
An Energy-Efficient Mobile Recommender System

Yong Ge1, Hui Xiong1, Alexander Tuzhilin2, Keli Xiao1,
Marco Gruteser3, Michael J.Pazzani 4

1 Rutgers Business School, Rutgers University
hxiong@rutgers.edu,{yongge,keli}@pegasus.rutgers.edu

2 Leonard N. Stern School of Business, NYU, atuzhili@stern.nyu.edu
3 Elect & Comp Engineering,Rutgers University, gruteser@winlab.rutgers.edu

4 Computer Science,Rutgers University, pazzani@rutgers.edu

ABSTRACT
The increasing availability of large-scale location traces cre-
ates unprecedent opportunities to change the paradigm for
knowledge discovery in transportation systems. A partic-
ularly promising area is to extract energy-efficient trans-
portation patterns (green knowledge), which can be used as
guidance for reducing inefficiencies in energy consumption
of transportation sectors. However, extracting green knowl-
edge from location traces is not a trivial task. Conventional
data analysis tools are usually not customized for handling
the massive quantity, complex, dynamic, and distributed na-
ture of location traces. To that end, in this paper, we provide
a focused study of extracting energy-efficient transportation
patterns from location traces. Specifically, we have the ini-
tial focus on a sequence of mobile recommendations. As a
case study, we develop a mobile recommender system which
has the ability in recommending a sequence of pick-up points
for taxi drivers or a sequence of potential parking positions.
The goal of this mobile recommendation system is to max-
imize the probability of business success. Along this line,
we provide a Potential Travel Distance (PTD) function for
evaluating each candidate sequence. This PTD function pos-
sesses a monotone property which can be used to effectively
prune the search space. Based on this PTD function, we
develop two algorithms, LCP and SkyRoute, for finding the
recommended routes. Finally, experimental results show
that the proposed system can provide effective mobile se-
quential recommendation and the knowledge extracted from
location traces can be used for coaching drivers and leading
to the efficient use of energy.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-110/07 ...$10.00.

General Terms
Algorithms, Design,Experimentation

Keywords
Mobile Recommender System, Trajectory Data Analysis

1. INTRODUCTION
Advances in sensor, wireless communication, and infor-

mation infrastructures such as GPS, WiFi and RFID have
enabled us to collect large amounts of location traces (tra-
jectory data) of individuals or objects. Such a large number
of trajectories provide us unprecedented opportunity to au-
tomatically discover useful knowledge, which in turn deliver
intelligence for real-time decision making in various fields,
such as mobile recommendations. Indeed, a mobile recom-
mender system promises to provide mobile users access to
personalized recommendations anytime, anywhere. To this
end, an important task is to understand the unique features
that distinguish pervasive personalized recommendation sys-
tems from classic recommender systems.

Recommender systems [3] address the information over-
loaded problem by identifying user interests and providing
personalized suggestions. In general, there are three ways
to develop recommender systems. The first one is content-
based [15]. It suggests items which are similar to those a
given user has liked in the past. The second way is based
on collaborative filtering. In other words, recommendations
are made according to the tastes of other users that are sim-
ilar to the target user. Finally, a third way is to combine
the above and have a hybrid solution [16]. However, the de-
velopment of personalized recommender systems in mobile
and pervasive environments is much more challenging than
developing recommender systems from traditional domains
due to the complexity of spatial data and intrinsic spatio-
temporal relationships, the unclear roles of context-aware
information, and the increasing availability of environment
sensing capabilities.

Recommender systems in the mobile environments have
been studied before [2, 5, 6, 7, 14, 20, 21]. For instance,
the work in [2, 6] targets the development of mobil tourist
guides. Also, Heijden et al. have discussed some technolog-
ical opportunities associated with mobile recommendation
systems [21]. In addition, Averjanova et al. have developed
a map-based mobile recommender system that can provide

users with some personalized recommendations [5]. How-
ever, this prior work is mostly based on user ratings and is
only exploratory in nature, and the problem of leveraging
unique features distinguishing mobile recommender systems
remains pretty much open.

In this paper, we exploit the knowledge extracted from
location traces and develop a mobile recommender system
based on business success metrics instead of predictive per-
formance measures based on user ratings. Indeed, the key
idea is to leverage the business knowledge from the historical
data of successful taxi drivers for helping other taxi drivers
improve their business performance. Along this line, we pro-
vide a pilot feasibility study of extracting business-success
knowledge from location traces by taxi drivers and exploiting
this business information for guiding taxis’ driving routes.
Specifically, we first extract a group of successful taxi drivers
based on their past performances in terms of revenue per en-
ergy use. Then, we can cluster the pick-up points of these
taxi drivers for a certain time period. The centroids of these
clusters can be used as the recommended pick-up points with
a certain probability of success for new taxi drivers in these
areas. This problem can be formally defined as a mobile
sequential recommendation problem, which recommends se-
quential pick-up points for a taxi driver to maximize his/her
business success. Essentially, a key challenge of this prob-
lem is that the computational cost can be dramatically in-
creased as the number of pick-up points increases, since this
is a combinatorial problem in nature.

To that end, we provide a Potential Travel Distance (PTD)
function for evaluating each candidate route. This PTD
function possesses a monotone property which can be used
to effectively prune the search space and generate a small set
of candidate routes. Indeed, we have developed a route rec-
ommendation algorithm, named LCP , which exploits the
monotone property of the PTD function. In addition, we
observe that many candidate routes can be dominated by
skyline routes [18], and thus can be pruned by skyline com-
puting. However, traditional skyline computing algorithms
are not efficient for querying skyline of all candidate routes
because it leads to an expensive network traversal process.
Thus, we propose a SkyRoute algorithm to compute the sky-
line for candidate routes. An advantage of searching optimal
drive route through skyline computing is that it will save the
total online processing time when we try to provide different
optimal drive routes defined by different business needs.

