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ABSTRACT 
Renewed interest has emerged in novel internet architectures that 
among other aspects can better address the specific requirements 
of wireless networks, such as increased host mobility, router 
mobility, or flow control over fast-changing links. Most existing 
testbeds, however, focus either on wired or wireless networks and 
provide inadequate support for experimentation with novel 
network architectures spanning the wired and wireless domain. 

This paper presents an initial design of a global-scale wired-
wireless testbed and its prototyping based on the existing ORBIT 
and VINI testbeds. It allows researchers to define custom network 
topologies comprising both wired and wireless nodes and 
experimenting with new network and transport layer protocols in 
these networks. The testbed relies on virtualization on wired 
nodes, trading a slight performance penalty for the ability to allow 
simultaneous usage for multiple long-running experiments.  

Categories and Subject Descriptors: D.4.7 
[Operating Systems]:Organization and Design---Distributed 
systems; C.2.3 [Computer-Communication Networks]: Network 
Operations---Network management; D.4.8 [Operating Systems]: 
Performance---Operational analysis 

General Terms: Design, Experimentation 

Keywords: VINI, ORBIT, PlanetLab, Integration, 
Architecture, Experiments 

1. INTRODUCTION 
As the continued expansion of the Internet is exposing security 
and host mobility limitations, among others, in the original 
design, renewed interest has emerged in a fundamental redesign 
of the internet architecture. This is accompanied by the GENI 
effort to provide a testbed for experimentation with novel network 
architecture concepts. 

Most existing large-scale network testbed designs, however, 
concentrate either on wired networks (e.g., PlanetLab[1] or VINI 

[2][3], Emulab[4][5]) or on controlled wireless experimental 
platforms such as the Open Access Research Testbed for Next-
Generation Wireless Networks (ORBIT) testbed [6], the Ad Hoc 
Protocol Evaluation Testbed (APE) [7], MIT Roofnet, Transit 
Access Points (TAPs) [8], and WHYNET [9]. We are only aware 
of the expansion of Emulab with wireless nodes as a first 
integrated design, providing emulation capabilities to test novel 
network concepts.  

In this paper, we design and prototype a testbed that provides 
global-scale experimentation with custom topologies involving 
wired and wireless nodes based on the existing ORBIT and VINI 
testbeds. Both testbeds are in daily heavy use, but have only 
allowed exclusively wired or wireless experiments. Using the 
integrated platform, researchers will be able to emulate real 
network topologies with wired nodes at PlanetLab sites around 
the world and wireless nodes at the ORBIT facility. The 
contribution of this paper is a framework for integrating wired and 
wireless testbeds to support Layer 3 experimentation. In our 
design, the wired and wireless testbeds may be physically disjoint 
and may belong to different organizations or parties (i.e., do not 
share the same control and management framework, and network 
architecture [4][5]). To the best of our knowledge, this is the first 
attempt for such an integration.  

In section 2, we describe the ORBIT and VINI testbeds. Section 3 
specifies our design goals and requirements for this integration 
and section 4 provides the design aspects and implementation 
details of the integrated solution. Section 5 demonstrates a proof-
of-concept Layer 3 experiment deployed over the integrated wired 
and wireless testbed. Section 6 discusses our solution. 

2. BACKGROUND 
ORBIT is a wireless network of 400 nodes arranged in a two-
dimensional grid [6]. The project is currently being developed and 
operated by WINLAB at Rutgers University. Researchers must 
use an online scheduler to reserve time slices on the grid, during 
which time they have full access to every node.  During a time 
slot an ORBIT user can image all of the radio nodes with an 
operating system of his choice and carry out various experimental 
scenarios.  

VINI is a virtual network infrastructure that allows network 
researchers to evaluate their protocols and services and runs on 
the PlanetLab wired testbed [1][2][3]. PlanetLab is a global 
research network operated by Princeton University. Currently 
there are nearly 800 nodes available for use at 379 locations 
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around the world. Each physical PlanetLab node runs 
virtualization software known as Linux VServer. Each 
experimenter is given a sliver, or a virtualized section of a 
physical node. Each sliver is created on every PlanetLab node that 
is part of the experiment.  

