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Abstract—Traffic engineering applications often benefit from
collecting vehicle GPS traces in well-defined locations. As a
motivating example, we will consider a traffic signal performance
evaluation technique which requires GPS traces of vehicles
traversing intersections. Since these applications do not require
vehicle identity information, they are a good candidate for data
de-identification techniques. Prior techniques can either provide
data from specific locations or guarantee a high degree of
anonymity under light traffic conditions but do not achieve both.
In this paper, we propose a virtual trip line zone-aware path
cloaking algorithm which combines these features. Zones where
data should be retained can be predefined over the intersections
of interest and the path cloaking algorithm uses entropy-estimates
to decide whether the data can be revealed. Result obtained
from a traffic simulator show that the application success rate
increased from 39 to 82% compared to a zone-unaware path
cloaking algorithm, while achieving a similar degree of privacy.

I. INTRODUCTION

Location traces obtained through the Global Positioning
System (GPS) are a promising source for extracting many
types of transportation data. GPS traces from taxi fleets, de-
livery trucks, or mobile phones, for example, are already used
to infer traffic congestion on highways [1]. This concept of
estimating traffic system states from location traces generated
by mobile sensors in individual vehicles, promises substan-
tially lower costs, since it does not depend on infrastruc-
ture installed along roadways [2]. Within this concept, many
other transportation applications are possible. Throughout this
paper, we will consider one motivating application which
raises novel privacy challenges. This application focuses on
state/performance estimation of signalized road intersections
such as estimating real time delays, arrival volumes, and
vehicle queue lengths. This has been a long-standing challenge
in the transportation community especially when wide-area
arterial networks are considered.

Collecting location traces raises many privacy concerns as
discussed in the literature [3], [4]. At first glance, this can
be addressed through established anonymization techniques or
the techniques of changing pseudonyms since this particular
application does not depend on vehicle identities. Recogniz-
ing that naively anonymized (i.e., simply omitting names,
vehicle identifiers, etc.) location traces can often easily be
re-identified, researchers have proposed several solutions [5],
[6]. Spatial cloaking based on k-anonymity [7], [8] was not
designed for a high update rate and also tends to modify the

location traces so substantially that it cannot meet the accuracy
requirements of such transportation applications. A Mix zone
[9], [10] defines a particular area where locations cannot be
revealed so that an adversary cannot trace the movements of
vehicles across these mix zones. This works well when the
traffic density is high, but provides no guarantees when there
is less traffic than anticipated. Furthermore, most mix zone and
related research [11], [12] have focused on finding the best
location and size of zones for protecting privacy. However,
our target application also introduces strict requirements on
this location: data is only of interest around intersections. The
uncertainty-aware path cloaking algorithm [4] also segments
traces but was explicitly designed to achieve a defined level
of privacy under all traffic conditions. It achieves this by
filtering out points from the location traces whenever vehicles
are trackable for a longer period of time, thus it provides
no control of where data is omitted. The challenge in our
motivating application lies in the requirement that location
traces are needed only across intersections–exactly the area
where mix zones are often placed to hide information. While
there are some safety critical applications that require data
virtually everywhere, for most applications, data should only
be provided in the limited areas where it is needed. This
is also consistent with the basic principle of minimizing the
information leakage.

In this paper, we develop a zone-aware privacy algorithm
to filter location traces, which still takes into account traffic
density and uncertainty. This allows the algorithm to release
location traces only in the intersection zones where data
is needed by the application, yet still offer a fixed degree
of privacy independent of traffic density. This is, to our
knowledge, the first algorithm that combines these two aspects.
More specifically, the algorithm seeks to achieve unlink-ability
between released traces from any two different zones. We
refer to the zones as VTL zones in the remainder of the
paper, since their locations can be marked by two or more
Virtual Trip Lines (VTL) [1]. To be able to adjust the filtering
to traffic density, the algorithm needs to be aware of all
vehicles’ location traces. While we will simply refer to a
proxy server with access to these traces, we note that there
are multiple different usage scenarios for such an algorithm.
Even if no proxy server exists, the algorithm could be useful to
anonymized data before it is stored or before it is transmitted
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to another party.
The rest of the paper is organized as follows. In Section

II, we describe our system, adversary model. We describe the
main zone-aware path cloaking algorithm in section III. In
section IV, we evaluate the performance through simulation.
Section V discusses the distributed solution and concludes in
section VI.