Finally, the extensive experiments on real-world location
traces of 500 taxi drivers show that both LCP and SkyRoute
algorithms outperform the brute-force method with a sig-
nificant margin. Also, SkyRoute has a much better per-
formance than traditional skyline computing methods [18].
Moreover, we show that, if there is an online demand for dif-
ferent evaluation criteria, SkyRoute results in better perfor-
mances than LCP . However, if there is only one evaluation
criterion, the performance of LCP is the best.

2. PROBLEM FORMULATION
In this section, we formulate the problem of mobile se-

quential recommendation (MSR).

2.1 A General Problem Formulation
Consider a scenario that a large number of GPS traces

of taxi drivers have been collected for a period of time. In
this collection of location traces, we also have the informa-

tion when a cab is empty or occupied. In this data set, it
is possible to first identify a group of taxi drivers who are
very successful in business. Then, we can cluster the pick-up
points of these taxi drivers for a certain time period. The
centroids of these clusters can be used as the recommended
pick-up points with a certain probability of success for new
taxi drivers in these areas. Then, a mobile sequential rec-
ommendation problem can be formulated as follows.

Assume that a set of N potential pick-up points, C={C1,
C2, · · · , CN}, is available. Also, the estimated probability
that a pick-up event could happen at each pick-up point
is known as P (Ci), where P (Ci)(i = 1, · · · , N) is assumed
to be independently distributed. Let P = {P (C1), P (C2),
· · · , P (CN)} denote the probability set. In addition, let−→R = {−→R1,

−→
R2, · · · ,

−−→
RM} be the set of all the directed se-

quences (potential driving routes) generated from C and

|−→R| = M is the size of
−→R - the number of all possible

driving routes. Note that the pick-up points in each di-
rected sequence are assumed to be different from each other.

Next, let L−→
Ri

be the length of route
−→
Ri(1 ≤ i ≤ M), where

1 ≤ L−→
Ri
≤ N . Finally, for a directed sequence

−→
Ri, Let P−→

Ri

be the route probability set which are the probabilities of all

pick-up points containing in
−→
Ri, where P−→

Ri
is a subset of P.

The objective of this MSR problem is to recommend a
travel route for a cab driver in a way such that the po-
tential travel distance before having customer is minimized.
Let F be the function for computinging the Potential Travel
Distance (PTD) before having a customer. The PTD can

be denoted as F(PoCab,
−→R,P). In other words, the com-

putation of PTD depends on the current position of a cab

(PoCab), a suggested sequential pick-up points (
−→R〉), and

the corresponding probabilities associated with all recom-
mended pick-up points.

Based on the above definitions and notations, we can for-
mally define the problem as:

The MSR Problem
Given: A set of potential pick-up points C with |C| =
N , a probability set P = {P (C1), P (C2), · · · , P (CN)}, a

directed sequence set
−→R with |−→R| = M and the current

position (PoCab) of a cab driver, who needs the service.

Objective: Recommending an optimal driving route
−→
R

(
−→
R ∈ −→R). The goal is to minimize the PTD:

min−→
Ri∈

−→
R

F(PoCab,
−→
Ri,P−→Ri

) (1)

C1

T

C4

P(C1)

P(C4)

D(C4−>C3)

D1

PoCab

C3

P(C3)

C2

P(C2)

D4

Figure 1: An Illustration Example.

The MSR problem involves the recommendation of a se-
quence of pick-up points and has combinatorial complexity
in nature. However, this problem is practically important

and interesting, since it helps to improve the business per-
formances of taxi companies, the efficient use of energy, the
productivity of taxi drivers, and the user experiences.

The MSR problem is different from traditional Traveling
Salesman Problem (TSP) [4], which finds a shortest path
that visits each given location exactly once. The reason is
that TSP evaluates a combination of exact N given loca-
tions. In other words, all N locations have to be involved.
In contrast, the proposed MSR problem is to find a subset
locations of given N locations for recommendation. Also,
the MSR problem is different from the traditional schedul-
ing problem [8, 17], which selects a set of duties for vehicle
drivers. The reason is that all these duties are determined in
advance, such as delivering the packages to determined loca-
tions, while the MSR problem consists of uncertain pick-up
jobs among several locations. Figure 1 shows an illustra-
tion example. In the figure, for a cab T, the closest pick-up
point is C1. However, we cannot simply recommend C1 as
the first stop in the recommended sequence even if the prob-
ability of having a customer at C1 is greater than C4 which
is the second closest to T. The reason is that there is still
probability that this cab drive cannot find a customer at
C1 and then it will cost much more to go to a next pick-up
point. Instead, if T goes to C4 first, T might be able to
exploit a sequence of pick-up opportunities.

For the MSR problem, there are two major challenges.
First, how to find reliable pick-up points from the historical
data and how to estimate the successful probability at each
pick-up point? Second, there is a computational challenge
to search an optimal route.

2.2 Analysis of Computational Complexity
Here, we analyze the computational complexity of the

MSR problem. A brute-force method for searching the opti-
mal recommended route has to check all possible sequences

in
−→R. If we assume the cost for computing the function F

once is 1 (Cox(F) = 1), the complexity of searching a given
set C with N pick-up points is as follows.

Lemma 1. Given a set of pick-up points C, where |C| =
N , 1 ≤ L−→

Ri
≤ N and Cox(F) = 1, the complexity of search-

ing an optimal directed sequence from
−→R is O(N !)

Proof. The complexity of searching an optimal sequence
is equal to the total number M of all possible sequences
generated from C. Since every directed sequence is actu-
ally a permutation of pick-up points which form the subset
of C, we decompose the checking process into two steps:
enumeration of non-empty subset B from C and the permu-
tation of pick-up points belonging to the subset B. For
a subset B with i different pick-up points, there are to-
tally

(
N
i

)
different subsets. And the range of integer i is

1 ≤ i ≤ N . For each subset B of i different element, there
are totally i! different permutations. Thus the total num-
ber of all possible directed sequences generated from C is
M =

∑N
i=1

(
N
i

) · i! < N !(1 + 1 + 1/2) = 5
2
· N !. Thus, we

can have 2 ·N ! < M < 5
2
·N !. Therefore, the complexity of

search optimal directed sequence is O(N !).

