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ABSTRACT
Research on smart meters has shown that fine-grained en-
ergy usage data poses privacy risks since it allows inferences
about activities inside homes. While smart meter deploy-
ments are very limited, more than 40 million meters in the
United States have been equipped with Automatic Meter
Reading (AMR) technology over the past decades. AMR
utilizes wireless communication for remotely collecting us-
age data from electricity, gas, and water meters. Yet to the
best of our knowledge, AMR has so far received no atten-
tion from the security research community. In this paper,
we conduct a security and privacy analysis of this technol-
ogy. Based on our reverse engineering and experimentation,
we find that the technology lacks basic security measures to
ensure privacy, integrity, and authenticity of the data. More-
over, the AMR meters we examined continuously broadcast
their energy usage data over insecure wireless links every 30s,
even though these broadcasts can only be received when a
truck from the utility company passes by. We show how this
design allows any individual to monitor energy usage from
hundreds of homes in a neighborhood with modest techni-
cal effort and how this data allows identifying unoccupied
residences or people’s routines. To cope with the issues, we
recommend security remedies, including a solution based on
defensive jamming that may be easier to deploy than up-
grading the meters themselves.
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C.2.0 [General]: Security and protection; C.2.1 [Network
Architecture and Design]: Wireless communication
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1. INTRODUCTION
Much attention has been devoted to smart meters, as they

play a central role in transforming the current electrical grid
to the smart grid. The smart grid promises to improve
the efficiency and reliability of existing grids by adding self-
monitoring, self-diagnosis, demand-response, and communi-
cation capabilities. Privacy advocates have, however, im-
mediately cautioned that fine-grained energy consumption
data collected by smart meters could reveal sensitive per-
sonal information from homes, and have protested against
the adoption of smart meters [1, 2, 3]. Researchers have
already identified several specific types of information that
can be derived from this energy data and pointed to as-
sociated privacy risks. For instance, burglars could moni-
tor the power consumption of several households to identify
temporarily vacant homes and time their break-ins [4]; a
nosy landlord, employer, or even a stalker could estimate the
number of residents in a household based on the frequency
of power switches turned and the number of appliances si-
multaneously in use [4]; one could monitor the location of
a resident inside the home based on the type of appliances
being used [5]; health insurers could track eating, sleeping,
and to some extent exercise habits by monitoring household
appliance usage [6, 7]. Sufficiently fine-grained data even
allows identifying the TV channel or movies being watched
since television power consumption changes with the image
being displayed [8]. Such snooping into personal residences
is often viewed as particularly intrusive since the home is
one of the last bastions of privacy. It is the locus that first
gave rise to the concept of privacy laws [9] and a place where
a particularly strong expectation of privacy still exists.

There are also security concerns that arise in smart me-
ters, particularly about the integrity and authenticity of
the reported data. Although smart meters have been de-
signed to mitigate the long-standing problem of energy theft
via physical tampering, their wireless module is known to
present ample opportunity for dishonesty. For instance, it
allows underreporting energy usage or inflating the utility
bills of a neighbor [10, 7]. To ensure the trustworthiness of
the meter data, NIST is developing guidelines for cryptog-
raphy and key management strategies in smart meters [11].
Because of the on-going privacy debate and the yet-to-be-
verified security strategies, smart meters have so far only
undergone a few pilot deployments in the United States.

1.1 Automatic Meter Reading
There is, however, another enhanced meter technology

that has already been widely deployed but has so far re-



ceived little attention. As of 2010, more than 47 million
of these Automatic Meter Reading (AMR) systems were in-
stalled, representing more than one-third of the 144 mil-
lion total U.S. residential, commercial, and industrial me-
ters [12]. Once deployed, AMR meters will likely remain in
operation for an extended period of time for several reasons.
First, AMR systems enable utility companies to remotely
collect consumption data of electricity, water, and gas —
for example, with a receiver mounted on a drive-by truck.
They therefore promise to reduce the cost of reading me-
ters as well as reduce human errors in this process. Second,
we have witnessed attempts to leverage the existing invest-
ments in AMR meters [13] to provide some of the functions
of smart meters. For instance, existing fixed network AMR
can report energy consumption data to both customers and
providers in real time by connecting AMR meters to a net-
work of radio repeaters and collectors [14], allowing utilities
to better respond to demand changes (demand-response).

Motivated by this large existing deployment, in this pa-
per we report a privacy and security analysis of a popular
AMR meter system. Using a software radio platform we re-
verse engineered the wireless communication protocol and
examined whether any of the above mentioned privacy and
security risks associated with smart meters also exist in the
AMR systems. We were also curious whether the consid-
erable smart meter security research and public discussion
have influenced the design of such systems.

1.2 Contributions and Findings
The step from traditional analog meters to AMR may

seem like a minor technology upgrade compared to the en-
visioned smart meters, thus appearing unlikely to result in
significant privacy and security issues. We found, however,
that the risks are compounded due to the following reasons.

Unsecured Wireless Transmission. Smart meter re-
search typically assumes that energy data is communicated
to the utility over a secure channel to preserve the integrity
of the readings and alleviate privacy risks [15, 11, 7, 16].
Thus, privacy risks of smart meters center on insider risks,
misuse, and exploitation of the data at the utilities. The
AMR meters that we studied, however, make data publicly
available over unsecured wireless transmissions. They use
a basic frequency hopping wireless communication protocol
and show no evidence of attempting to ensure confidential-
ity, integrity, and authenticity of the data. The communi-
cation protocol can be reverse engineered with only a few
days of effort and software radio equipment that is publicly
available for about $1,000 (GNU Radio with the Universal
Software Radio Peripheral). We were able to both eavesdrop
on messages as well as spoof messages to falsify the reading
captured by a commonly used ‘walk-by’ reader.