II. VTL ZONES AND ADVERSARY MODEL

In this section we discuss the concept of VTL zone, our
system and adversary model.

A. VTL Zone

A virtual trip line (VTL) zone is an area of the road
network between two virtual trip lines. Virtual trip lines were
originally introduced to allow an application to specify where
nodes (e.g., vehicles) should provide location updates. The
nodes would send a location update only when they cross
this virtual trip line. The VTL zone extends this concept
to a continuous part of the road network. In this model,
mobile nodes will provide their entire location trace between
two virtual trip lines. Figure 1 illustrates this concept with
an intersection example. In this example, the intersection
performance monitoring application benefits from receiving a
longer location trace before the traffic light and requires less
data after cars have passed this traffic light. For this reason, the
application deploys separate VTL zones A and B for the two
lanes of the road. Not shown in this example are additional
trip lines that could be deployed on the crossing road.

Conceptually, a VTL zone can be thought of as the in-
verse of a mix zone. Applications specify where they need
data rather than specifying where data should be suppressed.
We believe that this inversion encourages adherence to the
privacy-by-design principle of minimal data collection, since
developers have to expend effort to increase data collection
rather than expending effort to suppress data collection.

B. System Model

Similar to the assumption in [4], we consider a model where
all location updates from individual vehicles are collected
by a centralized server. The confidentiality and authenticity
of the transmission between vehicles and the server can be

guaranteed with cryptographic methods. Since the applications
we consider do not require any identity information, this server
will remove all identifiers, for example, user IDs or license
plate numbers. It will also further sanitize the location records
through a cloaking algorithm (described in section III) to
enhance their anonymity before it passes the location traces to
applications.

At first sight, anonymization and cloaking of data may
seem unnecessary in this scenario. If we consider the server
trusted, then the application could be directly executed on it
with the raw data. If it is not trustworthy, then an adversary
could still get access to the data before it passes through the
anonymization steps. In practice, however, we believe that this
centralized anonymization approach is still a very useful model
since the issues tend to be more subtle. First, the location
update data often needs to be archived to allow extraction of
long-term trends and facilitate debugging and development of
improved application algorithms. An organization that collects
data, may also want to share it with outside researchers or
third-party application providers. Such archiving and sharing
increases data breach risks and legal compliance costs, which
can be alleviated through centralized anonymization 1.

C. Adversary Model

The objective of the adversary is to track the vehicles
in the road network and eventually re-identify them, which
compromises the location privacy of the drivers. The longer
an adversary can track a vehicle, the higher the chance
of re-identification and the higher the probability that the
trace will contain sensitive location information. We assume
that the adversary has gained access to a dataset that has
passed through the anonymization steps. Access may have
been obtained through insiders, subpoenas, or remote systems
compromises, for example. We also assume that the adversary
has an understanding of road traffic flows in the area of
interest.

We further assume that VTL zone are small enough so (e.g.,
covering only one intersection) so that the trace from one VTL
zone alone is not a privacy concern. However, if the adversary
can link traces from multiple VTL zones to the same vehicle,
it can reconstruct longer potentially sensitive trajectories.

Since the adversary cannot verify which guesses were
correct, such guessing has little value if the confidence in
such guesses is small (i.e., uncertainty is high). We measure
uncertainty through the entropy H = − ∑

pi log pi, where pi

is the probability that two GPS traces from two VTL zones
belong to vehicle i. Lower values of H indicate more certainty
or lower privacy. We will refine this concept in the following
algorithm description.

III. THE VTL ZONE-AWARE CLOAKING ALGORITHM

The goal of this cloaking algorithm is to eliminate link-
ability between any VTL zone pairs regardless of traffic
density while keeping as much trace data as possible to be used

1Such centralized anonymization has already been adopted by Google [13],
which indicates a commercial need for such technologies.
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Fig. 2: A 3-parameter log-normal distribution fits the empir-
ical data well.

by the applications. This means, that the adversary should be
unable to track an individual user through multiple VTL zones
even if the traffic density becomes very low. It also means that
when increased traffic density leads to a naturally higher level
of privacy, the algorithm should filter less information.