2.3 The MSR Problem with Constraints
As illustrated above, it is computationally prohibited to

search for the optimal solution of the general MSR problem.
Therefore, from a practical perspective, we consider a sim-
plified version of the MSR problem. Specifically, we put a

constraint on the length of a recommended route L−→
Ri

. In

other words, the length of a recommended route is set to be
a constant; that is, L−→

Ri
= L. To simplify the discussion,

let
−→
RLi denote the recommended route with a length of L.

Based on this constraint, we can simplify the original objec-
tive function of the MSR problem as follows.
The MSR Problem with a Length Constraint

Objective: Recommending an optimal sequence−→
RL(

−→
RL ∈ −→R). The goal is to minimize the PTD:

min−→
RLi ∈

−→
R

F(PoCab,
−→
RLi ,P−→

RLi
)

The computational complexity of this simplified MSR prob-
lem is analyzed as follows.

Lemma 2. Given |C| = N ,L−→
Ri

= L and Cox(F) = 1, the

computational complexity of searching an optimal directed

sequence with a length of L from
−→R is O(NL)

Proof. Since the length of the recommended route has
been fixed, the computational complexity can actually be
obtained through modifying equation in proof of Lemma
1 as M =

(
N
L
) · L!, where M is the number of all the

sequences with a length as L. M can be transformed as
N(N − 1) · · · (N − L + 1). Thus, the computational com-
plexity of this problem is O(NL).

The above shows that the computational cost of this sim-
plified MSR problem will dramatically increase as the num-
ber of pick-up points N increases. In this paper, we focus
on studying the MSR problem with a length constraint.

3. RECOMMENDING POINT GENERATION
In this section, we show how to generate the recommend-

ing points and compute the probability of pick-up events at
each recommending point from location traces of cab drivers.

3.1 High-Performance Drivers
In real world, there are always high-performance experi-

enced cab drivers, who typically have sufficient driving hours
and higher customer occupancy rates - the percentage of
driving time with customers. For example, Figure 2 (a) and
(b) show the distributions of driving hours and occupancy
rates of more than 500 drivers in San Francisco over a pe-
riod of about 30 days. In the figure, we can clearly see that
the drivers have different performances in terms of occu-
pancy rates. Based on this observation, we will first extract
a group of high-performance drivers with sufficient driving
hours and high occupancy rates. The past pick-up records
of these selected drivers will be used for the generation of
potential pick-up points for recommendation.

3.2 Clustering Based on Driving Distance
After carefully observing historical pick-up points of high-

performance drivers, we notice that there are relative more
pick-up events in some places than others. In other words,
there are the cluster effect of historical pick-up points. There-
fore, we propose to cluster historical pick-up points of high-
performance drivers into N clusters. The centroids of these
clusters will be used for recommending pick-up points. For

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45

50

Driving Hours

F
re

q
u

e
n

cy
 o

f
D

ri
v

in
g

 H
o

u
rs

s

(a) Driving Hours

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

80

90

Occupancy Rate

F
re

qu
en

cy
 o

f O
cc

up
an

cy
 R

at
es

(b) Occupancy Rates

Figure 2: Some Statistics of the Cab Data.

C1

C2

C3

C4D1

D2

D3

D4

P(C1)

P(C2)

P(C3)

P(C4)

PoCab

Figure 3: A Recommended Driving Route.

this clustering algorithm, we use driving distance rather
than Euclidean distance as the distance measure. In this
study, we perform clustering based on driving distance dur-
ing different time periods in order to have recommending
pick-up pointers for different time periods. Another bene-
fit of clustering historical pick-up points is to dramatically
reduce the computational cost of the MRS problem.

3.3 Probability Calculation
For each recommended pick-up point (the centroid of his-

torical pick-up cluster), the probability of a pick-up event
can be computed based on historical pick-up data. The
idea is to measure how frequent pick-up events can hap-
pen when cabs travel across each pick-up cluster. Specif-
ically, we first obtain the spatial coverage of each cluster.
Then, let #T denote the number of cabs which have no cus-
tomer before passing a cluster. For these #T empty cabs,
the number of pick-up events #P is counted in this clus-
ter. Finally, the probability of pick-up event for each clus-
ter (each recommended pick-up point) can be estimated as

P (Ci)1≤i≤N = #P
#T

, where #P and #T are recorded for each

historical pick-up cluster at different time periods.

4. SEQUENTIAL RECOMMENDATION
In this section, we design mobile sequential algorithms for

searching the optimal route for recommendation.

4.1 The Potential Travel Distance Function
First, we introduce the Potential Travel Distance (PTD)

function, which will be exploited for algorithm design. To
simplify the discussion, we illustrate the PTD function via
an example. Specifically, Figure 3 shows a recommended
driving route PoCab → C1 → C2 → C3 → C4 for the cab
PoCab, where the length of suggested driving route L = 4.

When a cab driver follows this route
−→
RL, he/she may

pick up customers at each pick-up point with a probabil-
ity P (Ci). For example, a pick-up event may happen at C1

with the probability P (C1), or at C2 with the probability

P (C1)P (C2), where P (Ci) = 1 − P (Ci) is the probability
that a pick-up event does not happen at Ci. Therefore,

the travel distance before a pick-up event is discretely dis-
tributed. In addition, it is possible that there is no pick-up
event happening after going through the suggested route.
This probability is P (C1) · P (C2) · P (C3) · P (C4). In this
paper, since we only consider the driving routes with a fixed
length, the travel distance beyond the last pick-up point is
set to be D∞ equally for all suggested driving routes. For-
mally, we represent the distribution of the travel distance be-
fore next pick-up event with two vectors: D−→

RL
=〈D1, (D1 +

D2), (D1+D2+D3), (D1+D2+D3+D4), D∞〉 and P−→
RL

=〈P1,

P (C1) ·P (C2), P (C1) ·P (C2) ·P (C3), P (C1) ·P (C2) ·P (C3) ·
P (C4), P (C1) ·P (C2) ·P (C3) ·P (C4)〉. Finally, the Potential
Travel Distance (PTD) function F is defined as the mean of
this distribution as follows.