Continuous Broadcast of Fine-Grained Energy Data.
The meter we examined continuously broadcasts its energy
consumption, even if no receiver is present. Approximately
once a month, the meter is being read by a utility truck that
drives by. However, the meter simply broadcasts its reading
every 30s around the clock. We also found the communi-
cation range of AMR meters to be larger than expected.
Packets from gas meters and electric meters can be success-
fully received from up to 70m and 300m, respectively, using
a generic 5 dBi antenna and an off-the-shelf low noise ampli-
fier (LNA). In the neighborhood where we tested, we were
able to receive packets from 106 electric meters using a basic

antenna and 485 meters by adding an LNA at a single meter
location.

Neighborhood Monitoring. AMR meters make it pos-
sible for anybody with sufficient technical skills to monitor
real-time energy consumption patterns in an entire neigh-
borhood. We built a live RF sniffer that collects energy
consumption records by eavesdropping on the periodic wire-
less packets. Compared with the more fine-grained data
obtained from direct visual observation, we found that the
data obtained by RF sniffing is still sufficient to identify the
same appliance usage events. It can therefore be helpful in
inferring residents’ daily routines. This is particularly con-
cerning because wireless eavesdropping facilitates the moni-
toring of hundreds of residences in neighborhood from a sin-
gle location with a lower risk of detection than direct visual
observation of the residences.

Defenses for Legacy AMR Meters. We recommended
several remedies to alleviate these risks on legacy meters.
They range from policies such as occasional manual cross-
checking of the readings to ensure integrity, over meter up-
grades with cryptographic protocols, to a defensive jamming
solution that can be implemented by adding a simple hard-
ware component next to an existing meter.

The rest of the paper is organized as follows. We present
a background overview of AMR in Section 2. In Section 3,
we describe our reverse engineering endeavor to discover de-
tails of the proprietary communication protocol, and show
spoofing attacks. We then reveal our finding on using AMR
meters to monitor energy usage in a neighborhood in Sec-
tion 4 and to identify people’s routines in Section 5. In
Section 6, we recommend security remedies. Finally, we
survey the related work in Section 7 and conclude the paper
in Section 8.

2. BACKGROUND
Automatic Meter Reading (AMR) is a technology that au-

tonomously collects the consumption and status data from
utility meters (e.g., electric, gas, or water meters) and deliv-
ers the data to utility providers for billing or analysis pur-
poses. The concept of AMR was proposed in the 1960s [17],
and the first AMR design was documented in a patent by
Paraskevakos in 1972 [18]. This early version of an AMR
system used telephone lines to automatically transmit me-
ter readings to a remote receiver. Later versions of AMR
adopted power line communication, low power radio fre-
quency (RF) communication, satellite communication, etc.
Among these technologies, RF communication is the most
cost-effective solution and has been widely used in residen-
tial AMR systems. In this paper, we focus on AMR systems
that utilize RF communication.

2.1 AMR Architecture
AMR systems consist of two main components: (1) AMR

Meters that collect and transmit consumption data, and (2)
AMR Readers that receive and forward the consumption
data sent by meters to a central collection point for billing,
diagnosis, and analysis.

AMR Meters. AMR meters (hereafter meters) measure
the total consumption of electricity, gas, or water. Regard-
less of what meters are measuring, their core components re-
main the same. Each RF-based meter is comprised of a me-
tering engine and an Encoder-Receiver-Transmitter (ERT).
The metering engine measures the consumption through a



Figure 1: Generic AMR meters. [Left to right] A
stand-alone gas meter, a gas meter inside gas flow
measuring chambers, and an electric meter.

mechanical dial that rotates at a speed proportional to the
amount of consumption. With the help of electromechani-
cal or electro-optical interfaces, the movements of dials are
converted into digital numbers. The ERT consists of a mi-
croprocessor and a low-power radio transmitter. It processes
the meter reading and periodically reports information such
as meter ID, meter reading, tamper status, etc.

Depending on what meters are measuring, their appear-
ances, communication protocols, and power supplies can dif-
fer. Fig. 1 shows two representative residential gas meters
and an electric meter. Electric meters are conveniently pow-
ered by the main electricity supply line, while gas and water
meters operate on sealed batteries designed to last up to 20
years [14]. The battery constraints of gas and water meters
usually lead to longer intervals between energy reports. We
analyze both electric and gas meters with an emphasis of
electric meters.

AMR Readers. To capture the meter readings and relay
them to a central collection point, one or more AMR readers
(hereafter readers) are required. Readers interpret the sig-
nals and deliver the meter IDs along with other information
to a central collection point. Three categories of readers
are used in the utility industry: (1) handheld devices for
field investigation or walk-by meter reading, (2) highly sen-
sitive mobile collectors for drive-by meter reading, and (3)
a network of permanently installed collectors and repeaters
for reporting AMR meter readings in real time, (aka. fixed
network AMR) [19].

Both handheld devices and mobile collectors require per-
sonnel to walk or drive by locations where the meters are in-
stalled, and total utility consumption can only be updated
as frequently as the walk-by or drive-by events occur. A
fixed network AMR system requires higher infrastructure
investment, but does not need delegated drivers or ‘walk-
ers’ for data collecting, and can provide continuous energy
consumption updates to the utility.

Since we were unable to get full access to mobile collectors
or fixed network collectors, we show our findings using a
handheld collector. Because the main function of all three
types of AMR readers is to collect meter readings, we believe
that our findings provide insight for the other types of AMR
readers.

2.2 AMR Communication Protocol
The communication protocol between meters and readers

is proprietary. Even so, a survey of information from sup-
plier websites and patents [20] provides a rough idea about
the communication protocol, with some information proving

Figure 2: An AMR transmission is comprised of
two packets. A pilot packet is transmitted approx-
imately 275 ms before a data packet that contains
the actual meter status update.

to be inapplicable to the models of meters that we studied
and some proving to be pertinent. We learned that most
meters operate in the 915-MHz ISM band, use simple mod-
ulation schemes such as on-off keying (OOK) or frequency
shift keying (FSK), and incorporate Manchester encoding
schemes. To avoid packet collision, meters implement fre-
quency hopping, where packet transmissions repeatedly cy-
cle through a pre-determined sequence of channels. Each
packet contains the meter ID, reading, device type, and tam-
pering status.

