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ABSTRACT
Efforts to anonymize collections of location traces have often sought
to reduce re-identification risks by dividing longer traces into mul-
tiple shorter, unlinkable segments. To ensure unlinkability, these al-
gorithms delete parts from each location trace in areas where multi-
ple traces converge, so that it is difficult to predict the movements of
any one subject within this area and identify which follow-on trace
segments belongs to the same subject. In this paper, we ask whether
it is sufficient to base the definition of unlinkability on movement
prediction models or whether the revealed trace segments them-
selves contain a fingerprint of the data subject that can be used
to link segments and ultimately recover private information. To
this end, we study a large set of vehicle locations traces collected
through the Next Generation Simulation program. We first show
that using vehicle moving characteristics related features, it is pos-
sible to identify outliers such as trucks or motorcycles from general
passenger automobiles. We then show that even in a dataset con-
taining similar passenger automobiles only, it is possible to use out-
lier driving behaviors to link a fraction of the vehicle trips. These
results show that the definition of unlinkability may have to be ex-
tended for very precise location traces.

Categories and Subject Descriptors
K.4.1 [COMPUTERS AND SOCIETY]: Public Policy Issues—
Privacy
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1. INTRODUCTION
The broad adoption of location-based services has led to an in-

creasing number of services and applications that monitor and record
time-series location traces of peoples movements [16, 19, 18, 22].
While some applications require knowledge of the user, a number
of applications can enhance privacy by working with anonymous
location records. Traffic engineering-related applications that mon-
itor traffic states and other performance measures are one example
of such applications.

As in other contexts, achieving strong anonymity in a dataset of
location records requires more effort than just deleting identifiers
such as user ids, login names, cell phone IDs, or IP addresses [7, 17,
4]. For this reason, a frequently proposed technique to enhance the
anonymity of location records is to delete portions of the location
traces themselves. This includes trip starting/ending points, which
might point to a sensitive location where a user does not want to be
seen or a particularly identifying location such as a home, which
would make it easier to re-identify a location trace [11, 3].

Since it is difficult, however, to scrub all such locations from
traces, a frequently proposed concept is to also delete portions of
the data within trips, so that longer trips are divided into shorter
unlinkable segments. This will limit the privacy leakage to the in-
formation within one short segment, if a re-identification at one
location were to occur. Variations of this concept are known under
the names of mix-zones [5, 9] or path cloaking [13, 23], and have
been the subject of many follow-up studies (e.g., [6, 20, 15, 10,
21]). These approaches do have in common that they define and
evaluate unlinkability primarily through the use of movement pre-
diction models. Informally, two trip segments are unlinkable if it
is difficult to predict the missing portion of the path with sufficient
precision to determine that these two segments are indeed recorded
from the same user.

In this paper, we test whether this assumption remains sufficient
as the time-series location traces become more precise. For exam-
ple, typical GPS receivers in vehicles can provide location samples
at an updating rate of 1 Hz and with an error of less than 3 m in most
cases. Given such precise movement traces, are there other unique
patterns embedded in the traces, which would allow linking of two
location trace segments without using the prediction models?

One form of such unique patterns are outliers in vehicle moving



characteristics. We studied a large set of vehicle traces and tried
to identify such outliers. In particular, we considered an outlier
as a vehicle which exhibits higher speed, higher acceleration, or a
larger number of lane changes compared to the other nearby vehi-
cles, which are grouped inside the same anonymity group. Here, an
anonymity group can be considered as a number of close-by vehi-
cles whose trace data are available to the adversary without direct
associated information to their real IDs.

The reasons a vehicle may have very distinguishable moving
characteristics comparing to others can be classified into two cat-
egories: intrinsic and extrinsic. Intrinsic reasons are due to the
physical nature of a vehicle, for example a large and heavy delivery
truck usually has smaller mean acceleration than a small passenger
automobile. Extrinsic reasons are the result of the driver’s driv-
ing propensity/behavior or other external conditions. For example,
many of us tend to drive faster when we are pressed by time. The
intrinsic and extrinsic causes are not absolutely disconnected from
each other. Many times they are related and both contribute to dis-
tinguishable moving characteristics.

