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Abstract—Federated Learning enables mobile devices to col-
laboratively learn a shared inference model while keeping all the
training data on a user’s device, decoupling the ability to do
machine learning from the need to store the data in the cloud.
Existing work on federated learning with limited communication
demonstrates how random rotation can enable users’ model
updates to be quantized much more efficiently, reducing the
communication cost between users and the server. Meanwhile,
secure aggregation enables the server to learn an aggregate of at
least a threshold number of device’s model contributions without
observing any individual device’s contribution in unaggregated
form. In this paper, we highlight some of the challenges of setting
the parameters for secure aggregation to achieve communication
efficiency, especially in the context of the aggressively quantized
inputs enabled by random rotation. We then develop a recipe for
auto-tuning communication-efficient secure aggregation, based on
specific properties of random rotation and secure aggregation
– namely, the predictable distribution of vector entries post-
rotation and the modular wrapping inherent in secure aggrega-
tion. We present both theoretical results and initial experiments.

I. INTRODUCTION

It is increasingly the case that systems and applications
are depending on machine learning models, often deep neural
networks, in order to power the features their users require.
Training these machine learning models requires access to
data. In many cases, this training data arises naturally in a
distributed fashion, such as on the millions of smartphones
with which users interact daily. In many problem domains,
the training data may also be privacy sensitive. For example, a
virtual keyboard application on a smartphone typically requires
one or more machine learning models to power features such
as tap typing, gesture typing, auto-corrections, and so on. The
most applicable training data for such models are the actual
interactions of real users with their virtual keyboards as they
live their digital lives. Because of the potential sensitivity of
this training data, there is broad desire for solutions which
systematically preserve privacy, for example by ensuring that
raw training data never needs to leave the users’ devices.

A. Federated Learning with Limited Communication

Federated Learning addresses this need by enabling mobile
devices to collaboratively learn a shared inference model while
keeping all the training data on device, decoupling the ability
to do machine learning from the need to store the data in
the cloud. In a federated learning system, each user device
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maintains a local set of private training examples generated by
on-device interactions or measurements, while a central server
maintains the current version of the model parameters. For
each iteration of model training, the federated learning server
selects a cohort of devices from those available for training.
Each device in the cohort downloads a copy of the current
model parameters from the server, then uses the devices local
training examples to form a model update, i.e. by taking some
number of steps of stochastic gradient descent and computing
the difference between the model parameters received from
the server and the model parameters after local training. The
server then aggregates the model updates from all devices into
average model update, which it then adds to the current model
parameters to form a new set of model parameters, ready for
then next iteration of training.

In federated learning systems for consumer devices such as
smartphones, the devices are interacting with the server over
consumer internet connections. While these interactions may
be scheduled at times when the consumer internet connections
are most reliable and least expensive, e.g. when the device is
connected to a broadband internet service while in the user’s
home, it is still desired to minimize the bandwidth needs as
much as possible since these bandwidth needs would add to
those of many other device update and maintenance processes.
A more communication-efficient secure aggregation technique
could also allow training more models or rounds within a given
user bandwidth quota.

Much research has explored how to minimize communi-
cation costs during distributed stochastic gradient descent,
including in federated learning scenarios. For example, [1, 2]
demonstrate how distributed mean estimation, as used in fed-
erated learning to aggregate model updates from user devices,
can be achieved with limited communication. They describe
a scheme in which the server randomly selects a rotation
matrix R for each aggregation round; each user multiplies their
update vector by the random rotation matrix before quantizing
and submitting for aggregation. The server applies the inverse
rotation to the aggregate vector to recover an estimate of the
distributed mean. Suresh et al. [1] show that even aggressive
quantization benefits greatly from pre-processing with a ran-
dom rotation: for n users, when the rotated update vector x(u)