AMR systems support two types of communication mod-
els: ‘wake-up’ and ‘bubble-up’. Wake-up systems use two-
way communication, whereby a reader transmits an activa-
tion signal to wake up and interrogate one or more meters.
Bubble-up models use one-way communication, whereby me-
ters periodically broadcast the meter readings. Wake-up
models are primarily used in battery-operated gas and water
meters, while bubble-up models are used mainly in electric
meters [14]. Interestingly, we discovered that the gas meter
that we investigated also works in bubble-up fashion.

3. SECURITY ANALYSIS OF AMR METERS
Besides the effort of detecting physical meter tampering,

we have found no evidence that security was considered dur-
ing the AMR meter design. Since the wide deployment of
AMR meters, there has been sporadic exploration into sys-
tem characteristics [21, 10]. However, none of the previous
work has taken a comprehensive look at the deployed system
to determine how an attacker might misuse it.

In this section, we investigate the following issues: (1)
How easy is it to reverse-engineer the communication pro-
tocol? (2) Are spoofing attacks possible?

3.1 Equipment
The primary purpose of our work is to raise awareness

about oft-neglected areas, not to encourage misuse; hence,
we have refrained from disclosing details of the meters being
studied. For our study, we used the equipment from the
following three categories.

AMR Meters. We selected electric and gas meters that
have been widely deployed throughout the United States.
In addition to meters installed in our neighborhood, we ac-
quired second-hand electric and gas meters to conduct ex-
periments both in the lab and outdoor.

Meter Readers. We obtained a generic handheld AMR
ERT module reader used by meter inspectors for field in-
terrogation. This handheld AMR reader works with the
selected meters and can read the meter ID, meter reading,
meter type, and physical tamper status. In our experiments,
we primarily used it for interpreting meter packets. We did
manage to briefly access (1 hour) advanced AMR collec-
tors used by utility companies to test our spoofing attacks.
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Figure 3: A captured AMR transmission. The top
plot shows the signal time series (both magnitude
and in-phase), while the bottom plot displays its
spectrum. The plots suggest the use of OOK mod-
ulation and Manchester encoding.

However, we did not report the experiment results due to
the mutual agreement with the utility company.

Raw Signal Sniffer. We were interested in performing
analysis using low-cost, off-the-shelf equipment; hence, we
did not use professional signal processing instruments such
as Vector Signal Analyzers or Spectrum Analyzers. Instead,
we used a low-cost software defined radio platform, i.e., the
Universal Software Radio Peripheral (USRP) [22] to cap-
ture raw AMR signals. We primarily used the first genera-
tion USRP with limited instantaneous bandwidth capability,
and occasionally tested on the second generation that can
monitor a wider frequency band. The daughterboards used
in our experiment include an RFX900 and a WBX daugh-
terboard. Both daughterboards cover the frequency range
of AMR meters, which is centered at 915 MHz.

For ease of reading, from this point onward we refer to the
electric meter as meter-E, the gas meter as meter-G, and the
handheld reader as ERT reader.

3.2 Reverse Engineering AMR Communica-
tion Protocols

Without insider information, we rely on reverse-engineering
to discover the meters’ communication protocol details.

Capturing the First Packet. The first step of reverse
engineering is to capture a few transmissions from each me-
ter. Surprisingly, this step turned out to be very difficult for
several reasons. First, it took a long time to detect and cap-
ture AMR activities. Both meter-E and meter-G work in the
bubble-up model, where they periodically broadcast packets
and do not respond to any activation signals. Second, it is
difficult to capture a ‘clear’ transmission from meters with-
out the specific channel and other physical layer information.
Meters hop through a frequency band larger than what our
signal sniffers can monitor. During the exploration phase,
we used the first generation USRP that is able to monitor at
most 8 MHz (with 16-bit I/Q samples), a fraction of what
meters cover. Due to this limitation, we captured highly
distorted packets which were beyond decoding. Moreover,
several other electronic devices operate in the 915-MHz ISM
band, and thus resulted in interference and confusion. As
an example, we observed wireless transmissions from cord-
less phones.

To streamline our reverse-engineering process, we built de-
tection software to capture, replay, and verify signals. First,

Packet
Detector

Packet
Filter

Decoder

Meter
ID

Meter
Reading

1101

Figure 4: The flow chart of our live decoder.

we developed an activity detector to automatically record
signals that are above the ambient noise floor. Then, can-
didate signals were extracted and verified by retransmitting
them with the USRP. The signals that induced proper dis-
play on the ERT reader were the ones transmitted by AMR
meters. In the end, we discovered that each transmission
from AMR meters consists of a pilot packet with a length
of 44.9 ms, and a data packet of 5.8 ms. Both packets were
transmitted on the same channel with separation of 275 ms
as shown in Fig. 2. Interestingly, we found that the ERT
reader does not need the pilot packet to correctly interpret
the data packet.

Decoding Packets. Lacking an instrument to interpret
the pilot packets, we focused on decoding the data packets.
To convert raw signals to bit streams and then to meaningful
fields, we needed to identify the modulation scheme, baud
rate, encoding scheme, and packet format. After a quick ex-
amination of the signals in the time and frequency domains
(as shown in Fig. 3), we confirmed that meters use on-off
keying (OOK) as their modulation scheme and an inverted
version of Manchester encoding scheme.

Additionally, we discovered that the baud rate of meters is
16.5 kBd, and the duration of the high level of each bit has to
be slightly longer than the duration of the low level. Packets
with the improper ratio of high and low level durations will
be considered invalid and are ignored by the ERT reader. It
is unclear what the intention was for the different durations
of high and low levels, but this difference did induce extra
effort during our reverse engineering endeavor.

Successful demodulation and decoding returned a stream
of 96 bits in each packet. With the help of the ERT reader,
we were able to obtain several pairs of bit streams and
their corresponding meter IDs, meter readings, tamper sta-
tus, etc. Differential analysis over bit streams revealed the
packet format, which contains a 24-bit meter ID, a 22-bit
meter reading, and a 16-bit CRC checksum. We found that
both meter-E and meter-G use the same packet format.