The rest of the paper is organized as follows. In section 2, we
briefly describe the adversary model. In section 3, we discuss our
motivation with a set of data analysis results. Section 4, we study
several possible learning models an adversary can use to attack ex-
isting mix-zone models. In section 5, we evaluate the proposed
learning models and the impacts on the mix-zone model. Section 6
concludes our work.

2. ADVERSARY MODEL
We consider a scenario where an adversary, perhaps an insider,

has gained access to a database with the location trace information
from drivers. A location trace is defined by a sequence of times-
tamped location records with approximately meter-level precision
at a time resolution of about one second. We assume that mix zone
privacy techniques have been applied: all identifiers such as vehi-
cle license plates associated with the traces have been removed. To
distinguish different traces in this dataset, they have been replaced
with pseudo identifiers. Furthermore, a long trace is split into sev-
eral short segments with different pseudo-IDs in order to reduce
the possible information leakage due to long term tracking [3]. The
mix-zone model [5] is assumed to be used in which all the loca-
tion traces are discarded inside mix-zones, leaving only segments
outside that area. Based on all the available trace segments (which
may belong to different users but are all mixed together), an ad-
versary’s task is to identify which segments were generated by the
same user. In other words, the adversary tries to link segments after
the mix zone to a segment before the mix zone (which the adversary
may have already correctly associated with the target).

3. FEASIBILITY OF LOCATION TRACE OUT-
LIER DETECTION

So far the analysis on privacy preserving models has been purely
based on predicting and matching the reemergence of vehicles out
of the mix-zone. That is, the adversary can link two trace segments
if he/she can correctly predict where or when a vehicle will appear.
The privacy results of such an analysis are based on the hidden
assumption that no other way of linking vehicle traces exists. In this
section, we will explore the feasibility of linking trace segments
based on characteristics of their movement.

3.1 The Rise of an Outlier
Consider the example shown in Fig. 1 where one vehicle tends

to drive significantly faster than other nearby vehicles.

Figure 1: A fast car appears as an outlier.

Let us assume that all the vehicle traces outside the mix-zone are
available to the adversary since vehicle a has very different move-
ment characteristics (higher speed) both before the mix-zone and
after, the adversary could assume that these two trace segments
were generated by the same vehicle and link them into a single
trace. In practice, the success of such heuristics will depend on ac-
tual speed distributions as well as their tendency to maintain speed
long enough to traverse a mix-zone. We refer to vehicle a an out-
lier because its movement pattern is very different from the others.
The above example actually indicates that outliers could destroy the
mix-zone mechanism for the easy linkability between the traces.

In [12], Grubbs defined an outlier as: “one that appears to devi-
ate markedly from other members of the sample in which it occurs.”
When considering all trace segments of a group of vehicles as sam-
ples, an outlier segment must appear to deviate markedly from the
others. As discussed above, special movement characteristics could
lead to an outlier. The cause of such special characteristics can be
considered from two sides: intrinsic and extrinsic. The difference
between a typical delivery truck and a typical passenger automobile
is intrinsic (similarly between a motorcycle and an automobile). On
the other hand, a particular driver’s speed as mentioned in the above
example is an extrinsic cause of being an outlier. Our work will fo-
cus on intrinsic reasons first and then move to the extrinsic causes.

According to the US Bureau of Transportation Statistics [1], there
were 8,212,267 motorcycles, 10,770,054 trucks and 230,444,440
passenger automobiles in the US in 2010. Therefore, we will see
only one truck for every 25 vehicles observed on average (Note
that the ratio of trucks and motorcycles is only 4.4% and 3.3% of
the total number of vehicles, respectively). From everyday obser-
vation, trucks and motorcycles have different movement patterns
from passenger automobiles. An adversary can exploit this knowl-
edge to help him/her to identify a truck (or a motorcycle) target
from a group of automobiles and to link the trace segments of the
truck (or motorcycle) before and after mix-zones. Considering the
ratio of trucks and motorcycles to the total number of vehicles on
the road, such a scenario will stand out and be easily observed.