F = D−→
RL

· P−→
RL

(2)

where · is the dot product of two vectors.
From the definition of the PTD function, we know that the

evaluation of a suggested drive route is only determined by
the probability of each pick-up point and the travel distance
along the suggested route, except the common D∞. These

two types of information associated with each drive route
−→
RLi

can be represented with one 2L-dimensional vector DP =
〈DP1, · · · , DPl, · · ·DP2L〉. Let us consider the example in
Figure 3, where L = 4. The 8-dimensional vectorDP for this
specific driving route is DP = 〈D1, P (C1), D2, P (C2), D3,

P (C3), D4, P (C4)〉.
However, to find the optimal suggested route, if we use a

brute-force method, we need to compute the PTD for all di-
rected sequences with a length L. This involves a lot of
computation. Indeed, many suggested routes can be re-
moved without computing the PTD function, because all
pick-up points along these routes are far away from the tar-
get cab. Along this line, we identify a monotone property of
the Function F as follows.

Lemma 3. The Monotone Property of the PTD Func-
tion F . The PTD Function F(DP) is strictly monotonically
increasing with each attribute of vector DP, which is a 2L-
dimensional vector.

Proof. A proof sketch is as follows. By the definition
of the function F in Equation 2, we can first derive the
polynomial form of F . From the polynomial form of F , we
can observe that the degree of each variable is one. Also,
D∞ is assumed to be one big enough constant. To prove the
monotonicity of F , it is equally to prove that the coefficient
of each variable is positive. This is easy to show. The proof
details are omitted due to the space limit.

4.2 The LCP Algorithm
In this subsection, we introduce the LCP algorithm for

finding an optimal driving route. In LCP , we exploit the
monotone property of the PTD function and two other prun-
ing strategies, Route Dominance and Constrained Subroute
Dominance, for pruning the search space.

Definition 1. Route Dominance. A recommended driv-

ing route
−→
RL, associated with the vector DP, dominates an-

other route
−→̃
RL, associated with the vector D̃P, iff ∃1 ≤ l ≤

2L, DPl < D̃P l and ∀1 ≤ l ≤ 2L, DPl ≤ D̃P l. This can be

denoted as
−→
RL °

−→̃
RL.

By this definition, if a candidate route A is dominated by
a candidate route B, A cannot be an optimal route. Next,
we provide a definition of constraint sub-route dominance.

Definition 2. Constrained Sub-route Dominance.

Consider that two sub-routes
−→
R sub and

−→
R′sub with an equal

length (the number of pick-up points) and the same source

and destination points. If the associated vector of
−→
R sub dom-

inates the associated vector of
−→
R′sub, then

−→
R sub dominates−→

R′sub, i.e.
−→
R sub °

−→
R′sub.

C2

C3

C′3

C4

D′3

D4D3

D’4

P(C3)

P(C4)

P(C′3)

Figure 4: Illustration: the Sub-route Dominance.

For example, as shown in Figure 4,
−→
R sub is C2 → C3 → C4

and
−→
R′sub is C2 → C′3 → C4. The associated vectors of−→

R sub and
−→
R′sub are DPsub = 〈D3, P (C3), D4, P (C4)〉 and

DP ′sub = 〈D′
3, P (C′3), D

′
4, P (C4)〉 respectively. Then the

dominance of
−→
R sub over

−→
R′sub is determined by the dom-

inance of these two vectors. Here, we have the constraints
that two routes have the same length as well as the same
source and destination. The constrained sub-route domi-
nance enables us to prune the search space in advance. This
is shown in the following proposition.

Proposition 1. LCP Pruning. For two sub-routes A
and B with a length L, which includes only pick-up points, if
sub-route A is dominated by sub-route B under Definition 2,
the candidate routes with a length L which contain sub-route
A will be dominated and can be pruned in advance.

Let us study the example in Figure 4. If L = 3 and
−→
R sub (C2

→ C3 → C4) dominates
−→
R′sub(C2 → C′3 → C4), the candi-

date PoCab → C2 → C3 → C4 dominates the candidate
PoCab → C2 → C′3 → C4 by Definition 1. Thus we can

prune the candidate contains
−→
R′sub in advance before on-

line recommendation. Specifically, the LCP algorithm will
enumerate all the L-length sub-routes, which include only
pick-up points, and prune the dominated sub-routes by Def-
inition 2 offline. This pruning process could be done offline
before the position of a taxi driver is known. As a result,
LCP pruning will save a lot of computational cost since it
reduces the search space effectively.

4.3 The SkyRoute Algorithm
In this subsection, we show how to leverage the idea of sky-

line computing for identifying representative skyline routes
among all the candidate routes. Here, we first formally de-
fine skyline routes.

Definition 3. Skyline Route. A recommended driv-

ing route
−→
RL is a skyline route iff ∀

−→
RLi ∈ −→R,

−→
RLi cannot

dominate
−→
RL by Definition 1. This is denoted as

−→
RLi 1

−→
RL.

The skyline route query retrieves all the skyline routes

with a length of L. Formally, we use
−→RSkyline to represent

the set of all the skyline routes.