Characterizing Channels. To find details about the
transmission channels of meters, we scanned through the
entire 915-MHz ISM band (i.e., 902-928 MHz). We found a
cluster of channels that are used by meters and made two in-
teresting observations during this phase of experimentation:
(1) Channels are separated by multiples of 200 kHz and not
all candidate channels in the 915-MHz ISM band are used.
(2) Meter-E cycles through a sequence of 50 pre-determined
channels every 25 minutes.

Building a Live Decoder. After identifying details of
the meter communication protocol, we developed a live de-
coder that monitors channel activities and outputs the meter
ID and meter reading immediately after a packet is received.
The live decoder consists of Python scripts that utilize sig-
nal processing libraries in GNU Radio. As shown in Fig. 4,
the live decoder continuously samples the channels around
915 MHz at a rate of 4 MHz. We note that in such a setup,
only packets transmitted in the range of 913 MHz to 917



Figure 5: Spoofing attack validation: The LED dis-
play of the ERT reader received the spoofed packet
with an ID of 11223344 and data reading of 1234.

MHz can be captured with little distortion and can survive
decoding. We will discuss our effort in capturing packets
transmitted in other frequency ranges in Section 4.

Once the packet detector identifies high energy in the
channel, it extracts the complete packet and passes the sam-
pled data to a packet filter. To filter out non-AMR pack-
ets and pilot packets, we first discard any packet whose
length mismatches with that of expected data packets. Next,
we perform histogram analysis to discard distorted packets.
The underlying observation is that, ideally, the amplitudes
of a Manchester-encoded signal should cluster around two
sets: one set mapping to the low level and the other map-
ping to the high level, as illustrated by Fig. 2. Any packet
whose amplitude spectrum is not evenly divided into high
and low levels is likely to be a distorted packet. Finally,
‘clear’ meter packets are passed to the decoder for extract-
ing meter ID and meter reading.

Lessons Learned. At the end of the reverse engineering
process, we came to the following conclusions.

• Reverse Engineering requires modest effort. With a
communication and computer engineering background,
one can reverse engineer the meter communication pro-
tocol with reasonable effort using off-the-shelf equip-
ment (an ERT reader and USRP with an RFX900)
costing $1000 at the time of our experiments.

• No Encryption. No encryption algorithms are used,
which makes it possible for anyone to eavesdrop on
the real time consumption of customers with ‘bubble-
up’ meters. For customers with ‘wake-up’ meters, it is
foreseeable that their consumption data can be eaves-
dropped on at arbitrary rates using activation signals,
since those signals are also not protected by crypto-
graphic mechanisms.

• Battery Drain Attacks. After receiving an activation
signal, ‘wake-up’ meters will immediately transmit a
packet. Thus, they are vulnerable to battery drain
attacks.

3.3 Packet Spoofing
After AMR meters have been installed, most customers

and utilities trust the integrity of the collected meter read-
ings, since AMRmeters reduce human errors associated with
the traditional analog meter collecting process. However,
such a trust relationship must be questioned, should a mali-
cious attacker be able to forge packets containing arbitrary
data and successfully deliver them into the provider’s data
collectors. Thus, following our successful reverse engineer-
ing step, we examined the feasibility of launching spoofing
attacks.

To transmit a spoofed packet with an arbitrary meter
ID and meter reading, we generated a properly formulated
packet using Manchester encoding and OOK modulation.

Then, the fake AMR data packet was up-converted and
transmitted at one of the channels used by meters. We have
tested our spoofing attacks on the following three monitoring
devices with gradually improved complexity: (1) a generic
handheld collector (the ERT reader), (2) a more advanced
data collector commonly used by field investigators in utility
companies, and (3) a sophisticated mobile collector used by
utility companies to gather meter readings from a vehicle
driven in a fixed route periodically.

The authors and utility company agree that disclosing the
results conducted at the utility company would not enhance
their systems. Therefore, we exclude the test results ob-
tained on the advanced handheld data collector and the so-
phisticated mobile collector, and only reveal our findings
using the ERT reader.

Observations. Our experiments using the ERT reader
reveal the following findings.

• No Authentication. The ERT reader accepts any AMR
transmission with a proper packet format. Fig. 5 shows
that the ERT reader accepted a spoofed packet with
information of our choice: meter ID of 11223344 and
meter reading of 1234.

• No Input Validation. When receiving multiple packets
with the same meter ID but conflicting meter read-
ings, the ERT reader will accept the packet with the
strongest signal without reporting any warning. We
note that even if a meter collector is sophisticated
enough to keep track of all received packets for a con-
flicting test, an adversary can easily jam and block
packets sent by a legitimate meter and let the meter
collector only receive her spoofed packets.

4. NEIGHBORHOOD MONITORING
AMR meters pose immediate privacy risks as they broad-

cast meter readings in plaintext. Each packet contains a
meter ID and meter reading. Given a specific household
address, it is usually trivial to identify the associated me-
ter ID because meters tend to be installed in publicly ac-
cessible locations (e.g., exterior walls of residential houses),
and the meter ID is printed on the front face of meters. In
this section, we explore whether an adversary can monitor a
larger number of homes in a neighborhood simultaneously.
This depends on the range of the transmission and propa-
gation loss. Our software radio eavesdropping approach is
also complicated by the frequency hopping feature, since it
cannot monitor the entire set of frequencies simultaneously.

Experiment Setup. Unless specified, our basic eaves-
dropping experiments were conducted from inside the apart-
ment of one of the authors. The antenna dedicated to eaves-
dropping was mounted against a third-floor window over-
looking a slope with several buildings. All meters in this
neighborhood are the same type as meter-E, and each me-
ter transmits 1 packet every 30 seconds. For the majority
of our eavesdropping experiments, we used one USRP (the
first generation), with an RFX900 and a 5 dBi omnidirec-
tional antenna, mimicking a narrowband receiver that can
monitor a fraction of all channels (e.g., 17 channels centered
at 915 MHz).