3.2 The Observation of Real World Driving
Characteristics

In this subsection, we use a set of results to illustrate the feasibil-
ity of outlier detection based on vehicle movement characteristics.
Since extrinsic cases are based more on individual behavior, we
will focus first on discussing cases that are based on intrinsic rea-
sons. The following results are based on NGSIM [2] data which
consists of detailed vehicle trajectories, wide-area detectors, and
supporting data from researching driver behavior. The vehicle tra-
jectory data was collected using digital video cameras to record the
precise location of each vehicle on a 0.5- to 1.0-kilometer section
of roadway every one-tenth of a second. The portion of data we
use covers the southbound direction of highway US 101 (Holly-
wood Freeway) in Los Angeles, California. The video cameras
were mounted on a 36-story building, 10 Universal City Plaza,
which is located adjacent to the U.S. Highway 101 and Lanker-
shim Boulevard interchange in the Universal City neighborhood.
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Figure 2: Histogram of mean acceleration for trucks, autos and
motos.
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Figure 3: Histogram of maximum speed for trucks, autos and
motos.

The vehicle trajectory data was transcribed from the video data us-
ing a customized software application developed for NGSIM. The
total length of the road segment is about 2100 feet and there are
five main lanes throughout the section. Lane numbers start from
the left-most lane. The total time spans from 7:50am to 8:05am
on June 15, 2005. There are 2086 passenger automobiles (autos),
53 trucks and 30 motorcycles (motos) traces in the dataset. Note,
the distribution of vehicle types in this dataset is similar to the US
Bureau of Transportation Statistics [1].

First, we show a histogram plot of mean acceleration for motos,
trucks and autos in Fig. 2. As can be seen, motorcycles tend to have
a larger mean acceleration compared to automobiles and trucks
(e.g., most of the motorcycles show a mean acceleration higher than
4.2 ft/s2). The acceleration of trucks tends to be smaller compared
to other vehicle types. As shown in the figure, the minimum mean
acceleration belongs to trucks. Under certain circumstances (e.g.,
the target is the only typical motorcycle among a group of automo-
biles), an adversary could easily identify the target solely based on
the difference in the mean acceleration between these two types of
vehicles. This ability to distinguish between vehicles increases the
linkability of vehicle traces before and after mix-zones.

Similar observations can also be seen in other vehicle movement
characteristics. Fig. 3 shows the histogram plots of the maximum
speed for trucks, automobiles and motorcycles. As with the mean
acceleration, most motorcycles tend to have larger values of maxi-
mum speed while automobiles have both larger and smaller values
than trucks. The former is quite consistent with our intuition while
the latter is not. To explain why automobiles have both larger and
smaller maximum speeds, we note that the drivers of automobiles
cover a large range of the population, so some of them tend to drive
fast while many others tend to drive slowly (e.g., seniors). On the
other hand, the people who drive trucks are mostly professional
drivers that are either young or in their middle ages. Thus, it is
also reasonable to see that the use of automobiles covers a larger
range in terms of the maximum speed. However, from the figure,
we can conclude again that under certain circumstances, it is easy
for an adversary to identify a target vehicle if he/she can exploit
the maximum speed information (e.g., when the target is a typical
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Figure 4: Histogram of dwell time ratios on left most lanes for
trucks, autos and motos.
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Figure 5: Histogram of dwell time ratios on right most lanes for
trucks, autos and motos.

motorcycle and the other vehicles are all common automobiles or
trucks).

The above two examples do not have a clear way to distinguish
a truck from other types of vehicles based on one particular move-
ment characteristic. However, some trends can at least be observed.
For example, trucks generally have a relatively small mean acceler-
ation and maximum speed. Our proposed adversary model does not
require a strong difference in one particular movement characteris-
tic, instead, small differences in multiple characteristics can allow
for a way to distinguish target types of vehicles from the groups of
vehicles.

In the next subsection, we will illustrate more possible move-
ment characteristics that can be used for intrinsic cause outlier de-
tection.

3.3 Exploiting Other Features
There are a few movement characteristics that may be useful for

intrinsic cause outlier detection. In this subsection, we illustrate
two other characteristics that are useful for identifying trucks from
other vehicles.

