched on, for a
period of one week. This means that
the traces contain both spatial and tem-
poral gaps. No data is provided while
the vehicle is parked with its ignition
switched off. In addition, data was un-
available when the GPS receiver was
acquiring or had lost a satellite fix (for
example, because of obstruction from
high-rise buildings).

Clustering-based home
identification algorithm

For our home identification algo-
rithm, we use a k-means clustering algo-
rithm on anonymous location samples
to identify frequently visited places. We
then refine the resulting clusters using
several heuristics. First, a set of anony-
mous location samples near a home
likely have low to zero speed. Second,
vehicles are often parked overnight at
homes. Specifically, the key steps of the

algorithm are the following:

1. Drop location samples that are too
high-speed (> 1 meter/second) from
the set of all vehicles (the remaining
samples contain the candidate trip
endpoints).

2. Select a target region of interest to
improve computational efficiency,
and drop samples outside this
region.

3. Apply the k-means pairwise cluster-
ing algorithm to samples in the tar-
get region and store the returned
cluster centroids.

4. Filter the candidate home locations
out of all centroids using heuristic
A, arrival time, and heuristic B, zon-
ing information.

Step 3 repeats to calculate the cen-
troids of clusters until it finally groups
all location samples into the optimum
number of clusters. The k-means pair-
wise clustering algorithm in step 3
doesn’t have a priori knowledge of the
optimum number of clusters at the ini-
tial run. So, it uses all locations ob-
tained after step 2 as initial clusters
and keeps merging close ones into 
fewer clusters at each run. The merg-
ing process stops when every centroid
has all its elements within a certain dis-
tance (Dth) on the average. Dth should
be chosen according to different home

densities. If the home density is too
dense, keep Dth small enough to dif-
ferentiate the locations of other vehi-
cles living near each other. In our sim-
ulations, we use a value of 100 m for
this threshold, which we derived from
the region’s actual home density.

Filtering with heuristic A eliminates
all centroids that don’t have any even-
ing visits. We define an evening visit as
a location sample arriving between 4
p.m. and midnight. Filtering with heur-
istic B eliminates all centroids outside
residential areas. In our experiments,
we’ve eliminated centroids outside res-
idential areas by manually inspecting
satellite imagery (using Google Earth).
You could automate this process by ob-
taining geographic-information-system
data sets with city zoning information.

Because real home addresses were
unavailable (we omitted driver identi-
ties in the data set for privacy reasons),
we manually inspected the unmodified
week-long traces overlayed on satellite
images to identify plausible home loca-
tions as an experiment baseline. To
make the evaluation feasible, we ana-
lyzed a subset of the region covered by
the 239 traces in the data set (each trace
corresponds to one driver). The subset
contained the two residential regions
(together a 25 � 25 km area) marked
with rectangles in figure 3. We found 65
plausible homes through manual inspec-
tion. We then compared the automated
algorithms to the results of the manual
inspection. For the algorithm evalua-
tion, we considered a home correctly
identified if the algorithm and manual
inspection gave the same answer. The
results indicate whether the inspection
task could be automated for mass sur-
veillance purposes. 

Because no real ground truth was avail-
able, the experiment doesn’t definitely
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Figure 3. Plausible home locations in 
two target regions (the red rectangles),
identified through manual inspection.
The study considered 65 homes in a 
25 � 25 km area.



answer whether we identified the drivers’
real home locations. The 65 reference lo-
cations we chose manually, however, each
contained a single home that stood out as
a likely home location—the drivers visited
this location much more frequently at
night than others. So, we believe manual
inspection provided a reasonable ap-
proximation of real home positions.

To examine the effectiveness of reduc-
ing sampling frequency, we measured the
home identification rate (how many
homes out of 65 we correctly detected)
and the false positive (how many of the
estimated home locations were incorrect)
at sample intervals. False positives can
be caused by many vehicles waiting at
traffic lights or the cluster centroid shift-
ing to a neighbor’s house because of inac-
curate location reports. In addition to the
standard 1-minute sample interval
(which produces one location trace per
minute), we considered 2-, 4-, and 10-
minute intervals.

Results
Figure 4 shows that at the standard

rate, the home identification algorithm
correctly located about 85 percent of
the homes, albeit also returning a large
number of false positives. Reducing the
sampling frequency decreases the home
identification rate to 40 percent for the
4-minute interval, with similar false-
positive rates. Although there’s no clear
linear trend—for example, home iden-
tification with 10-minute intervals per-
formed better than with 4-minute inter-
vals because it happened to generate
fewer candidate centroids after clus-
tering—the results indicate that data
suppression algorithms can reduce the
home identification risk and thereby
increase privacy. Also, although the home
identification intrusion technique we
evaluated suffered from many false pos-
itives, it can be at least effective for auto-
mated prefiltering, followed by manual

inspection to remove false positives.

T
he degree of privacy protec-
tion this architecture provides
depends on judiciously choos-
ing the frequency with which

probes send in their position updates.
Sampling frequencies higher than one
sample per minute, as frequently con-
sidered for traffic-monitoring applica-
tions,1,2,14 allow data mining techniques
to reidentify many of the probe vehicles.
To provide a high degree of privacy pro-
tection, traffic-monitoring systems should
operate at sample frequencies of at least
several minutes or employ more sophis-
ticated data suppression mechanisms 
that can optimize both privacy and data
quality.
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