To this end, we pair the VTL zone concept with a cloaking
algorithm, which monitors tracking uncertainty and removes
traces only until a defined privacy level is achieved. This
proposed algorithm includes three major steps. As discussed
in previous section, user privacy is in jeopardy if an adversary
can reliably determine that a trace from one VTL zone A and
a trace from another VTL zone B are from the same user.
To link two traces, the adversary can estimate the likelihood
that a user would have taken the path leading from A to B.
We refer to this as the path likelihood. The adversary can
also calculate the time interval between the traces from A and
B and estimate the likelihood that the A-B trip would take
this amount of time. We refer to the latter as the travel time
likelihood.

Our cloaking algorithm therefore operates in three steps.
The first two are to derive models for travel time likelihood
and path likelihood. The third step is the actual cloaking
step. Here, the algorithm evaluates the likelihoods for each
pair of traces and compares them with other possible links of
traces, which results in the tracking uncertainty. Only if the
tracking uncertainty exceeds a threshold the pair of traces can
be disclosed to the application.

A. Travel Time Likelihood

Given two VTL zones, the algorithm characterizes the travel
time likelihood based on an empirically derived distribution.
We assume that the adversary has no specific knowledge
about the individual user under consideration, so the likelihood
taking a certain amount of time can be derived from the
empirical travel time distribution of the population.

By analyzing simulation data that will be described in more
details in section IV, we find that the travel time duration t
between two zones follows a 3-parameter log-normal distribu-
tion, as shown in Fig.22.

2Similar observations are also shown in [14]. Here, we emphasize using 3-
parameter log-normal to describe the travel time distribution instead of general
log-normal distribution.

The probability density function of a 3-parameter log-
normal distribution is:

fT (t) =

{
1

σ
√

2π(t−θ)
e(− (log(t−θ)−ζ)2

2σ2 ) for t > θ

0 for t ≤ θ
(1)

where θ is the threshold parameter, σ is the shape parameter
and ζ is the scale parameter. The 3-parameter log-normal
distribution can be fitted by Least Square Estimation (LSE) as
shown in [15] in which the cumulative distribution function
of 3-parameter log-normal

FT (t̂) =
1

σ
√

2π

∫ t̂−θ

0

e
−(ln(δ)−ζ)2

2σ2

δ
dδ (2)

is used as input function for LSE:

b̂opt = argmin
b∈B

S(t̂1, ..., t̂n|b) (3)

S =
n∑

i=1

wi.(FT (t̂i|b) − vi)2 (4)

where b = (θ, σ, ζ) and t̂i are sorted historical travel time
samples. vi = i−0.5

n , and wi = 1√
(vi∗(1−vi))

are weights

which compensate for the variance of the fitted probabilities
which is the highest near the median and lowest in the tails.

This distribution is fitted for each pair of VTL zones and
used to derive travel time likelihoods by the algorithm.

B. Path Likelihood

Since not all paths through the road network are equally
alike, the algorithm also takes into account path likelihoods.
The path likelihood ρa→b from a to b is defined empirically
as

ρa→b =
∑

d∈D kd
a→b∑

d∈D kd
a

(5)

where d is the vehicle ID, D is the complete set of vehicle
IDs, kd

a is the number of times the vehicle d passes by a in
the collected data set and kd

a→b is the number of times vehicle
d passes by both a and b in sequence.

Furthermore, the parameters of travel time distribution and
the path likelihood of a VTL zone pair can be periodically
updated at the location proxy server. For example, we calculate
the path likelihood ρa→b from VTL zone a to b as an
Exponential Moving Average (EMA) to give less weight to
outdated data.

ρa→b = β ∗ ρnew + (1 − β) ∗ ρold (6)

where β is a predefined parameter. Since city traffic usually
varies dramatically from peak hour to off hour, it makes sense
to incorporate such updates for different time periods.

3
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Fig. 3: On this map, total 102 VTL zones are deployed for
the MSTP application [2].