3.3.1 Lane Changing
As more and more detailed and accurate location information

becomes available, some movement characteristics (patterns) that
were not available before, are easier to obtained. For example,
when the GPS or other location devices become accurate enough,
recognizing the lane a vehicle is moving on becomes feasible. For
example, in the NGSIM [2] dataset all vehicle traces are recorded
with lane information. As another example, High Accuracy Na-
tionwide Differential GPS (HA-NDGPS) system which is currently
under development can provide 10-15 centimeter accuracy.

In Fig. 4, we show the histogram of dwll time ratios on left most
lanes for trucks, automobiles and motorcycles. The question of
which lanes to stay may appear as a driver’s preference or an ex-
trinsic reason at the first glance. However, if the special movement
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Figure 6: Histogram of minimum back-headway distance for
trucks, autos and motos.
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Figure 7: Histogram of minimum front-headway distance for
trucks, autos and motos.

pattern appears in most trucks, we may presume that this is the re-
sult from intrinsic or mixed of the intrinsic and extrinsic reasons.
In fact, it is reasonable to assume truck drivers tend to drive on the
outer (right most) lanes instead of inner (left most) lanes because
trucks can not move as flexible as small automobiles generally. In-
ner lanes are usually reserved for fast moving vehicles, slow in lane
changing and speed changing discourage truck drivers to stay in
the inner lanes. The result in Fig. 5 complement what is shown in
Fig. 4. Trucks do not stay on the inner lanes most times, instead
they tend to appear in the outer lanes. Above plots indicate the pos-
sibility for an adversary to detect a truck outlier out of automobiles
and other type of vehicles.

3.3.2 Headway Distance
Some features or characteristics may not be always available or

only available for some vehicles. However, once available, they
may increase an adversary’s ability to detect certain types of vehi-
cles or a special kind of target. One example is the headway infor-
mation. Headway is defined as the head-to-head distance between
a vehicle and its immediate frontward vehicle (front-headway) or
the vehicle immediate afterward (back-headway). The maximum
headway distance does not help the adversary much since the val-
ues can be very large when there is no vehicle nearby. Intuitively,
headway distance (especially front-headway) can be useful for dis-
tinguishing trucks and small automobiles, because trucks tend to
leave more space in front of them. However, the effectiveness of
using headway distance is strongly related to the penetration rate.
If an adversary has obtained all vehicles’ location traces, then it can
compute the accurate headway distance for each one, otherwise, the
value may not be correct. Consider a scenario, where vehicle a is
immediately followed by vehicle ‘b’. The location trace of a is not
known by the adversary, then the front-headway distance of vehicle
‘b’ can’t be computed. Therefore, the usage of headway distance is
limited.

As shown in Fig. 6 and Fig. 7, trucks have the largest front-
headway distance and back-headway distance compared to auto-
mobiles, while motorcycles have the smallest values. Although,
this is not true for all the cases, the characteristic over large amount
of samples will be useful when adding such knowledge into a ma-

chine learning classification model. As we will show in the next
section, one characteristic alone may not be able to differentiate
all trucks or motorcycles from automobiles, however it can be very
helpful when combined with other movement characteristics.

4. TRACE OUTLIER DETECTION ALGO-
RITHMS

The previous section shows the feasibility of location trace out-
lier detection. In this section, we provide detailed methods for such
detection.

4.1 Intrinsic Outlier Detection
Recall that intrinsic outlier movements are caused by less com-

mon types of vehicle. In particular, we consider the case where
an adversary knows a priori that the vehicle of interest is a less
common vehicle (e.g., a truck or motorcycle) when trying to track
the vehicle. This task would become significantly easier, if the ad-
versary can first filter out the traces from all other vehicle types
because this would result in a smaller anonymity set and less prob-
ability of linking error.

To realize this type of vehicle filtering, we use machine learn-
ing classification approaches. An adversary uses historical data to
train the classification model, and then uses the model to classify
and filter vehicles crossing a mix-zone. Compared to the extrinsic
techniques we will discuss later, a key advantage of this method is
that the training dataset is not limited to traces from the target ve-
hicle but can also use traces from other vehicles of the same type.
This results in a larger sample pool and can build a better model for
outlier detection. However, the adversary must know the intrinsic
nature of the target vehicle (e.g., vehicle type) and the characteris-
tic must belong to a less common vehicle. If the confidence level is
low, an adversary still has to resort to more general outlier detection
strategies, to be discussed later.