Lemma 4. Joint Principle of Skyline Routes and
the PTD Function F . The optimal driving route deter-
mined by the PTD function F should be a skyline route. This

is denoted as
−→
RL ∈ −→RSkyline

Proof. (Proof Sketch.) This lemma can be proved by

contradiction. Assume that
−→
RL1 is an optimal driving route

and is not a skyline route. By Definition 3,
−→
RL1 must be

dominated by some driving route denoted as (
−→
RLi), which is

a skyline route. By Definition 1, each attribute of the vector

associating with
−→
RL1 should be not smaller than the corre-

sponding attribute of the vector associating with
−→
RLi . Also,

there must be one attribute, for which the value of vector

associating with
−→
RL1 is bigger than that of vector associating

with associating with
−→
RLi . Then, by Lemma 3, the function

F value of the vector associating with
−→
RLi should be less

than that of the vector associating with
−→
RL1 . Therefore,

−→
RL1

should not be the optimal drive route.

With the joint principle of skyline routes and the PTD
function F in Lemma 4, it is possible to first find skyline
routes and then search for the optimal driving route from
the set of skyline routes. This way can eliminate lots of
candidates without computing the PTD function F . Next,
we show how to compute skyline routes.

Indeed, skyline computing, which retrieves non-dominated
data points, has been extensively studied in the database lit-
erature [9, 11, 13, 18]. However, most of these algorithms
cannot be directly used to find skyline routes in the MSR
problem, because vectors associated with suggested routes
are generated through an expensive cluster network traver-
sal process. In Particular, the performances of traditional
skyline computing algorithms degrade significantly when the
network size increases or the length of suggested driving
route is increased. Also, there are a large memory require-
ment for storing these vectors during the traditional skyline
computing process. Moreover, for real-world applications,
the position of empty cab is dynamic. Therefore, the rec-
ommended driving routes are dynamic in a real-time fashion.
This means that we cannot have the indices for the multi-
dimensional data points(vector DP) in advance, which is de-
sired for many traditional skyline computing algorithms [19].
To this end, we design a SkyRoute algorithm for computing
skyline routes by exploiting the unique properties of skyline
routes for the purpose of efficient computation.

The basic idea of the SkyRoute algorithm is to prune some
candidate routes, which are comprised of the dominated
sub-routes and cannot be skyline routes, at a very early
stage. This idea is based on the observation that any rec-
ommended driving routes are composed of sub-routes and
different routes can cover the same sub-routes. The search
space will be significantly reduced, since lots of candidate
routes containing the dominated sub-routes will be discarded
from further consideration as skyline routes. In the follow-
ing, we first introduce two propositions for candidate routes
pruning based on dominated sub-routes.

Proposition 2. Backward Pruning. If a sub-route R1

from PoCab to an intermediate pick-up point Ci is dom-
inated by another sub-route R2 from PoCab to Ci under
the sub-route dominance By Definition 2, all the candidate

routes
−→
RL3R1 , which have R1 as a precedent sub-route will be

dominated by the candidate routes
−→
RL3R2 . The only differ-

ent between
−→
RL3R1 and

−→
RL3R2 is from PoCab to Ci. Thus,

those candidate routes
−→
RL3R1 can be pruned in advance.

Proposition 3. Forward Pruning. If a sub-route R1

from one pick-up point Ci to another pick-up point Cj is
dominated by another sub-route R2 from Ci to Cj under the
sub-route dominance by Definition 2, then all the candidate

routes
−→
RL3R1 , which contain R1 as sub-route will be dom-

inated by the candidate routes
−→
RL3R2 . The only difference

between
−→
RL3R1 and

−→
RL3R2 is from Ci to Cj, Therefore,

those candidate routes
−→
RL3R1 can be pruned in advance.

With the proposition of Backward Pruning, it is possi-
ble to decide some dominated sub-routes and discard some
candidate routes which contain these dominated sub-routes.
Also, the benefit of the proposition of Forwarding Pruning
is the ability to prune some dominated sub-routes as well as
some candidate routes offline, since both probabilities and
distances between pick-up points can be obtained before any
online recommendation of driving routes. Note that only
sub-routes with a length less than L need to be considered
in the above discussion.

Figure 5 shows the pseudo-code of the SkyRoute algo-
rithm. As can be seen, during offline processing, SkyRoute
checks the dominance of sub-routes with a length L by Def-
inition 2 and prunes the ones dominated by others. This
process is also applied in the LCP algorithm. In addition,
SkyRoute can also prune sub-routes with different lengths
with Forward Pruning in proposition 3. During online pro-
cessing, results of offline processing are used as candidate
routes. From line 2 to line 5, SkyRoute iteratively checks
the sub-routes with PoCab as the source node and prunes
the candidate routes containing dominated sub-routes with
Backward Pruning in proposition 2. Then, in line 6, the
candidate set is obtained after all the pruning process. Fi-
nally, a skyline query [18] is conducted on this candidate set
to find skyline routes. Please note that the online search
time of the optimal driving route should include the time of
online process of SkyRoute and the search time on the set
of skyline routes.

4.4 Obtaining the Optimal Driving Route
For both LCP and SkyRoute algorithms, after all the

pruning process, we will have a set of final candidate routes
for a given taxi driver. To obtain the optimal driving route,
we can simply compute the PTD function F for all the re-
maining candidate routes with a length L. Then, the route
with the minimal PTD value is the optimal driving route for
this given taxi driver.

4.5 The Recommendation Process
Even though we can find the optimal drive route for a

given cab with its current position, it is still a challeng-
ing problem about how to make the recommendation for
many cabs in the same area. In this section, we address this

ALGORITHM SkyRoute(C,P,Dist,L,PoCab)
Input:

C: set of cluster nodes with central positions
P: probability set for all cluster nodes
Dist: pairwise drive distance matrix of cluster nodes
L: the length of suggested drive route
PoCab: the position of one empty cab

Output:−→
RSkyline: list of skyline drive routes.