Eavesdropping Range. The first task was to estimate
the eavesdropping range against meter-E using a basic 5 dBi
dipole antenna in a few real world environments. We tested
two representative locations in an author’s state: a rural
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Figure 6: An aerial view of the neighborhood where we performed our eavesdropping experiments. Each
blue triangle or red star represents a group of four or five meters mounted in a cluster on an exterior wall.
Using an LNA and a 5 dBi omnidirectional antenna, we were able to monitor all meters in the neighborhood.
Some sniffed meters may be out of the scope of this view.

area with sparse two-story independent houses and an urban
area with several connected three-story apartment buildings
(e.g., our basic experiment location). Since we were inter-
ested in determining the physical range of our eavesdropper,
we considered a meter within eavesdropping range if at least
one of its packets was intercepted and decoded successfully
over the entire listening duration (1 to 4 hours).

We were able to decode packets from as far as 150m away
in the rural area, and up to 70m in the urban area. We
believe that the range difference is caused by the terrain
variance. The rural area has far fewer obstacles (e.g., build-
ings) to hamper radio propagation (e.g., fading and multi-
path effects). Although the eavesdropping range in other
environments may differ, our results indicate that an at-
tacker should be able to sniff packets in any environment
without entering private property.

Boosted Eavesdropping Range. To boost the range
at low cost, we added a commercially available low noise
amplifier (LNA) [23] to the antenna. The LNA provided
21 dB gain, and increased the eavesdropping range in the
urban area from 70m to more than 300m for meter-E and
from 15m to 70m for meter-G, as summarized in Tab. 1.
Meter-G has a smaller range because it is battery-powered
and transmits at a lower power level.

Fig. 6 provides an aerial view of the physical range of
eavesdropping and the terrain variation. The laptop icon
denotes the location of the eavesdropper. Without an LNA,
the eavesdropper can decode packets sent by meters located
at blue triangles. Once the LNA was added to the basic
setup, we were able to collect data from a larger number
of meters, denoted by the red stars. The underlying prin-
ciple of increasing the receiving range is that an LNA am-

plifies the received signal strength (RSS) of each packet and
thus increases the likelihood of successful decoding. To il-
lustrate, Fig. 7 depicts the RSS of one meter located 15m
from the eavesdropper when an LNA was and was not used.
The usage of an LNA boosted the receiving range by several
multiples, which enabled us to monitor meters further away.
Granted, there are other ways to boost the eavesdropping
range, but our intention was to show that the eavesdrop-
ping range can be increased using inexpensive hardware.

The Number of Observed Meters. To measure the
total number of observed meters, we utilized two RF snif-
fers: a narrowband sniffer monitoring a 4 MHz frequency
band and a wideband sniffer monitoring 12.5 MHz. The
narrowband sniffer received packets from 72 meters without
the LNA and 161 meters with an LNA. The wideband sniffer
could receive 106 meters without an LNA and 485 with an
LNA, which is more than the total number of apartments
in the neighborhood (408 units). We believe some of the
observed meters are located in the nearby region.

Increasing Packet Reception Rate. We use the num-
ber of received packets per hour (pph) to evaluate packet
reception rate. A larger pph maps to a more frequent up-
date on customer energy consumption and a high level of
information leakage.

We observed that an LNA does help to boost the eaves-
dropping range and the number of observed meters, but it

Range w/o LNA w LNA

Meter-E 70m 300m
Meter-G 15m 70m

Table 1: Eavesdropping range for a gas and electric
meters with and without an LNA.
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Figure 7: An illustration of boosting RSS using an
LNA. We monitored packets sent by a meter 15m
from the receiver.

also reduces the packet reception rates of the meters that
could be heard without an LNA. Ideally, a narrowband snif-
fer that monitors 4 MHz centered at 915 MHz can hear
about 30% of all transmission (40 pph), since meters tend
to transmit around 915 MHz. Without an LNA we could
receive 6.65 pph per meter on average and 27 pph maxi-
mum, while with an LNA, we could only receive 3.96 pph
per meter on average and 27 pph maximum. The addition of
the LNA undoubtably increases the co-channel inteference
(CCI). Hence, our proof-of-concept sniffer sees more packet
collisions.

In addition, a wideband sniffer can slightly improve both
the average pph (7.03 pph) and the maximum ones (30 pph).
The less-than-expected improvement is probably because
the wider the receiving frequency band is, the more likely
concurrent transmissions in different channels collide. De-
tailed distribution of pph for all meters is depicted in Fig. 8.
We will show in the later section that even at a low recep-
tion rate, it is feasible to identify sensitive information of
the residents, such as whether the residents are at home.

A few methods can be used to increase received pph. (1) A
sophisticated decoding scheme. For instance, utilizing cap-
turing effects, we can at least decode the strongest packet
among collided packets, if the RSS of the strongest one is
larger than other packets by a threshold factor [24]. Further,
advanced signal processing techniques such as successive in-
terference cancellation and multi-user detection can be com-
bined with multi-antenna techniques [25] (e.g., beamforming
and space-time adaptive processing [25]). (2) Monitoring the
entire frequency range. A platform monitoring the entire
frequency range can be used to capture packets transmitted
at all channels. However, one would need a very powerful
computer to process data at the rate and/or significant al-
gorithm refinement to decode concurrent transmissions at
different channels, which are outside the scope of our ef-
fort. (3) Dedicating one RF sniffer to monitor one meter.
A narrowband RF sniffer can hop through the same chan-
nel sequence as the target meter to receive packets. Our
experiments show that such a sniffer could achieve 88.5 pph
monitoring a meter that is 10m away without an LNA.

Neighborhood Monitoring. Wireless monitoring al-
lows the gathering of meter readings in an inconspicuous
manner from a larger number of homes. By RF eavesdrop-
ping using a cheap antenna and a low-cost LNA, we were
able to obtain an hourly distribution of power consumption
in the authors’ neighborhood, as shown in Fig. 9. Since the
precision of the wireless meter readings is 160Wh, each bar
in the figure represents 160Wh more consumption than the
one to its immediate left.