2.1 VINI and ORBIT Architectures 
The VINI virtual network infrastructure creates virtual nodes that 
run on existing PlanetLab nodes. Each virtual node has access to 
one or more virtual network resources that can be used during 
experiments. VINI leverages a number of technologies, which 
have been integrated together [3]. Figure 1 shows the basic 
components that are utilized in a VINI virtual node.   

 

Figure 1. VINI software architecture. 

 

User Mode Linux (UML) runs as a user-space process and is a 
full-featured Linux kernel [10]. It creates a virtual environment 
complete with network devices and a file system. The UML 
instance is started from within the experimenter’s slice on 
PlanetLab. Each virtual environment on a PlanetLab-VINI node 
communicates with other virtual environments by creating an 
overlay topology with UML interfaces as the end points.  

XORP, running within UML, is an open source routing protocol 
suite [11]. XORP implements a number of routing protocols, 
including BGP, OSPF, RIP, PIM-SM, IGMP, and MLD.  It 
manipulates routes in the data plane through forwarding engines, 
such as the Linux kernel routing table and the Click modular 
software router discussed later on. XORP generally assumes that 
each link to a neighboring router is associated with a physical 
interface. Within UML, it has the impression that the Ethernet 

interfaces are directly connected to neighbors. For example, if an 
MIT sliver is to be connected to Alaska and California, within 
UML packets sent out via eth1 would be sent to California and 
packets sent out via eth2 would be sent to Alaska (see Figure 1). 
In reality, all packets going in and out of UML are sent first 
through the UML switch and Click modules at the lower layers. 
The IP addressing scheme used in UML provides each virtual link 
with its own class C IP address. 

The UML switch is a virtual switch used to connect UML and 
Click through Unix sockets. Click is a modular routing software 
created and maintained by MIT [12][13]. All packets leaving 
UML are sent through the UML Switch to Click for inspection. 
Click is highly configurable and can inspect, modify, and route 
any type of packet. All the information exchanged between 
Click and UML must be Ethernet encapsulated. Click creates 
UDP sockets on a specified port for VINI related packets and 
maps the packets sent on these UML interfaces to the 
appropriate UDP tunnel.  

OpenVPN [14] was introduced into the VINI software 
architecture with the main scope of connecting an outside 
machine to a VINI experiment, as an edge node, and allowing 
for IP traffic injection into VINI. It is ran on every VINI virtual 
node and is linked with the Click router trough Unix sockets 
allowing for appropriate packet framing of ingress traffic as 
Ethernet packets. In the reverse direction, Click must strip 
Ethernet headers on packets from UML and deliver them to 
OpenVPN.  OpenVPN on VINI nodes uses the PlanetLab slice’s 
tun0/24 and is configured as a server that pushes IP addresses in 
10.0.0.0/8 range. 

Figure 2. Setting up an experiment using the ORBIT 
framework. 

Contrary to VINI, a user of the wireless ORBIT testbed is not 
restricted by any software architecture constraints. An ORBIT 
user has complete freedom to install and run any operating system 
and related software on ORBIT nodes and carry out wireless 
experiments during a reserved time slot.  More specifically, if an 
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ORBIT user needs to run an experiment he/she typically logs onto 
the console and uses the NodeHandler to communicate with the 
NodeHandler Agents running on the ORBIT nodes, as shown in 
Figure 2.  The NodeHandler can deploy the experiment for the 
user based on a given experimental script. A series of operating 
system images are already available and preconfigured with the 
NodeHandler and any other required communication software 
that enable the dynamic execution and control of experiments 
on all of the 400 ORBIT nodes. The usage model of ORBIT is 
different compared to VINI’s.  ORBIT experiments mainly have 
a short duration whereas PlanetLab-VINI experiments tend to 
be long-running.  

3. DESIGN GOALS AND REQUIREMENTS 
The integration between wireless and wired networks for network 
layer experiments needs to satisfy the following goals: 

•    No packet type restrictions: Any type of Ethernet encapsulated 
packet should be able to propagate between the two networks.  
These packet types include both IP and non-IP packets. 