Online Processing
1. Enumerate all candidate routes by connecting

PoCab with each sub-route of RLsub
obtained in step 10 during Offline Processing

2. for i = 2 : L − 1
3. Decide dominated sub-routes with ith

intermediate cluster and prune the corresponding
candidates by using proposition 2

4. Update the candidate set by filtering
the pruned candidates in step 3

5. end for
6. Select the remained candidate routes with length

of L from the loop above

7. Final typical skyline query to get
−→
RSkyline from

those candidate routes in step 6
Offline Processing(LCP)
8. Enumerate all sub-routes with length

of L from C
9. Prune and maintain dominated Constrained

Sub-routes with length of L using proposition 3
10. Maintain the remained non-dominated sub-routes

with length of L, denoted as RLsub

Figure 5: The SkyRoute Algorithm

problem and introduce a strategy for the recommendation
process in the real world.

A simple way is to suggest all these empty cabs to follow
the same optimal drive route, however there is naturally an
overload problem, which will degrade the performance of the
recommender system. To this end, we employ load balancing
techniques [10] to distribute the empty cabs to follow mul-
tiple optimal drive routes. The problem of load balancing
has been widely used in distributed systems for the purpose
of optimizing a given objective through finding allocations
of multiple jobs to different computers. For example, the
load balancing mechanism distributes requests among web
servers in order to minimize the execution time. For the pro-
posed mobile recommendation system, we can treat multi-
ple empty cabs as jobs and multiple optimal drive routes as
computers. Then, we can deal with this overload problem by
exploiting existing load balancing algorithms. Specifically,
in this study, we apply the circulating mechanism for the rec-
ommender systems by exploiting a Round Robin algorithm
[22], which is a static load balancing method.

Under the circulating mechanism, to make recommenda-
tion for multiple empty cabs, a round robin scheduler al-
ternates the recommendation among multiple optimal drive
routes in a circular manner. As shown in Figure 6, we could
search k optimal drive routes and recommend the NO.1
route to the first coming empty cab. Then, for the sec-
ond empty cab, the NO. 2 drive route will be recommended.
Assume there are more than k empty cabs, recommenda-
tions are repeated from NO. 1 route again after the kth
empty cab. In practice, to achieve this, one central dispatch
(processor) is needed to maintain the empty cabs and as-
signments among the top-k driving routes. Note that the
load balancing techniques are not the focus of this paper.

NO.1

NO.2 NO.3

NO.k
NO.k-1

NO.i

Multiple Empty Cabs

 K drive routesNO.1

NO.k
NO.k-1

NO. i

Figure 6: Illustration of the Circulating Mechanism.

5. EXPERIMENTAL RESULTS
In this section, we evaluate the performances of the pro-

posed two algorithms: LCP and SkyRoute.

5.1 The Experimental Setup
Real-world Data. In the experiments, we have used

real-world cab mobility traces, which are provided by the
Exploratorium - the museum of science, art and human per-
ception through the cabspotting project [1]. This data set
contains GPS location traces of approximately 500 taxis
collected around 30 days in the San Francisco Bay Area.
For each recorded point, there are four attributes: latitude,
longitude, fare identifier and time stamp. In the experi-
ments, we select the successful cab drivers and generate the
cluster information as follows. Specifically, we select cab
drivers with total driving hours over 230 and occupancy
rates greater than 0.5. In total, we obtain 20 cab drivers and
their location traces. Based on this selected data, we gener-
ate potential pick-up points and the pick-up probability as-
sociated with each pick-up point for different time periods.
In the experiments, we focus on two time periods: 2PM -
3PM and 6PM -7PM . For these two time periods, we ob-
tain 636 and 400 historical pick-up points respectively. After
calculating the pairwise driving distance of pick-up points
with the Google Map API, we use Cluto [12] for clustering.
All default parameters are used in the clustering process
except for ”-clmethod=direct”. Please note that, since the
driving distance measured by the Google Map API depends
on the driving direction, we use the average to estimate the
distance between each pair of pick-up points. Finally, we
group the historical pick-up points into 10 clusters. The
traveling distances between clusters are measured between
centroids of clusters with the Google Map API.

Synthetic data. To enhance validation, we also gener-
ate synthetic data for the experiments. Specifically, we ran-
domly generate potential pick-up points within a specified
area and generate the pick-up probability associated with
each pick-up point by a standard uniform distribution. In
total, we have 3 synthetic data sets with 10, 15 and 20 pick-
up points respectively. For this synthetic data, we use the
Euclidean distance instead of the driving distance to mea-
sure the traveling distance between pick-up points. Also, for
both real-world and synthetic data, we randomly generate
the positions of the target cab for recommendation.

Experimental Environment. The algorithms were im-
plemented in Matlab2008a. All the experiments were con-
ducted on a Windows 7 with Intel Core2 Quad Q8300 and
6.00GB RAM. The search time for the optimal driving route
and the skyline computing time are two main performance
metrics. All the reported results are the average of 10 runs.

5.2 An Illustration of Optimal Driving Routes
Here, we show some optimal driving routes determined by

the PTD function F on real-world data.

In Figure 7, we plot the potential pick-up points within
the time period 6PM -7PM and the assumed position of the
target cab for recommendation. During this time period,
the optimal drive routes evaluated by the PTD function are
PoCab → C1 → C3 → C2, PoCab → C1 → C3 → C2 →
C7 and PoCab → C4 → C1 → C3 → C2 → C7 for L = 3,
L = 4 and L = 5 respectively.

C1
C4

C3

C2

C6

C5
C8

C9

C7

C10

PoCab

Figure 7: Illustration: Optimal Driving Routes.

Table 1: Some Acronyms.
BFS: Brute-Force Search .
LCPS: Search with LCP
SR(BNL)S: Search via Skyline Computing

algorithm SkyRoute + BNL.
SR(D&C)S: Searching via Skyline Computing

Algorithm SkyRoute + D&C.