C. Trace Release

In order to decide if a set of trace samples from a vehicle
can be released, the location proxy server needs to calculate
the tracking uncertainty of this trace. The algorithm iterates
over all VTL zones and for each VTL zone over all vehicles
that have their latest released traces in that VTL zone. For
a single trace, the tracking uncertainty is then (assume the
current VTL zone is c):

H = −
∑

v∈V \c

∑
d∈Dv

pd
v→c log pd

v→c (7)

where V is the whole VTL zone set, Dv are the vehicles
which have their latest disclosed data trace in VTL zone v.
As shown in equation (8), pd

v→c is the probability that the
trace in c is generated by the same vehicle as trace d in zone
v (after normalizing)

pd
v→c =

ρv→c ∗ pT (tdv→c)∑
v′∈V \c

∑
d′∈Dv′ ρv′→c ∗ pT (td′

v′→c)
(8)

where td
v→c is the travel time assuming that vehicle d traveled

from zone v to c (i.e., td
v→c is the time difference between

the end of trace d in v and the beginning of trace under
consideration in c). pT (t) is the discrete version of fT (t).

The trace in c can be released if the tracking uncertainty
H > α, where α is a specified confusion level that character-
izes the degree of privacy. For applications which use coarse
time unit, such as minute, multiple vehicles may enter the
same zone within the same time period. Then below equation
can be used to adjust the entropy value.

Hm = H − log m (9)

where m is the number of vehicles enter into the zone the
same time.

When the mean travel time between two VTL zones is very
large, the path likelihood tends to be very small compared to
other possible source zones. Therefore, we believe it is safe
to disregard those zone pairs. It will only have a minor effect
on the degree of privacy while promising significant gains in
computational efficiency.
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Fig. 4: The adversary successfully identify the trace at almost
same probability under two privacy algorithms.

IV. SIMULATION AND EVALUATIONS

In this section, we evaluate the proposed VTL zone-aware
path cloaking algorithm through simulation. The tracking
uncertainty α is set to be 0.953. We compare the proposed
VTL zone-aware path cloaking algorithm with a zone-unaware
path cloaking algorithm from Hoh et al. [4]. First we compare
both algorithms based on the privacy level can be achieved
under same adversary model. Next, we compare the data
quality obtained through different privacy algorithms. And
finally, from analyzing the simulation results, we also show
computation overhead can be largely reduced by setting proper
time threshold.

A. Traffic Simulator

The simulation is based on the traffic data generated from
Liu and Jabari’s Paramics Traffic Simulation model [17]. As
shown in Fig.3, timestamped location traces are collected from
a sub-network of the SR41 corridor located in the city of
Fresno, CA. The corridor comprises a stretch of the SR41
freeway and three parallel arterials, with a total of over 90
signalized intersection and 15 ramp metering controllers. It
is approximately 16 miles in length and 4 miles in width.
Overall, the network includes 20 arterials and 3 freeways.
We marked VTL zones on the three avenues shown in Fig.3
for all signalized intersections, which yields a total of 102
VTL zones. Data are collected for about 1 hour. We have
implemented the algorithms in Java (except for the extensions
described by equations 6 and 9). On one Intel(R) Xeon(R)
2.66GHz core, the simulation with one data set (full density
of 1 hour data) takes about 13 minutes to run (without
optimization).

B. Privacy Results

We assume a powerful adversary who can distinguish every
individual record and knows the corresponding vehicle ID
at one of the VTL zones. The adversary also has access to
the exact empirical travel time and path likelihood data. The
strategy of the adversary is to link the most likely traces.

The target of that adversary is to identify the records from
the next directly connected VTL zone. As shown in Fig.4, two

3To see the impact of different uncertainty levels, please refer to our
paper [16].
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Fig. 5: The proposed zone-aware algorithm releases more
samples than zone-unaware algorithm does.
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Fig. 6: The proposed zone-aware algorithm which has more
sample being released results in better performance on a traffic
monitoring model (MSTP [2]).

schemes results in similar attack success probability over ten
different VTL zones. In terms of mean value, the zone-aware
algorithm is slightly better.4

C. Data Quality Results

Fig.5 shows that the proposed algorithm releases more
samples than the zone-unaware algorithm does. Note, that we
only count location samples inside the VTL zones, which
matter to the application. Overall, the amount of released
location samples is much closer to the ideal case, labeled
‘without privacy protection’ in the figure, where no samples
are suppressed. The penetration rate indicates the density of
the traffic condition. For penetration rate less than 1, we
generate the simulation data by random keeping vehicles based
on the rate from the original (penetration rate=1.0) data.