•  Arbitrary topology creation: The solution should provide 
researchers with the capability to connect any wireless node to 
any wired node in different combinations and carry network layer 
and above experiments. Figure 3 shows a sample network 
configuration where wireless nodes (e.g., ORBIT nodes) are 
connected to wired (e.g., PlanetLab-VINI) nodes.  One or more 
wireless nodes are connected to multiple wired nodes in the 
integrated overlay network. 

•    Transparency: While a software architecture on a testbed may 
provide a platform to deploy controlled network experiments it 
should not impose a high learning curve on users to setup these 
experiments.  In addition, it should not require the users to make 
extensive modifications to the existing software architecture to 
deploy an experiment. 

Figure 3. Sample configuration of the integrated testbed. 

Reflecting back to the goals of this design, there are certain 
requirements or restrictions that are imposed for a successful 
integration of wireless and wired testbeds.  Currently, most of the 
traffic carried out in the Internet uses IP.  Experiments that aim to 
investigate non-IP traffic would have to be executed in an isolated 
testbed that may not properly reproduce a real-life network 

environment. Since the focus of this paper is on large scale multi-
user testbeds that may be deployed across the globe then the 
notion of non-IP traffic needs to be addressed within the context 
of overlay networks. Overlay networks typically utilize IP tunnels 
and each overlay may represent an experiment that slices the 
resources of both wired and wireless testbeds. It is therefore 
important that the new integrated design accommodates the entire 
non-IP packet within the overlays’ tunnels.   

Another aspect that needs to be addressed is virtualization.  
Virtualization based on solutions such as VMware, Xen, or UML 
allow the creation of slices across a testbed and accommodate 
multiple users.  Experiments on wired networks have been based 
on Layer 3 of the OSI stack, or above.  However, typical 
experiments on wireless testbeds are based on the entire OSI stack 
and thus impose limitations in terms of virtualizing the wireless 
interface at the physical and MAC layers.  In order to allow a user 
the flexibility to experiment with these lower layers, we chose not 
to virtualize the wireless nodes for this integration, but simply 
spatially segment the wireless testbed and allow each network 
slice full access to a specific segment of nodes.  

4. INTEGRATION OF ORBIT AND VINI 
In this section, we identify the various aspects of the architecture 
of the two testbeds that need to be modified or augmented to 
facilitate their integration and meet the goals mentioned in 
Section 3. The solution presented below represents the 
architecture that proved to provide the most flexibility and 
functionality and the least complexity in deployment. 

4.1 VINI  Architecture Components 
OpenVPN IP tunnels allow the injection of an outside computer 
into a VINI experiment, but with limited capabilities. The current 
configuration allows a single host running an OpenVPN client to 
establish a VPN tunnel into VINI and inject IP traffic across a 
virtual network topology.  This limitation has to be removed to 
allow a whole network of computers to be connected to VINI at 
multiple connection points.  

In addition, OpenVPN in VINI uses IP tunnels (i.e., IP packets 
within IP) rather than Ethernet tunnels (i.e., Ethernet packets 
within IP). Modifying OpenVPN to use Ethernet links has many 
advantages over IP links, including but not limited to: 

•   Non-IP Protocols: An Ethernet-based OpenVPN link allows 
experimenters to run any protocol (e.g., NetBIOS or IPX) that is 
framed in Ethernet packets.  

•    Dynamic IP addresses: For security and routing reasons, when 
using an IP OpenVPN link in the existing VINI architecture, all IP 
addresses and ranges for which the link is responsible must be 
configured in advance and cannot be changed without breaking 
the VPN tunnel. Ethernet tunnels do not suffer from this 
limitation because the Ethernet tunnels simply pass all Ethernet 
frames through the tunnel without any IP requirements or routing 
complications. 

•    Broadcast Packets: OpenVPN IP links support unicast packets 
only and do not support broadcast/multicast packets. This is 
problematic because routing protocols operating on Layer 3 of the 
OSI stack may rely on broadcast packets to discover neighbors or 
peers. OpenVPN Ethernet links allow broadcast packets (Ethernet 
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address: FF-FF-FF-FF-FF-FF or IP address range 240.0.0.0/4) to 
flow between VINI and ORBIT.  