Consider, for example, that about 27 meters consumed
less than 160Wh per hour on average, indicating the corre-
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Figure 8: Histogram of received packets per hour
(pph) from each meter using a narrowband sniffer
(4 MHz) or a wideband sniffer (12.5 MHz).
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Figure 9: The distribution of electricity consump-
tion for meters in the author’s neighborhood. 27
meters exhibited less than 160Wh hourly power con-
sumption, indicating 27 apartments unoccupied.

sponding apartment units were likely to be unoccupied at
the time of our experiments. This is an example of poten-
tially sensitive information that can easily be obtained on
this neighborhood scale. In this experiment, we were only
able to receive a few packets per hour (pph) for a large por-
tion of meters. Methods to increase received packet rates are
available and therefore finer granularity data and additional
sensitive information from the neighborhood could likely be
obtained. We will examine this next.

5. INFERRING HOUSEHOLD EVENTS
We now study to what extent it is possible to infer detailed

household activities and events from the obtained data—are
the risks similar to those of smart meters? The lower update
rate of 30s and high packet loss in neighborhood monitoring
may suggest that this is more difficult.

Since no smart meters with fine-grained data are available
in this neighborhood, we address this question by comparing
our data with fine-grained data obtained from direct visual
observation of the meter. To reduce the manual labor re-
quired in this process, we have implemented two automated
visual observation mechanisms of a meter’s on-board LCD
display and infrared (IR) LED using cameras or IR pho-
todiodes, respectively. We considered them as the baseline
schemes for comparing the level of privacy risks caused by
wireless sniffing1.

5.1 Automated LCD Screen Monitoring
The LCD shows the accumulated meter reading in digits

with a resolution of 1 kiloWatt-hour (kWh) and the rate
of consumption by a few ‘dots’, which are displayed on the

1We summarized the highlights of the comparison among
these three methods in Tab. 2



Figure 10: Meter-E disburses the energy consump-
tion via an infrared LED highlighted by the red cir-
cle and the LCD display.

corner of the LCD, as shown in Fig. 10. The set of dots are
turned on and off in a sequence such that they appear as if a
digital wheel is spinning. Once one Watt-hour (Wh) is con-
sumed, one of the dots toggles. To capture every 1 Wh con-
sumption, our camera-based monitoring system tracks the
changes of the dots on an LCD screen. Our system consists
of a wireless network camera (AXIS 207W Network Camera)
filming the LCD display and a laptop for data processing.
Once the video is streamed to the laptop, the processing al-
gorithm locates the area of dots, identifies every dot toggle,
and generates an electricity consumption trace.

In our experiments, we mounted the network camera 0.3m
from a meter to record its LCD display and set the camera
at its 10 frames per second (fps). This rate ensures the
recording of every dot flash unless a household consumes
electricity at a rate higher than 18 kWh. Although our
camera has to be located no more than 0.5m from the meter
because of its low resolution (640 × 480), in practice, with
a higher resolution, the camera can be mounted at a hidden
location further from the meter.

5.2 Infrared LED Monitoring
The IR LED on an electric meter flashes every time 1

Wh is consumed. To capture IR flashes, we designed an IR
sensing circuit (as shown in Fig. 11), which works as follows.
Without an IR signal to stimulate the IR photodiode, the
output voltage of the low power amplifier (LM324) of the
comparator will be low. Once the IR photodiode detects an
IR light, the output voltage becomes high (5V). We record
the output of the amplifier using a National Instruments
USB-6009 data acquisition unit (DAQ) at a rate of 1 kHz,
which is sufficient to capture IR flashes. In practice, the IR
sensor can be combined with a microprocessor and an RF
module to sense and report IR flashes wirelessly.

5.3 Experiments and Results
Here, we examine whether RF sniffing can reveal informa-

tion about (1) Daily routines, like a resident’s sleeping cycle
or work shift information. (2) Appliance activities, like the
usage patterns of appliances in a household (e.g., when an
appliance is on or off).

To evaluate whether RF sniffing can reveal daily rou-
tines and appliance activities, we measured two metrics: (1)
Step changes, which are ‘jumps’ between two consecutive
power consumption levels [26]. Let Φ(t) be the total power
consumption rate (Watt) at time t. A step change hap-
pens when |Φ(t + Δt) − Φ(t)| > α, where α is a threshold
value determined by measurement noise. The number of
step changes is an effective metric for detecting customers’
daily routines [6]. (2) Activities, which are appliances be-
ing turned on or off. To identify the number of step changes

(a) Detection circuit (b) Circuit diagram

Figure 11: IR LED flash detection circuit.

and to recognize appliance status changes, we developed our
algorithms based upon Hart’s algorithm [26], which utilizes
edge detection to identify step changes and recognizes ap-
pliance activities by matching step changes with appliance
power consumption signatures.

Feasibility of Inferring Sensitive Information. RF
eavesdropping suffers from low granularity of obtained data,
since a meter-E broadcasts its reading every 30 seconds with
a data precision of 160 Wh, and unpredictable channel envi-
ronments and frequency hopping make eavesdropping unreli-
able. A key question to answer is whether RF eavesdropping
can obtain data that suffice to infer sensitive information, a
concern that arose in smart meters.

To answer the question, we conducted two experiments.
In the first experiment, we monitored a meter of an apart-
ment with one resident for 24 hours in late spring when heat-
ing was not used. The meter was installed in a private room
with lighting, and thus the camera captured dot changes
throughout the entire experiment. As expected, both cam-
era and IR-based methods captured data with higher gran-
ularity than RF sniffing. To evaluate RF sniffing with vari-
ous levels of receiving capability, we emulated the captured
consumption data at multiple packet receiving rates (i.e.,
pph). We observed that when an attacker can eavesdrop
a reasonable percentage of packets (e.g., 25 pph), enough
step changes can be captured to identify high-load appli-
ance activities (e.g., water heater turned on). Even when
the received packet rate is as low as 2 pph, daily routines
still can be inferred (Fig. 12).