The increased amount of available data also leads to im-
proved traffic monitoring application performance, at least in
the real time traffic signal queue length estimation applica-
tion [2] we study here. As shown in Fig.6, the success rate5

is high and close to ideal with the results from the proposed
scheme. Due to the smaller number of released samples, the
application performs less well with data cloaked by the zone-
unaware algorithm. For example, at full penetration rate (1.0),

4Since the uncertainty value of 0.95 is quite moderate, it is possible to
see some points located above 0.5. However, by increasing the uncertainty
threshold, both schemes show the decreasing in attack success rate. Due to
the page limit, results are omitted here.

5Measured in terms of the ratio of the cycles where the model has enough
sample data to compute the traffic condition over all the cycles.
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Fig. 7: The output from the proposed zone-aware algorithm
results in small mean absolute error than the output from the
zone-unaware algorithm.
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Fig. 8: When the mean traveling time between two VTL zones
is larger than 15 minutes (900 seconds), the arrival probability
is less than 0.01 and the leaving probability is less than 0.013.

the proposed zone-aware algorithm increases the success rate
from 39% to 82% over the zone-unaware algorithm. We also
observed a slight improvement in the mean absolute error with
the zone-aware algorithm as shown in Fig.7. Surprisingly, this
occasionally result in slight improvements even over the ideal
uncloaked data set, likely because the privacy algorithm also
removed outliers that affected the application.

D. The Impact of Travel Time Threshold

As shown in Fig.8, when the mean travel time between
two zones is large, the arrival probability and the leaving
probability are both very small. Here the arrival probability
is defined as the conditional probability that a vehicle leaving
from zone A will arrive at zone B while the leaving probability
is defined as the conditional probability that a vehicle arriving
at zone B is from zone A. Thus, in our cloaking algorithm,
we do not consider zone pairs with more than 15 min mean
travel time between them. This reduces the zone pairs that
need to be evaluated by more than 90%—from 10302 to 917
pairs—and therefore significantly reduced the computational
complexity.

Further study even shows that the ratio of disregarded extra
samples is less than 0.05 when ignore all the cases that have
more than 5 minutes travel time between two zones. However,
the computational complexity is reduced by more than 80%
as shown in Fig. 9. On the other side, it is easy to see that
ignoring zone pairs that have large distance has positive impact
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Fig. 9: Computation overhead can be saved by more than
80% if we ignore zone pairs that have travel time more than
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on privacy.

V. DISCUSSION

Comparison with Mix Zones. Recall that VTL zones are
essentially the inverse of mix zones, they describe where data
should be available rather than where it is to be hidden.
Apart from this distinction, which we believe will encourage
minimal data collection, the proposed approach emphasizes
adaptation to varying traffic conditions. Of course, mix zone
size and location could also be continually readjusted to the
traffic volume to ensure a constant degree of privacy. This
will, however, affect applications such as the traffic queue
estimation. Here, a mix zone that becomes too large would
potentially cut off the end of the vehicle queue, leading to
incorrect results.

Distributed Algorithms. The proposed solution assumes
that the cloaking algorithm can be run in a centralized location
as shown in Fig.1. It is also possible to remove the centralized
location proxy server, and distribute the proposed algorithm on
to the vehicles. For example, the application server could be
used to compute the travel time distribution based on collected
samples. It could also calculate the path likelihood. Every
individual vehicle can locally estimate the overall probability
and the entropy value to decide if it should release the
sample to the server or not. Two issues need to be carefully
considered. First is privacy, as many necessary information
are needed from the application server for a individual mobile
node to compute its entropy, the directly query process itself
might introduce privacy leakage. The second issue is the
computation and communication overhead introduced by the
local computing. One way to address the privacy concern is by
exploiting short-range communications between vehicles, as
used for example in the geocache protocol [18]. Furthermore,
by optimizing the time threshold as discussed in the last
section, computation and communication overhead introduced
by distributed computing can also be reduced.

VI. CONCLUSION

We have presented a virtual trip line zone-based path
cloaking algorithm. Our proposed algorithm can reduce link-
ability between any VTL zone pair and minimize the number

of trace samples that have to be removed to preserve location
privacy. Simulation results show that the proposed algorithm
significantly outperforms a zone-unaware cloaking algorithm
in all kinds of traffic densities, and it increases the success rate
of MSTP model, the targeted application, from 39% to 82%
under full penetration rate. Note, our current work does not
consider any background knowledge known by the adversary
which may increase the ability of adversary to break privacy
protection. We plan to study this issue in the near future.
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