In particular, we studied three classic machine learning models,
and compared their performance. To be more specific, we stud-
ied Linear Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA) and Naive Bayes Models. LDA generates linear
boundaries, QDA and NB can both generate quadratic boundaries.
For more details about these learning models, the interested reader
could consult [14].

The input of each machine learning model are the road segment
traces obtained from NGSIM data [2]. Available information in-
cludes vehicle ID, global time, local X, local Y, vehicle length, ve-
hicle width, vehicle velocity, vehicle acceleration, lane identifica-
tion, preceding vehicle, following vehicle, space headway and vehi-
cle class, etc. Local X and Y is the distance from the front center of
the vehicle to the left most edge of the road segment and to the entry
edge of the segment respectively. The space headway information
only covers the front-headway distance, however, with the preced-
ing vehicle and following vehicle information, back-headway dis-
tance can be computed and used in the adversary model. For more
detailed information regarding the NGSIM data, please refer to [2].

Based on above dataset, we further extract the following sample
based movement characteristics:

1. speed (5 features): maximum speed, minimum speed, aver-
age speed, median speed, standard deviation of speed.

2. acceleration (8 features): maximum acceleration, maximum
deceleration, average acceleration, average deceleration, me-
dian acceleration, median deceleration, standard deviation of
acceleration, standard deviation of deceleration.

3. proportion (4 features): acceleration greater than 5 ft/s2, de-



celeration greater than 5 ft/s2, speed greater than 60 ft/s,
speed less than 20 ft/s.

4. lane position (6 features): frequency on visiting lane 1, 2, 3,
4, 5, total number of lane switching.

5. headway (4 features): minimum distance to the vehicle in
front, average distance to the vehicle in front, minimum dis-
tance to the vehicle after, average distance to the vehicle af-
ter.

Before illustrating our proposed adversary models in the next
subsection, we go through several initial observations from study-
ing.

• Some movement characteristics may help an adversary more
than others with building the outlier detection models. For
example, in the 1927 data samples collected from US101
highway between 7:50am and 8:05am (including both auto-
mobiles and trucks), the residual error of a QDA model on
maximum speed is only 0.34. While with minimum speed,
the error rate is 0.56 which is much larger.

• A movement characteristic itself may not be good enough to
differentiate vehicles. However, a combination of such char-
acteristics can be useful. For example, using LDA to distin-
guish three types of vehicles (trucks, automobiles and motor-
cycles) from the same dataset with average acceleration, the
(residual) error rate is 0.41. If based on the combination of
multiple dimensions: maximum speed, average acceleration,
proportion of deceleration, the ratio of frequency of visiting
lane 4 and 5, and the number of lane changes, the error rate
reduce to 0.11.

• Increasing the total number of movement characteristics to
be used may not always lead to better performance.

• To find a set of boundaries for classifying trucks, automo-
biles and motorcycles through one learning model is not easy.
Instead, we choose to train a set of models each of which can
distinguish a pair of vehicle types.

4.2 Feature Selection or Dimension Reduction
For building proper learning models, it is necessary to filter some

characteristics (or features) which cause more noise than they con-
tribute to the outlier detection. Therefore, we studied two methods
to improve the performance.

4.2.1 Manual Feature Selection
The first strategy is to select a number of features which per-

forms well individually. Multiple selected features are combined
together to form learning models in high dimensions. For exam-
ple, assume we extract a total of n features from the vehicle trace
dataset, then for each feature, a learning model is built. All fea-
tures are then ordered based on the performance in training dataset.
Next, the top m features are selected to form the best combina-
tion. This method has several advantages. First, the resulted model
is easier to be understood. Each feature corresponds to a move-
ment characteristic which has clear definition. Second, the perfor-
mance can be estimated. Since all the features have real physical
meaning, it is relative easy to estimate the performance based on
user’s daily observation. One disadvantage is that such a method
is slow. For every pair of features, the adversary needs to gener-
ate a learning model, and sort the results based on performance.
Another disadvantage is that the result may not be optimal. Some
features may have correlation, thus putting them together may not
contribute more information for a learning model.