is quantized to a single bit per dimension, a mean squared error
(MSE) of Θ

(
log d
n · 1

n

∑n
u=1 ||x(u)||22

)
is achieved, compared

to Θ
(
d
n ·

1
n

∑n
u=1 ||x(u)||22

)
when the same quantization is
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used without random rotation. Furthermore, the same MSE
is achieved when the random rotation is replaced with a
structured random orthogonal matrix R = HD, where H
is a Walsh-Hadamard matrix [3] and D is a random diag-
onal matrix with i.i.d. Rademacher entries (±1 with equal
probability), while achieving O(d log d) computation in O(1)
additional space and with O(1) additional communication (for
a seed to a PRNG that generates the D matrix). We note
that logarithmic dependence on d in the above MSE bound
can be replaced with a constant [4], by appropriate use of
Kashin’s representation [5]. However, the technique would not
be compatible with the statistical analysis that follows.

B. Secure Aggregation

In order to further preserve users’ privacy, federated learning
systems can use techniques from trusted computing or secure
multiparty computation to ensure that the server only gets to
see the aggregate of user cohorts’ model updates and learns
nothing further about the individual users’ model updates.

Bonawitz et al. demonstrate SECAGG, a practical protocol
for secure aggregation in the federated learning setting, achiev-
ing < 2× communication expansion while tolerating up to
1
3 user devices dropping out midway through the protocol
and while maintaining security against an adversary with
malicious control of up to 1

3 of the user devices and full
visibility of everything happening on the server [6]. The key
idea in SECAGG is to have each pair of users agree on
randomly sampled 0-sum pairs of mask vectors of the same
lengths as the model updates. Before submitting their model
update to the server, each user adds their half of each mask-
pair that they share with another user; by working in the
space of integers mod k and sampling masks uniformly over
[0, k)d, SECAGG guarantees that each user’s masked update
is indistinguishable from random value on its own. However,
once all the users updates are added together, all the mask-
pairs cancel out and the desired value (the sum of users inputs
mod k) is recovered exactly. To achieve robustness while
maintaining security, SECAGG uses k-of-n threshold secret
sharing to support recovering the pair-wise masks of a limited
number of dropped-out users.

Note that model updates are generally real-valued vectors
in federated learning, but SECAGG (and similar cryptographic
protocols) require input vector elements to be integers mod k.
In practice, this is typically solved by choosing a fixed range
of the real numbers, say [−t, t], clipping each user update
x(u) onto this range, then uniformly quantizing the remaining
values using κ bins, each of width 2t

κ−1 , such that a real value
of −t maps to a quantized value of 0 and a real value of +t
maps to a quantized value of κ − 1. Note that in SECAGG,
the same modulus k applies both to the users’ individual
inputs and to the aggregated vector. As such, choosing the
SECAGG modulus to be k = nκ, where n is the number
of users, ensures that all possible aggregate vectors will be
representable without overflow [6].

II. AUTOTUNING COMMUNICATION-EFFICIENT SECURE
AGGREGATION

In this Section, we explain why a straightforward combi-
nation of SECAGG and the compression techniques affects
the relative efficiency, and propose a concrete approach which
yields better results.

A. Challenges

We first note that the majority of the bandwidth expansion
for SECAGG comes from the choice of k = nκ. For n = 210

users and κ = 216 (i.e. 16 bit fixed point representation),
Bonawitz et al. [6] reports 1.73× bandwidth expansion over
just sending the quantized input vector in the clear. Some of
this bandwidth expansion is associated with secret sharing
and other cryptographic aspects of the protocol. However,
observe that choosing k = nκ with n = 210 means that the
SECAGG modulus is 10 bits wider than κ; this alone accounts
for 26

16 = 1.625× bandwidth expansion – the majority of what
is reported.

If we consider combining SECAGG with aggressive quan-
tization, e.g. as described in [1], the relative expansion cost
becomes even more pronounced, as aggressive quantization
reduces κ but leaves n unchanged. In the extreme example of
single bit quantization, the relative expansion grows to 11×
just to ensure the SECAGG modulus can accommodate the
sum1.