The second experiment occurred in July when air condi-
tioners were used to cope with the summer heat. We mon-
itored the energy consumption using an RF sniffer in one
author’s neighborhood. Figure 13 shows the electricity con-
sumptions of one of the neighbors, from which we observe a
pattern: The owners left for work on weekdays and stayed
at home over weekends. Furthermore, we can infer the daily
routines easily: The owner got up at 7 am, left for work
around 9 am, and returned home around 6 pm on Friday.

In conclusion, AMR meters allow similar sensitive infer-
ences as smart meters. What’s worse is that AMR enables

Method Camera IR Photodiode RF Sniffer

Granularity 1 Wh 1 Wh 160 Wh
Range ∼ 0.1-10m ∼ 0.01m ∼ 300m
Multiple meters

√ × √
Light sensitive

√ × ×
Line of sight

√ √ ×
Daily routines

√ √ √
Appliance activities

√ √ ×

Table 2: Comparison of three monitoring methods.



Figure 12: An RF sniffer can collect data that suffice
to infer daily routines, which could be misused by
thieves. [Top to bottom] The electricity consump-
tion over a 24-hour period that are collected using
(1) a camera or an IR photodiode circuitry; (2) an
ideal RF sniffer receiving all packets; (3) a real me-
ter being studied; (4) a narrowband RF sniffer that
eavesdrops on one channel only.

any one, not just utility companies, to obtain sensitive in-
formation.

6. DEFENSE STRATEGIES
Automatic Meter Readers are vulnerable to spoofing at-

tacks and privacy breaches because packets are sent in plain-
text. We discuss a few strategies to improve the security and
privacy of meters. The strongest level of protection would
require a redesign of the communication protocol as outlined
in Section 6.2. There are, however, possible jamming-based
defenses for legacy meters that can raise the bar for attacks,
and can be deployed more rapidly at a lower cost.

6.1 Spoofing Defenses for Legacy Meters
A few strategies are available to mitigate RF spoofing

attacks for deployed meters without modifying the meters.
The first one is radio fingerprinting techniques, which can
differentiate amongst transmitters (e.g., real meters or at-
tackers in this case) by exploiting device levels imperfec-
tions [27] or unique channel responses [28]. Secondly, anomaly
detection over a collection of meter readings can identify a
sudden usage change and raise an alarm to perform a spoof-
ing investigation. Furthermore, utility personnel can check
the meter reading in person occasionally to detect spoofing
attacks.

6.2 Cryptographic Mechanisms
A complete solution would use cryptographic mechanisms

to achieve authenticity, integrity, and confidentiality. For
instance, the data packets can be encrypted using standard
block encryption algorithms and augmented with a digital
signature for authentication. As such, an attacker cannot
casually eavesdrop the wireless communication and obtain
sensitive power consumption data of consumers. Without
the private key of the meter, the attacker cannot forge the
signature of meters and claim arbitrary meter readings. It
would also be a good practice to transmit a meter reading
only when needed. For example, letting a drive-by reader
wake up AMR meters appears more appropriate.
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Figure 13: The daily and hourly electricity con-
sumption of a household shows weekly and daily
patterns.

Adopting the standard security practices is an effective
solution. However, implementing such a defense requires
the replacement of AMR meters with new meters or at least
an upgrade of the firmware of all deployed AMR meters.

6.3 Jammer add-on
In systems deployed at the scale of million units, the cost

of installation may outweigh the hardware cost of the de-
vices. We are unaware of any remote firmware update ca-
pability for these meters. Thus, a firmware upgrade would
require skilled maintenance staff to work on each meter. To
substantially reduce the cost of such an upgrade, it is possi-
ble to package a protection mechanism into a separate add-
on device, which can be physically attached and secured to
a meter by lower-skilled personnel than a firmware upgrade.

The central component of this add-on device is a Privacy
Preserving Jammer (PPJ ), which can prevent continuous
RF eavesdropping on packets in plaintext by masking me-
ter transmissions. The PPJ continuously monitors channels
and emits a jamming signal immediately after it detects a
packet transmitted by the target meter to prevent eaves-
dropping. Meanwhile, to allow drive-by or walk-by meter
reading, the PPJ can be temporarily deactivated remotely
by authorized meter readers for a period just long enough
to allow privileged meter reading.

Jamming Parameters. To reduce the complexity and
cost, PPJ utilizes a narrowband transceiver that can listen
or transmit only on one channel. The PPJ cycles through
the meter’s channel hopping sequence and emits a protocol-
specific jamming signal to mask the data packets. Note that
the proper channel sequence can be identified by searching
for transmissions on each channel during initialization, or it
can be acquired as prior knowledge from meter companies.

To effectively obscure AMR data packets, the PPJ trans-
mits over the packet channel bandwidth (200 kHz) (shown
in Fig. 14) for the entirety of a packet (5.8 ms). The jam-
mer power should be larger than the meter’s, but within
FCC regulation. By mounting the PPJ close to the meter,
the eavesdropper’s ability to decode packets becomes inde-
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Figure 14: FFT of a PPJ jamming signal.

pendent of their location. Given any far-field eavesdropper
location, the jammer-to-signal (J/S) ratio at the eavesdrop-
per will always be greater than 1 (i.e., J/S > 0 dB), which
represents ample distortion to prevent OOK communication
(i.e., BER = 0.5) [29].

The PPJ minimizes its interference with other devices op-
erating in the 915-MHz ISM band and obeys FCC regula-
tions. The FCC limits the peak output power for frequency
hopping to 30 dBm and places no restriction on duty cy-
cle [30]. The PPJ transmits at a power level less than 0
dBm (yet still greater than the AMR meter’s transmission
level). It overlays its jamming signals with meter transmis-
sions and remains silent when no data is transmitted, thus
greatly reducing any interference.

Deactivation Protocol. To support drive-by meter read-
ing, the PPJ can be deactivated by an authorized reader,
following the three-way handshake protocol illustrated in
Fig. 15. The protocol requires three messages, and the third
one ensures that the drive-by truck confirms the deactiva-
tion before the PPJ stops jamming. All three messages use
basic signatures for authentication, and they are exchanged
on the control channel (an unused channel around 915 MHz,
e.g., 914.2 MHz). To ensure reception of the first deactiva-
tion request message, the PPJ can periodically switch to the
control channel for listening, and the deactivation message
can employ a preamble long enough for the PPJ to detect.