As part of our evaluation results, the basic features we manually
selected are maximum speed, average acceleration, proportion of

Figure 8: A general outlier detection scenario

deceleration greater than 5 ft/s2, frequency on visiting lane 4 and
5.

4.2.2 Principle Component Analysis Based Dimen-
sion Reduction

The second strategy is to use a dimension reduction method. In
our study, we use Principle Component Analysis (PCA) to project
all the features onto m best dimensions and then train the learn-
ing model based on these m dimensions. The advantage of this
method is that it is fully automatic and it can achieve better perfor-
mance than the previous method. That is because if two features
are strongly correlated, it will only appear as one dimension after
projection in PCA. One disadvantage of such a method is the se-
lected dimensions in the end may not have clear physical meaning,
thus the results cannot be always interpreted easily.

4.3 General Outlier Detection: Extrinsic
In the extrinsic case, it is not clear that we can build a learning

model based on historical data from different drivers and different
trips. For example, the special movement characteristics of a driver
during a trip (e.g., due to time pressure) may not appear in his/her
previous trip two days ago. And there is no training dataset avail-
able from general location trace data to indicate if a driver is under
time pressure or not. Comparing to intrinsic, extrinsic is more un-
stable and more case dependent and/or time dependent. Therefore,
the machine learning model for outlier detection must be built on
the fly and in real time. Assume that before a mix-zone, the trajec-
tory of a target vehicle a is known as shown in Fig. 8, the challenge
for an adversary is now to identify the same target vehicle after the
mix-zone. Since there is no historical data that can be used, the size
of the training dataset relies on the length of the road segment be-
fore the mix-zone. While we still can use machine learning models,
we need assume the target vehicle itself is a class. There are two
strategies available for the adversary:

4.3.1 One-to-One
In this method, the trace from the target vehicle forms a class,

and all the other traces from the remaining vehicles of the anonymity
set form the second class. The learning model detects the target
based on binary classification result for the dataset after the mix-
zone. This method is easy to implement, however due to the small
number of data samples available in the first class compared to the
second class, the classification model may not be able to generate
a good boundary for a binary classification model.

4.3.2 One-to-Many
In this method, not only the trace from the target vehicle forms

a class, but also all other vehicles form classes independently. The
adversary builds multiple binary classification learning models for
the target with all the other vehicles. To detect the outlier, the ad-
versary runs all learning models for each trace segment collected
after mix-zone to determine if a trace looks more like the target or
one of the others.



5. EVALUATION
In this section, we study the proposed outlier detection tech-

niques with the NGSIM [2] dataset. The True Positive Rate (TPR)
and the False Positive Rate (FPR) are used as measures to charac-
terize the ability of an adversary to track a vehicle through a mix-
zone. The same dataset which has been studied in the section 3.2
is used. Here we give a brief introduction of the dataset again.
All the location traces are collected from the US101 highway. The
dataset covers the traffic data between 7:50am and 8:05am. It in-
cludes a total of 1875 automobiles, 52 trucks and 25 motorcycles,
all of which have trajectories longer than 2000 feet. To date, we
have focused more on intrinsic factors, since there is a relative large
training dataset available. A small number of vehicle traces are re-
moved. These are those which 1) were less than 2000 feet long;
2) never had any vehicle driving in front; 3) never had any vehicle
following behind. The first condition is to reduce the possible im-
pact from factors other than the vehicle movement characteristics,
the second and third conditions are to make sure we can use the
same dataset when comparing the performance of different outlier
detection algorithms (with and without headway information).

The results presented here focus on showing the Receiver Op-
erating Characteristic (ROC) curves of different learning models.
An ROC graph is a technique for visualizing, organizing and se-
lecting classifiers based on their performance. It is not only a gen-
erally useful performance graphing method, but also very useful
for domains with skewed class distribution and unequal classifica-
tion error cost [8]. The data source input into the outlier detection
algorithm mostly follows skewed class distributions. Thus, it is
beneficial to use the ROC curves for comparing the performance
of different learning models. On the other hand, through the ROC
curves, the tradeoff between quantity of attacks and quality of at-
tacks (in terms of confidence level) can be easily observed.