We also observe that quantizing to a fixed point representa-
tion requires selecting the clipping range [−t, t] a priori – it
needs to be the same for each user and thus the server, or an
engineer, chooses an appropriate t before the start of a training
round. If the clipping range is set smaller than the dynamic
range of the users’ model updates, then individual model
updates may be distorted due to clipping, thereby distorting
the computed aggregate as well. However, as the clipping
range increases, one must either (a) increase the number of
quantization bits used, hence driving up the communication
cost, or (b) incur a higher variance estimate of the aggregate
due to coarser effective quantization.

Establishing an explicit clipping range can be challenging
for the model engineer. Many ML engineers have little in-
tuition about the dynamic range of model updates, in part
because that dynamic range can depend on a variety of
factors including the neural network architecture, activation
functions, learning rate, number of passes through the data
per model update, and even vary as training progresses. The
dynamic range will typically also vary between different model
variables/layers.

As such, we desire an automated means by which the
clipping range can be selected.

Secure Aggregation can make this more difficult to deter-
mine empirically, because the ML engineer is only able to
view the aggregate model update across all users in the round,
after any distortion from clipping has already occurred on the

1Note that the absolute communication overhead remains constant; only
the relative overhead increases
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user devices. While we could gather additional signals from
user devices to facilitate setting the clipping range appropriate,
we would prefer not to do so. SECAGG is generally used
in order to protect the privacy of the users’ input signals;
any additional signals would also have to have their privacy
properties reasoned about. For example, if SECAGG is being
used to facilitate differential privacy, then some portion of the
privacy budget would need to be allocated to privacy costs
associated with any additional signals gathered for clipping
range tuning.

B. Autotuning Overview

Fortunately, we can take advantage of two unusual proper-
ties of SECAGG and randomized rotation in order to construct
a recipe for automated tuning that requires no additional
signals from the user devices. First, modular wrapping in
SECAGGallows users to compute values mod k instead of
clipping them, which preserves a signal from the tails of the
distribution in the sum. Second, the randomized rotation step
produces inputs with a normal distribution that changes based
on the degree to which values “wrap around” in the modular
operation. This allows the server to estimate the original
distribution and adjust the quantization range to minimize such
wrapping. With this precisely tuned quantization, secure aggre-
gation can then operate with significantly smaller fixed point
integer representations and achieve improved communication
efficiency.

We consider these properties and the automated tuning
recipe further in the next subsections.

C. Modular Wrapping in SECAGG

Recall that SECAGG computes sums mod k. Because
mod k is an idempotent operation, and because mod and
summation commute, we find that each user can compute
their input mod k before submitting it to secure aggrega-
tion without affecting the result at all. That is, if x(u) is
the update from user u, and U denote the set of all the
users participating in an execution of the secure aggregation
protocol, then SECAGG({x(u)}u∈U ) =

(∑
u∈U x

(u)
)

mod
k =

(∑
u∈U

(
x(u) mod k

) )
mod k = SECAGG

(
{x(u) mod

k}u∈U
)
.

This suggests an alternative to the standard approach of
clipping to a fixed range, then quantizing the result. Instead,
we’ll consider quantizing first (over an unbounded range), then
applying the mod k operation instead of clipping. When we
clip before quantizing, distortion is introduced whenever an
individual user’s contribution exceeds the fixed point range
allocated to that individual. In contrast, by quantizing then
applying mod k, we only introduce distortion if the true sum
over all users’ inputs

∑
u x

(u) lies outside the fixed point
range allocated to the representation of sum.

D. Randomized Rotation Produces (Almost) Normally Dis-
tributed Inputs

When a randomized rotation matrix R is applied to a vector
x, the entries of y = Rx have identical distribution with mean

0 and variance equal to ||x||22/d. It can be shown that as d
grows large, the distribution of each of the entries of the vector
y will approach a Gaussian distribution, i.e., N(0, ||x||22/d).
That is, for any input vector x, if we form a histogram of the
entries in y, we expect to see a normal distribution2.