Experiments. We conducted defense experiments in the
same apartment as the eavesdropping experiments in Sec-
tion 4. We programmed one USRP as an RF sniffer and
one as a PPJ. As before, an antenna for the RF sniffer was
mounted against a window to collect data from the author’s
meter. The PPJ was placed close to the author’s meter and
approximately 3m away from the RF sniffer. We studied our
defense strategies against two RF sniffers: one is a narrow-
band RF sniffer hopping through channels and the other is a
wideband sniffer that monitors all channels simultaneously.

Using a narrowband RF sniffer, without turning on the
PPJ, we were able to receive about 2 packets per hour on
each channel, as shown in Fig. 16 (a). Once we turn on the
PPJ, no packets can be received on any channels. To study
the relationship between jamming bandwidth and the pph,
we implemented a bandlimited jammer, which continuously
jammed at 910-920 MHz, as shown in Figure 16. We ob-
served that we blocked all packets in this band, and reduced
the number of received packets in neighboring channels.

7. RELATED WORK
Non-intrusive Load Monitoring (NILM). NILM sys-
tems monitor the total load at an electric meter to extract
individual appliance profiles. NILM algorithms can be di-
vided into two categories based upon the signatures they
use: steady-state and transient [26]. Transient techniques

Figure 15: An example deactivation protocol for dis-
abling the PPJ briefly for meter reading.

require high frequency measurements (e.g., Msps) [31, 32],
while steady-state techniques utilize low frequency measure-
ments and perform edge detection to identify appliances [26,
33]. Recent work examined power consumption in the fre-
quency domain [34], extending the capabilities of traditional
transient solutions by empowering differentiation between
similar appliances. We used prior work [26] to evaluate the
privacy breach of AMR meters.
Consumer Privacy of Load Monitoring. Researchers
have investigated privacy leakage by employing NILM sys-
tems. Mikhail et al.[5] proposed a method to infer a resi-
dent’s activities from demand-response systems. They first
employed an existing NILM algorithm to recognize the run-
ning time schedules of various appliances. Then, extraction
routines were used to determine occupancy schedules, sleep-
ing cycles, and other activities. In their earlier work[4], they
investigated the impact of sampling rate on the accuracy
of personal activity inference. They showed that even with
20-minute time resolution, attackers could still get meaning-
ful estimates of a user’s activities with 70% accuracy. Our
work complements theirs, since we proposed several prac-
tical attacks on deployed electric meters (both visual and
RF-based) for acquiring consumption data, which can serve
as data input to their study. To preserve consumer privacy
from load monitoring, a protection system called NILL was
proposed recently in [35]. They used an in-residence battery
to mask the variance in load to counter potential invasions
of privacy. We believe that our defense strategies against
wireless attacks can complement NILL.
Reverse Engineering. Researchers have used reverse en-
gineering methodology to expose security loopholes in sys-
tems when the designers tried to secure the system by ob-
scurity. Rouf et al. [36] used a similar methodology to dis-
cover security and privacy risks of tire pressure monitoring
systems. Nohl et al. [37] used reverse engineering to reveal
ciphers from a cryptographic RFID tag that is not known to
have a software or micro-code implementation. With some
prior knowledge of the cipher, researchers used a black box
approach [38, 39] for cryptanalysis of ciphers. Bortolozzo et
al. [40] used reverse engineering to extract sensitive crypto-
graphic keys from commercially available tamper resistant
cryptographic security tokens by exploiting vulnerabilities
in their RSA PKCS#11 based APIs.
Attack on Wireless Channel. Checkoway et al. [41]
presented an analysis of vulnerabilities of automotive short-
range wireless communications (Bluetooth), and long-range
wireless communications (cellular). Francillon et al.[42] demon-
strated relay attacks against keyless entry systems, and [43,
38, 44] also employed attacks on the RFID-based protocols
used by engine immobilizers to identify the presence of an
owner’s ignition key. Clark et al.[45] analyzed the security of
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Figure 16: Channel spectrum plots (top) and re-
ceived pph on each channel (bottom) for two sce-
narios.

P25 systems against both passive and active adversaries and
showed that even when encryption is used, much of the basic
meta-data is sent in the clear and is directly available to a
passive eavesdropper. AMR systems being studied in this
paper differ in several aspects from prior studied systems.
Defensive Jamming. Defensive jamming has also been
proposed to protect medical devices [46]. Although sharing
similar concepts, AMR meters involve a different physical
layer technology (frequency hopping), which makes jamming
harder to perform. Differing from prior work [46], the focus
of our paper is to provide insight from both attack and de-
fense sides.

8. CONCLUSION
AMR systems utilizing low power radio frequency (RF)

communications have been widely deployed for automati-
cally collecting utility consumption data. This work shows
that currently deployed AMR systems are vulnerable to spoof-
ing attacks and privacy breaches. Although AMR systems
use frequency hopping, we were able to reverse engineer their
communication protocol and launch spoofing attacks against
a representative meter reader. Surprisingly, we found that
AMRmeters broadcast readings every 30s regardless of whether
any ‘drive-by’ or ‘walk-by’ meter readers are in range, and
meters have a communication range larger than expected.
Through wireless monitoring, we harvested consumption data
from 485 meters within a 300m radius region. This indicates
that the millions of meters that have already been installed
are at risk.

A few standard security remedies are available to cope
with the discussed vulnerabilities. Yet, none of them are
adopted in the deployed AMRmeters that we studied. Adding
those remedies to existing meters requires the upgrading of
existing meters, which if too costly, can be replaced with an

alternative schemes that we call PPJ. It utilizes jamming to
protect against the leakage of legacy devices and requires no
modification of the deployed meters. Our pilot experiments
offer a proof-of-concept that PPJ can be used to prevent
information leakage of AMR meters.
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