5.1 Outlier Detection: Intrinsic
First, we show the results based on manual feature selection. The

performance of the three different machine learning models LDA,
QDA and Naive Bayes for truck detection are shown in Fig. 9. The
main point is that by properly selecting a learning model an ad-
versary can identify a truck or a motorcycle from common auto-
mobiles. This means that additional information leaks from the
traces that could be used to compromise mix-zone protection. The
features we manually selected are maximum speed, average accel-
eration, proportion of deceleration greater than 5 ft/s2 , frequency
of visiting lane 4 and 5. As shown in the ROC graphs, in general,
to improve the confidence of tracking a target, an adversary has to
sacrifice the quantity of the overall attacks. As the confidence level
increases, the number of vehicles that can be tracked decreases.
Nonetheless, even an adversary who can claim a very high confi-
dence in tracking a target just occasionally may be unacceptable.

Fig. 9(a), Fig. 9(b) and Fig. 9(c) show results (for the LDA, QDA
and Naive Bayes models) from the training dataset and results of
10-fold cross validation on the QDA as well as Naive Bayes model,
respectively. As can be noticed from Fig. 9(a), all the three learning
models generate better ROC curves than randomly guessing (the
diagonal line in the figure) in training. This indicates that with ma-
chine learning classification models an adversary is able to identify
trucks from automobiles under certain circumstances. To be more
specific, the ROC curve of the QDA model crossing the point at
FPR=0.2 and TPR=0.7 indicates that an adversary can identify a
truck with 70% success rate if it is indeed a truck. 20% of the time,
the adversary will mis-identify an automobile as a truck. The 10-
fold cross validation as shown in Fig. 9(b) and Fig. 9(c) evaluates
the learning model by rotating training and testing data (in 9:1 ra-
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Figure 11: Entropy reduction due to outlier detection.

tio) 10 times. Although the Naive Bayes model does not perform
very well, as can be inferred from Fig. 9(b), using QDA, an adver-
sary can achieve higher success rate (about 96%) when he/she only
focuses on tracking 40% of the trucks which show the most evi-
dence of being a truck. This is a considerable improvement of the
tracking ability of an adversary. For instance, in a group of ten ve-
hicles containing one truck and nine automobiles passing through
a mix-zone, an adversary only has about a 30% failure rate to mis-
classify one of the nine automobiles as a truck while the real truck
is able to be identified in 40% of cases. This dramatically reduces
the protection of a mix-zone for such outlier vehicles, since the
mix-zone model predicts a 90% failure rate. The QDA learning
model can also help an adversary when there are multiple trucks in
the anonymity group. For example, if there are two trucks in ten
vehicles, an adversary only has a 28% failure rate to mis-classify
one out of the eight automobiles as a truck while it has a 40% suc-
cess rate to identify the real trucks. With an overall success rate
of more than 30%, he/she can identify the right trace of the target
truck.

Fig. 9(d), Fig. 9(e) and Fig. 9(f) show the results when the head-
way information (which has been discussed in section 3.3.2) is
available. Both training and testing results show that with head-
way information, an adversary will have a better chance to detect a
truck under all three models. For example, as shown in Fig. 9(e),
an adversary can achieve roughly 1% FPR under 35% TPR. This
means that in a group of ten vehicles, one of which is a truck, pass-
ing through a mix-zone, the adversary only has a 8.6% chance to
mis-classify one automobile as a truck while he/she is able to iden-
tify the real truck at a rate of 35%. This compares to a 90% failure
rate with random guessing and shows that the protection of the mix-
zone has deteriorated.

In Fig. 10, we assume that an adversary will perform a principal
component analysis on the dataset. This operation projects all the
characteristics (features) onto the 10 most important dimensions.
The boundary is then generated only based on the 10 dimensions.
Compared to Fig. 9, the performance is slightly better in both the
training dataset and the testing dataset. This indicates that an ad-
versary can achieve better results if he/she has a better learning
model or data mining method. The better an adversary can do,
the worse the current mix-zone model will be. In additional to all
of the above observations, we also note that among all these three
models, QDA performs the best and the headway information im-
proves the performance of every learning model. We interpret this
as evidence that further improvement is possible on outlier detec-
tion techniques if the adversary has better learning models or data
mining algorithms.