5.3 An Overall Comparison
In this subsection, we show an overall comparison of com-

putational performances of several algorithms.
First, in SkyRoute, after the pruning process proposed

in this paper, we apply some traditional skyline computing
methods to find the skylines from the remained candidate
set. Here, we employ two skyline computing methods, BNL
and D&C [18]. In this experiment, all acronyms of evaluated
algorithms are given in Table 1. Note that, for BFS, we only
compute the PTD value for all candidate routes one by one
and find the maximum value as well as the optimal driv-
ing route. Also, most information, such as the locations of
potential pick-up points and the pick-up probability, can be
known in advance. The online computations are the distance
from the target cab to pick-up points and PTD function.

Figure 8 shows the online search time of optimal driving
routes evaluated by the PTD function for different values of
L on both synthetic data and real-world data. The search
time shown here includes all the time for online processing.
As can be seen, LCPS outperforms BFS and SR(D&C)S
with a significant margin for all different lengths of the opti-
mal drive route on both synthetic and real data. The reason

why searching via skyline computing takes longer time than
LCPS or BFS is that skyline computing is partially online
processing and takes a lot of time. Although we only show
the results of the time period 6PM − 7PM , a similar trend
has also been observed in other time periods.

3 5

0

1

2

3

4

5

6

7

8

Length of Driving Route(L)

S
ea

rc
h

Ti
m

e
(S

ec
)

3 4 5
0

10

20

30

40

50

60

Length of Driving Route(L)

S
ea

rc
h

Ti
m

e
(S

ec
)

BFS
LCPS
SR(D&C)S

(b) Comparisons on Synthetic Data (10 Clusters)(a) Comparisons on Real Data (6−7PM)

BFS
LCPS
SR(D&C)S

4

Figure 8: A Comparison of Search Time.

3 4 5

Length of Driving Route (L)

P
ru

ni
ng

 P
er

ce
nt

ag
e

10 15 20

Number of Pick−up Points

P
ru

ni
ng

 P
er

ce
nt

ag
e

LCPS
Skyline

(a) The Pruning Effect on Real Data (6−7PM) (b) The Pruning Effect on Synthetic Data (L=3)

1

0.4

0.6

0.8

0.65

0.75

0.85

0.95

LCPS
Skyline

Figure 9: The Pruning Effect

In terms of the pruning effect, both LCP and SkyRoute
can prune the search space significantly as shown in Figure
9, where we show the pruning ratios of LCP and Skyroute.
Note that the pruning ratio is the number of pruned candi-
dates divided by the original number of all the candidates.

In addition, for LCPS, the pruning process can be done
in advance. This saves a lot of time for online search. In
particular, Table 2 shows a comparison of online search time
between BFS and LCPS across different numbers of pick-
up points and different lengths of driving routes on both
synthetic and real-world data. As can be seen, LCPS always
outperforms BFS with a significant margin.

Table 2: A Comparison of Search Time (Second)
between BFS and LCPS

10 Synthetic Pick-up Clusters
L = 3 L = 4 L = 5

BFS 0.051643 0.300211 2.000949
LCPS 0.043750 0.165401 0.803290

15 Synthetic Pick-up Clusters
BFS 0.142254 1.925054 23.517042
LCPS 0.095364 0.611193 4.322053

Real Data (2-3PM)
BFS 0.045933 0.297187 1.991507
LCPS 0.036736 0.141536 0.622932

Finally, Figure 10 shows the online search time of optimal
driving routes (L = 3) across different numbers of pick-up
points on synthetic data. In the figure, a similar trend of
performances can be observed as in Figure 8.

5.4 A Comparison of Skyline Computing
In this subsection, we evaluate the performances of differ-

ent skyline computing algorithms.

10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

Number of Pick−up Points

S
ea

rc
h

T
im

e
(S

ec
)

BFS
LCPS

SR(D&C)S
SR(BNL)S

Figure 10: A Comparison of Search Time (L = 3) on
the Synthetic Data set.

10 15 20
0

2

4

6

Number of Pick−up Points

S
ky

lin
e

C
om

pu
tin

g
Ti

m
e

(S
ec

)

3 4 5

0

40

80

120

Length of Driving Route (L)

S
ky

lin
e

C
om

pu
tin

g
Ti

m
e

(S
ec

)

BNL
D&C
SkyRoute(BNL)
SkyRoute(D&C)

(a) Comparisons on Synthetic Data (L=3) (b) Comparisons on Real Data (6−7PM)

BNL
D&C
SkyRoute(BNL)
SkyRoute(D&C)

Figure 11: A Comparison of Skyline Computing

This experiment was conducted across different numbers
of pick-up points and different lengths of recommended driv-
ing routes on both synthetic and real-world data. As shown
in Figure 11, SkyRoute with BNL or D&C can lead to
better efficiency compared to traditional skyline computing
methods. The above indicates that SkyRoute is an effective
method for computing Skyline routes.

Furthermore, we have observed that the computation cost
of BNL or D&C varies on different data sets with the same
size of candidate routes. The reason is that BNL or D&C
has different computation complexity for the best and worse
cases. Therefore, even with the same number of pick-up
points and the same length of driving routes, the running
time of SkyRoute(BNL), (SkyRoute(D&C) or SR(D&C)S)
is different as shown in Figure 11 and Figure 8

5.5 Case: Multiple Evaluation Functions
Here, we show the advantages of searching optimal driving

routes through skyline computing. Specifically, we evaluate
the following business scenario. When there are business
needs for different ways to define optimal driving routes,
which can be measured by different evaluation functions.

As can be seen in Figure 8 and Figure 10, the search of an
optimal driving route via skyline computing does not out-
perform LCPS or BFS, because it takes the most part of to-
tal online processing time for computing skylines. However,
for a target cab and fixed potential pick-up points, we only
need to compute skylines once. And the search space can be
pruned drastically as shown in Figure 9. In other words, if
the goal is to provide multiple optimal driving routes based
on different business needs at the same time. Skyline com-
puting will have an advantage.