Another VINI architecture aspect that needs modifications is 
the Click modular router. Click performs forwarding of packets 
based on IP addresses, which restricts users into having 
predefined IP ranges that should be modified in Click as the 
experiment changes to reflect the proper IP routing scheme.  In 
order to remove the need to modify Click on a per experiment 
basis and make experiments independent of IP protocols, 
changes are needed on Click so that Ethernet packets are 
delivered to the user space (i.e., UML) instead of IP packets. 
Within UML, an experimenter can then work in the familiar 
Linux environment and create the proper network 
drivers/modules to handle IP or non-IP packets. 

4.2 ORBIT Architecture Components 
ORBIT nodes do not have a predefined software architecture as 
compared to VINI nodes. Therefore, the integration issue as it 
relates to ORBIT deals more with deriving a solution that 
provides a desirable integrated topology rather than modifying an 
existing software architecture. On the ORBIT side, the integrated 
solution should enable a VINI node to communicate to one or 
more ORBIT nodes or groups of nodes. Two possible candidates 
that provide different topology characteristics are the Router 
configuration and the Bridge configuration. 

In the Router configuration, an ORBIT node is set up as a router 
and is connected to the VINI network as seen in Figure 4. An 
OpenVPN tunnel is used to provide a point-to-point link between 
the two networks. The ORBIT Router A node supports the 
protocol of the packets received from the OpenVPN link through 
proper configuration within Linux.   

It should be emphasized that although the example uses IPv4 
routing, this design can utilize non-IP routing as well. In addition, 
this configuration enables Router A to run any of the routing 
protocol supported through XORP in the VINI environment and 
therefore exchange routes automatically with VINI nodes. In 
terms of integration, this set up can be visualized as adding nodes 
(e.g., Router A) and extending the existing VINI core network 
while providing access to a wireless networks. Typically, this 
mode can be utilized to enable integration of multi-hop wireless 
networks with a wired testbed.  

Figure 4. Integration using the router configuration. 

In the Ethernet Bridge configuration, the ORBIT node bridges the 
OpenVPN interface with the wireless interfaces and removes the 
need to carry routing. Such a setup allows for experiments where 
multiple wireless end nodes are attached to VINI nodes and can 
be visualized as adding a wireless interface to a VINI node that is 
physically disjoint.  

An example of a bridge configuration is shown in Figure 5. The 
VINI interface (172.20.0.1) is virtually connected to the Bridge 
A’s wireless interface, which essentially makes that VINI node a 
wireless node attached to the ORBIT network or retrospectively 
provides the VINI node access to wireless ORBIT nodes (e.g., 
172.20.0.2 and 172.20.0.3). Once again, IPv4 is used here as an 
example, but this framework will allow non-IP and broadcast 
packets.  Typically, this mode can be utilized to enable the 
integration of access point functionality on the wired testbed 
nodes (i.e., one hop wireless connectivity). 

 

Figure 5. Integration using the bridge configuration. 

4.3 IMPLEMENTATION 
The modifications applied to ORBIT and VINI testbeds are 
presented in the following subsections. 

4.3.1 VINI Modifications 
For ingress traffic we pass Ethernet packets from OpenVPN to the 
UML instead of IP packets as currently utilized by VINI. We 
achieve this feature by modifying both OpenVPN and Click 
configurations. Ethernet tunnels are enabled by changing 
OpenVPN links between ORBIT and VINI to use Linux Tap 
devices instead of Tun devices.  Therefore, any traffic from 
ORBIT to VINI is now delivered via OpenVPN Ethernet tunnels 
instead of OpenVPN IP tunnels. We then elect to send packets 
from OpenVPN directly to UML with no modifications. Since 
packets coming in from OpenVPN are already Ethernet 
encapsulated they do not need to be encapsulated again by Click. 
The Click forwarding mechanism is disabled and packets are sent 
directly to UML without inspecting the packet contents with a 
directive such as: “openvpn :: Socket(UNIX_DGRAM, 
“/tmp/click.sock”) -> openvpn.” Therefore, the UML instance 
handles all the packet routing decisions.  The standard Linux 
‘route’ command can be used within UML to direct packets. The 
advantage of this configuration is the support of broadcast traffic 
and non-IP based protocols. Non-IP routing protocols can be 
implemented and tested within UML. In the current VINI 
architecture, Click routes packets based on IP addresses, which 
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restricts experiments to IP protocols. An additional benefit of this 
configuration is that it removes the need to modify the Click 
configuration for each experiment through the VINI setup files.  