In our study, we also evaluated the outlier detection techniques
on motorcycle identification. Similar results were observed. How-
ever due to space limitations, the results are omitted from this pa-
per.

Since entropy is one of the most important factors in evaluating
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(a) performance comparison on the
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(b) 10-fold cross validation results
for QDA learning model
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(c) 10-fold cross validation results
for Naive Bayes learning model
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(d) performance comparison on the
training dataset
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(e) 10-fold cross validation results
for QDA learning model
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(f) 10-fold cross validation results
for Naive Bayes learning model

Figure 9: Detecting truck from automobiles with manual feature selection
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(b) 10-fold cross validation results
for QDA learning model
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(c) 10-fold cross validation results
for Naive Bayes learning model
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(e) 10-fold cross validation results
for QDA learning model
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(f) 10-fold cross validation results
for Naive Bayes learning model

Figure 10: Detecting trucks from automobiles using PCA projection on the first 10 dimensions.

a mix-zone model, in Fig. 11, we compare the original system en-
tropy of a mix-zone with the one after the QDA learning model is
used. As can be seen from the figure, while varying the size of the
anonymity set, the QDA learning model always reduces the system
entropy by at least 1. This reduction helps the adversary signifi-
cantly, considering that entropy is a logarithmic value.

Finally, in another set of experiments, we create 55 groups of
ten vehicles. Each group has one truck and the remaining are all
automobiles which are moving closest to the truck. With the QDA
model, an adversary can successfully identify and track trucks in
the 22 of the 55 groups.

5.2 More General Outlier Detection: Extrin-
sic

Last, in this subsection, we show preliminary results on more
general outlier detection: extrinsic and/or mixed cases. In this ex-
periment, all 2000 feet long trace segments are further divided into
three portions. The vehicle trace dataset from first and third por-

tions are assumed to be available by the adversary. All trace dataset
from the second portion of the road are removed in order to sim-
ulate a mix-zone model. Assume there is no intrinsic knowledge
available such as vehicle type. The dataset from the first segment
are used as training data. The adversary tries to link all the pairs of
the traces belonging to the same vehicle. The learning model used
is QDA. Different from previous work, in this part we assume the
target can be any vehicle.

As shown in Fig. 12, the tracking rate, which is defined as the
success rate at which an adversary can identify a particular tar-
get from a group of vehicles is largely increasing with the learning
model compared to random guessing. For instance, in a ten vehicle
anonymity set, the learning model has a 28% tracking rate, which
is a good improvement for an adversary who originally had only a
10% tracking rate. As mentioned before, we define the anonymity
set size as the number of nearby vehicles whose trace data are avail-
able to the adversary.

This figure has shown the tracking rate for any randomly picked
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Figure 12: With the proposed generic outlier detection method,
tracking rate is increased.

vehicle from the dataset. This indicates that there are a large num-
ber of cases in which the target may not have special movement
characteristics compared to other vehicles. In practice, however,
the adversary can ignore those cases and concentrate on outlier ve-
hicles that can be tracked with high confidence.

6. CONCLUSION
In this paper, we have studied whether existing models to mea-

sure the degree of privacy in anonymized location traces hold as
location traces continue to become more precise. Using data cap-
tured from vehicles we have shown that fine-grained location traces
reveal speed distribution and acceleration patterns that can be used
to distinguish traces from different vehicle types (e.g., trucks and
cars). Our analysis on NGSIM location trace shows that an adver-
sary can identify 40% trucks from cars with success rate of 96%.
We have also shown that it is possible to identify outlier driving
patterns such as higher speed, which could be used to link anony-
mous segments of location traces and eventually recover complete
trips. Our preliminary results show that the general outlier detec-
tion technique can improve an adversary’s ability to identify a trace
segment of any user from an average tracking rate of 10% to 28%.
While this rate is still relatively small, and would be smaller still if
a vehicle trip passes over multiple mix zones, these findings show
that movement characteristics reveal information. An immediate
countermeasure is to revert back to coarser location traces but a
full solution to this issue remains an open problem. We believe that
further research is warranted to refine the definition of unlinkability
for very fine-grained location traces.
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