0

0.05

0.1

0.15

0.2

0.25

S
ea

rc
h

T
im

e
w

ith
 M

ul
tip

le
 E

va
lu

at
io

n
F

un
ct

io
ns

 (
S

ec
)

Comparisons on Synthetic Data (L=3, 10 Clusters)Comparisons on Real Data (L=3, 6−7PM)

SR(D&C)S

LCPS

BFS

BFS

LCPS
SR(D&C)S

Figure 12: A Comparison of Search Time for Mul-
tiple Optimal Driving Routes

To illustrate this benefit of skyline computing, we design
5 different evaluation functions (including PTD) to select 5
corresponding optimal drive routes. Note that all these eval-
uation functions have the monotonicity Property as stated in
lemma 3. Due to the space limitation, we omit the details
of these evaluation functions. Then, we search five differ-
ent optimal driving routes simultaneously with the methods
shown in Table 1 on both synthetic data and real-world data.
Figure 12 shows the comparisons of computational perfor-
mances with L = 3. As can be seen, SR(D&C)S outperforms
LCPS and BFS with a significant margin.

6. CONCLUDING REMARKS
In this paper, we developed an energy-efficient mobile rec-

ommender system by exploiting the energy-efficient driving
patterns extracted from the location traces of Taxi drivers.
This system has the ability to recommend a sequence of po-
tential pick-up points for a driver in a way such that the
potential travel distance before having customer is mini-
mized. To develop the system, we first formalized a mobile
sequential recommendation problem and provided a Poten-
tial Travel Distance (PTD) function for evaluating each can-
didate sequence. Based on the monotone property of the
PTD function, we proposed a recommendation algorithm,
named LCP . Moreover, we observed that many candidate
routes can be dominated by skyline routes, and thus can be
pruned by skyline computing. Therefore, we also proposed
a SkyRoute algorithm to efficiently compute the skylines
for candidate routes. An advantage of searching an optimal
route through skyline computing is that it can save the over-
all online processing time when we try to provide different
optimal driving routes defined by different business needs.

Finally, experimental results showed that the LCP algo-
rithm outperforms the brute-force method and SkyRoute
with a significant margin when searching only one optimal
driving route. Moreover, the results showed that SkyRoute
leads to better performances than brute-force and LCP when
there is an online demand for different optimal drive routes
defined by different evaluation criteria.

7. ACKNOWLEDGEMENTS
This research was partially supported by the National Science

Foundation (NSF) via grant number CNS 0831186, the Rutgers

CCC Green Computing Initiative, and the National Natural Sci-

ence Foundation of China (70890080).

8. REFERENCES
[1] http://cabspotting.org/.

[2] G. Abowd, C. Atkeson, and et al. Cyber-guide: A
mobile context-aware tour guide. Wireless Networks,
3(5):421–433, 1997.

[3] G. Adomavicius and A. Tuzhilin. Towards the next
generation of recommender systems: A survey of the
state-of-the art and possible extensions. TKDE, 2005.

[4] D. L. Applegate, R. E. Bixby, and et al. The Traveling
Salesman Problem: A Computational Study. Princeton
University Press, 2006.

[5] O. Averjanova, F. Ricci, and Q. N. Nguyen.
Map-based interaction with a conversational mobile
recommender system. In The 2nd Int’l Conf on Mobile
Ubiquitous Computing, Systems, Services and
Technologies, 2008.

[6] F. Cena, L. Console, and et al. Integrating
heterogeneous adaptation techniques to build a
flexible and usable mobile tourist guide. AI
Communications, 19(4):369–384, 2006.

[7] K. Cheverst, N. Davies, and et al. Developing a
context-aware electronic tourist guide: some issues
and experiences. In the SIGCHI Conference on Human
Factors in Computing Systems, pages 17–24, 2000.

[8] M. Dell’Amico, M. Fischetti, and P. Toth. Heuristic
algorithms for the multiple depot vehicle scheduling
problem. Management Science, 39(1):115–125, 1993.

[9] D.Papadias, G. Y.Tao, and B.Seeger. Progressive
skyline computation in database systems. ACM
TODS, 30(1):43–82, 2005.

[10] D. Grosu and A. T. Chronopoulos. Algorithmic
mechanism design for load balancing in distributed
systems. IEEE TSMC-B, 34(1):77–84, 2004.

[11] J.Chomicki, J. P.Godfrey, and D.Liang. Skyline with
presorting. In ICDE, pages 717– 719, 2003.

[12] G. Karypis. Cluto:
http://glaros.dtc.umn.edu/gkhome/views/cluto.

[13] T. Kian-Lee, E. Pin-Kwang, and B. C. Ooi. Efficient
progressive skyline computation. In VLDB, 2001.

[14] B. N. Miller, I. Albert, and et al. Movielens
unplugged: Experiences with a recommender system
on four mobile devices. In international conference on
Intelligent user interfaces, 2003.

[15] R. J. Mooney and L. Roy. Content-based book
recommendation using learning for text categorization.
In Workshop Recom. Sys.: Algo. and Evaluation, 1999.

[16] M. Pazzani. A framework for collaborative,
content-based, and demographic filtering. Artificial
Intelligence Review, 1999.

[17] R. Portugal, H. R. Lourenc4o, and J. P. Paixao.
Driver scheduling problem modelling. Public
Transport, 1(2):103–120, 2009.

[18] S.Borzsonyi, K.Stocker, and D.Kossmann. The skyline
operator. In ICDE, pages 421–430, 2001.

[19] Y. Tian, K. C.K.Lee, and W.-C. Lee. Finding skyline
paths in road networks. In GIS, pages 444–447, 2009.

[20] A. Tveit. Peer-to-peer based recommendations for
mobile commerce. In the 1st international workshop
on Mobile commerce, 2001.

[21] H. van der Heijden, G. Kotsis, and R. Kronsteiner.
Mobile recommendation systems for decision making
’on the go’. In ICMB, 2005.

[22] Z. Xu and R. Huang. Performance study of load
balancing algorithms in distributed web server
systems. In TR, CS213 Univ. of California,Riverside.