To show this, we first note that a random rotation R ∈ Rd×d
is a unitary matrix, with the columns forming an orthonormal
basis. Because random rotation is simply representing the
vectors in a new basis, it follows immediately that the `2-norm
is preserved, i.e. ||Rx||2 = ||x||2.

Let Od denote the set of all unitary rotation matrices over
Rd, i.e., Od = {M ∈ Rd×d : MMT = MTM = Id}. Let
v ∈ Sd−1 be a vector in the unit sphere, and choose a random
matrix R uniformly from the set Od. We then observe that
Rv has a uniform distribution on the unit sphere, i.e., Rv ∼
UNIFORM(Sd−1). The same argument gives the following,

y ∼ UNIFORM(||x||2 · S
d−1) , (1)

where Sd−1 denotes the unit sphere in Rd. As a direct con-
sequence of the isoperimetric inequality on the unit sphere [7],
we find that

P{|yi| > τ} ≤ 2e
− dτ2

2||x||22 (2)

which implies that the entries of y have a sub-Gaussian
distribution.

This applies directly to the randomly rotated model updates
x(u) from each user. However, because summation and matrix
multiplication commute, the entries of the sum of the users’
rotated values will also be (almost) normally distributed, with
ȳk ∼ N

(
0,
||x̄||22
d

)
where x̄ =

∑
u x

(u) and ȳ =
∑
uRx

(u) =

Rx̄.
Similarly, when we replace the random rotation by the

randomized Hadamard matrix R = HD as in [1], the entries
are approximately normal, and identically but not indepen-
dently distributed. Nevertheless, for high dimensional values of
interest here, the difference is small and we will see later that
the theoretical insights presented next carry over to practice.

E. Combining Modularity and Random Rotation

We have established that if we randomly rotate each input
vector x(u) before aggregating, then we expect the sum ȳ
to have normally distributed entries. Observe further that if
we randomly rotate x(u) and then stochastically quantize
(without clipping or modular wrapping), we still expect the
entries of the (dequantized) sum to be approximately normally
distributed.

Now consider randomly rotating the x(u), quantizing, then
applying the mod k before computing the sum mod k, as in
the SECAGG setting. After dequantizing the sum, we can no
longer expect a normal distribution: the domain of the tails
of the normal distribution correspond to values outside the

2For large values of d, it can also be shown that the a vector v ∈ Rd
with entries drawn independently from the Gaussian distribution N(0, 1

d
)

will concentrate around the unit sphere.
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Fig. 1. The pdf of a normal distribution (left) and a corresponding
WRAPPEDNORMAL distribution (right). Note how the green and yellow tails
of the normal distribution “wrap around” in the WRAPPEDNORMAL.

range [−t, t] that maps to the valid quantized values [0, k−1].
Instead, we find that the tails of the normal distribution “wrap
around,” producing instead a wrapped normal distribution [8],
see Figure 1, with the probability density function

WRAPPEDNORMAL(x;µ, σ) =

1

σ
√

2π

∞∑
k=−∞

exp

[
−(x− µ+ 2πk)2

2σ2

]
where µ and σ are the mean and variance of the unwrapped
normal distribution, and the domain is assumed to be [−π, π].
The range [−t, t] can be obtained by scaling the distribution
appropriately.

F. A Recipe for Autotuning Communication-Efficient SECAGG

Taken together, sections II-C through II-E suggest a concrete
recipe for performing communication-efficient secure aggrega-
tion, while autotuning the quantization strategy, and without
requiring any additional signals to be communicate to the
server. Given α, the probability that an individual entry of
the rotated sum z̄ can be distorted, proceed as follows:

1) The server selects a structured pseudorandom rotation
matrix R = HD and communicates it to each user.