 

 

1  a)  New interface binds to OpenVPN 
b)  Enable forwarding and arp 

2  a)  Forward ingress traffic to UML  
b) Forward egress traffic to OpenVPN based on UML 
     Ethernet address 

3  a)  Changed addressing scheme 
b) Utilized Tap instead of Tun interfaces to bind to 
     OpenVPN and use Ethernet tunnels 
c) Changed from server to client setup to point-to-point 
     setup 

Figure 6. Key modifications of VINI architecture. 

The method for handling egress traffic from the VINI UML 
instance to ORBIT in the modified architecture involves creating 
a new virtual interface in each UML instance, eth3 (see Figure 6).  
The VINI configuration scripts assign each eth3 interface a 
unique MAC address and its own IP address in the 192.168.0.0/16 
range.  Packets sent out from UML through this eth3 interface 
are assigned this known MAC address. Click is again modified 
to process Ethernet packets coming from the source MAC 
address of eth3 and send matching packets through OpenVPN 
links. Within the UML instance, eth3 interface is seen as a 
regular Ethernet interface and is expected to act as a normal 
interface. The interface can be assigned multiple IP addresses 
(aliases) on different subnets and can be used for any Linux 
routing implementation.  

Another issue that we had to address during the integration of 
PlanetLab-VINI and ORBIT was the dynamic allocation of IP 
addresses. Both testbeds utilize the private class A reserved IP 
range 10.0.0.0/8, which lead to IP address conflicts. More 
specifically, each VINI instance uses the PlanetLab slices tap0 
interface, which is assigned a unique class C address space within 
the 10.0.0.0/8 address space. OpenVPN server in VINI attempts 
to push routes for 10.0.0.0/8 to OpenVPN clients that need to 
connect to VINI. On the other hand, ORBIT nodes use class A 
addresses to communicate between the management console and 
to access other ORBIT services. Thus, connectivity to the ORBIT 
nodes running OpenVPN clients (i.e., ORBIT nodes) during 
integration was lost. This problem was alleviated by assigning 
address from 172.16.0.0/12 and 192.168.0.0/16 to OpenVPN 
servers and clients, which are private IP ranges and will not 
conflict with standard ORBIT or PlanetLab IP ranges. Some other 
modifications that were made included enabling IP packet 
forwarding and ARP responses on UML instances, both of which 
were disabled in VINI by default. 

Overall, the aforementioned modifications accommodate both 
ingress and egress flows and create a virtual Ethernet link 
between the UML eth3 interface and the interface on ORBIT 
nodes without Click having to know the details of the traffic 
flowing between the two points. Figure 6 summarizes the key 
modifications on the VINI architecture. 

4.3.2 ORBIT Modifications 
An ORBIT baseline image was used as a foundation for building 
the ORBIT node with router or bridge functionality. The baseline 
image was Debian GNU with Linux kernel 2.6.12. OpenVPN was 
compiled and installed along with OpenSSL [15]. The Linux 
kernel was recompiled with the Tunneling and Bridging options 
to enable the creation of Tap interfaces for OpenVPN and to 
allow the operation in bridging mode.  Bridgeutils was also 
compiled and installed to provide the node with the proper tools 
to create, modify and delete bridges. 

The Bridge configuration (described in Section 4.2) is 
accomplished using the Linux bridge tool, brctl (see Figure 7). A 
TAP interface, tap0 is created using the Linux ‘mknod’ command 
so that OpenVPN can use that device to pass packets. A bridge 
interface, br0 is then created and linked to the tap0 interface 
forming a virtual Ethernet bridge.  An IP address is assigned to 
br0 to provide the OpenVPN link endpoint with an IP addresses.  
Thus, the UML eth3 interface on VINI (shown in Figure 6) is 
linked to tap0 on ORBIT, which is bridged to ath0, the wireless 
interface. Packets sent out of the eth3 interface will go onto the 
ORBIT wireless network. 