2) Each user randomly rotates their input z(u) = Rx(u)

3) Each user quantizes z(u) (over an unbounded range) with
the current quantization bin size b, then applies the mod
k operation to produce the user’s SECAGG input y(u)

4) The SECAGG protocol is run to produce ȳ =∑
u y

(u) mod k.
5) The server computes a histogram of the dequantized

entries of ȳ and fits a WRAPPEDNORMAL(0, σ, t) dis-
tribution of unknown variance σ2 to the result. From
this, the server infers that z̄ =

∑
u z

(u), the sum of the
users’ contributions as if we hadn’t used quantization or
modular wrapping in our aggregation, is distributed as
z̄i ∼ N(0, σ).

6) The server uses the inverse cdf for N(0, σ) to set t such
that P(z̄k 6∈ [−t, t]) ≤ α for some constant α. Recall
that, α is the probability that an individual entry of the
rotated sum z̄ is distorted due to modular wrapping, (1−
α)d is the probability that no entry in z̄ is distorted, and
αd is the expected number of distorted entries.

7) The server compute the new quantization bin size b∗ =
2t
k−1 , such that the range [−t, t] maps to the full set of
quantized output values [0, k − 1].

Fig. 2. Evaluation accuracy for CIFAR-10 experiments, considering various
values of α. The legend also lists the equivalent σ

t
ratio for each α.

8) The next iteration of federated learning repeats this
recipe using the new bin size b∗.

G. Fitting a Wrapped Normal Distribution

In order to implement the recipe above, we still require a
practical way to fit the wrapped normal distribution to the
observed dequantized entries of ȳ.

Following [8], we observe that a (biased) estimator of σ2 for
ȳ ∼ WRAPPEDNORMAL(0, σ) can be formed by computing

R̄2 =

(
1

d

d∑
i=1

cos ȳi

)2

+

(
1

d

d∑
i=1

sin ȳi

)2

,

R2
e =

d

d− 1

(
R̄2 − 1

d

)
,

σ̂2 = ln

(
1

R2
e

)
.

III. EXPERIMENTS

Following the recipe outlined in section II-F and using the
Federated Averaging algorithm for federated learning [9], we
conducted experiments on the CIFAR-10 dataset [10]. CIFAR-
10 consists of 50000 training images + 10000 test images, each
32x32 color pixels, balanced across 10 classes (e.g. airplane,
automobile, etc.). We used a version of the all-convolutional
neural architecture in [11], the same as used previously for
such experiment [2]. We simulated 100 devices for federated
learning with a balanced i.i.d. partition of the training data
across devices. In each round of federated learning, we se-
lected 10% of the devices to participate. To compute a device’s
model update, we used a batch size of 10 training examples
and made a single pass through the device’s data with a
learning rate of 0.1. We fixed the SECAGG modulus for the
entries of the sum to k = 28, i.e. 8 bit fixed point quantization.

Figures 2 and 3 show the results of the experiments, using
various values of α for the autotuning recipe. Note that in
Figure 3, one can see that being too conservative in the
α setting (i.e. driving the probability of modular wrapping
towards 0) causes a loss in accuracy, due to overly coarse
quantization bins.

IV. DISCUSSION

In this paper, we derived and tested a recipe for federated
learning with autotuned communication-efficient secure aggre-
gation, with initial results on CIFAR-10 showing promising
potential.

1225

Authorized licensed use limited to: Rutgers University. Downloaded on March 27,2021 at 20:11:40 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Evaluation accuracy for CIFAR-10 experiments. In this range of α
values, one can see that being too conservative in the α setting (i.e. driving
the probability of modular wrapping towards 0) causes a loss in accuracy, due
to overly coarse quantization bins.

In future experiments, we hope to explore the behavior of
the autotuning system on more complex neural networks and
further explore the trade off between the number of bits in
the SECAGG modulus, the setting of α, and the achievable
machine learning accuracy. In addition, while we believe it
to be easier to reason about α than to accurately guess the
dynamic range of the model updates, we also hope to develop
a better theoretical understanding of the impact of α on the
convergence of the training algorithm.
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