In the Router configuration, a tap0 device is again created and 
linked to a bridge, br0 device (see Figure 8). An IP address (and 
optional multiple aliases) are assigned to br0 and traffic is routed 
between br0 and other interfaces (e.g., wireless interface ath0).  

For both Bridge and Router configurations, the VINI scripts are 
set to automatically generate commands for the ORBIT control 
framework to image, power on, and configure the ORBIT Bridge 
and Router nodes. Thus, automatic topology creation during 
experiments is facilitated. 



 

Figure 7.  Example of Bridge IP configuration. 

 

Figure 8. Example of Router IP configuration. 

5. INTEGRATED MOBILITY SCENARIO 
In this section we provide proof-of concept of the integrated 
architecture by deploying a Layer 3 experiment over PlanetLab- 
VINI and ORBIT. The objective of this experiment is to 
investigate hand-off issues between access points that may belong 
to different Internet Service Providers (ISPs).  Although mobility 
support is a requirement in the Internet, IP does not properly 
addresses its specific needs. Designs that have been proposed to 
better support mobility use some form of triangular routing (e.g., 
Mobile IP).  In this experiment, we investigate ways to simplify 
hand-off by removing triangular routing. 

5.1 Experiment Description 
 Figure 9 represents the topology that is used in the experiment. 
Three VINI nodes are physically located in Berkeley, California 
Tech, and MIT, and communicate with each other via UDP 
tunnels. A Video Server is linked to the California Tech VINI 
node by using an ORBIT node with the Bridge configuration, as 
previously described. We then attach two access points, A and B, 
to the other VINI nodes and configure them in the Router mode.  

The ath0 wireless interfaces on the four ORBIT nodes are 
configured with 172.16.X.X IP addresses and are assigned proper 
channel, essid, and frequency. The tap0/br0 interfaces are 
configured with 192.168.X.X IP addresses. OSPF is utilized to 
automatically set up connectivity between nodes. 

The overlay connectivity of the integrated testbed can be shown 
by performing traceroute from the Mobile client (node1-2), to 
Access Point B (node1-3): 

node1-2.sb2.orbit-lab.org:~# traceroute 192.168.103.2 

traceroute to 172.16.1.2 (172.16.1.2), 30 hops max, 40 byte 
packets 

 1 node1-1. (172.16.0.1)  0.521 ms  0.495 ms  0.451 ms 

 2 eth2.berkeley (192.168.107.1)  73.075 ms  103.113 ms  74.466 
ms 

 3 eth3.caltech (192.168.100.3)  86.964 ms  86.009 ms  103.015 
ms 

 4 eth3.mit (192.168.101.3)  167.395 ms  184.267 ms  170.087 ms 

 5 tap0.node1-3 (192.168.103.2)  192.127 ms  177.791 ms  
189.877 ms 

The path between the Mobile Client and Access Point B is 
through access point A (node 1-1), Berkeley, California Tech, 
MIT, and onto the tap0 interface of Access Point B, which is 
the expected path. Thus, it can be seen that in addition to 
ORBIT-to-ORBIT node connectivity in the 172.16.0.0/12 
range, the ORBIT nodes have access to the VINI nodes on the 
192.168.0.0/16 network. 

 

Figure 9. Integrated architecture to test hand-off in a mobility 
scenario. 

The execution steps of the experiment are as follows; initially, 
video is streamed from the Video Server to the Mobile Client 
through access point A.  As the Mobile Client moves away from 
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access point A connectivity breaks and the video freezes. Access 
point A senses that the link is broken and through OSPF 
advertises that it is no longer in the routing path of the Mobile 
Client. That update is propagated and reflected in all the nodes.  
Meanwhile, the Mobile Client establishes connectivity to the 
network via access point B, which in turn advertises the new link 
to the Mobile Client. Once the new routing information is 
propagated in the network the video is restored. 

 It is important to note that this investigation is different from 
Mobile IP because in the case of mobile IP access point A would 
relay the packets of the Mobile Client to access point B after the 
hand-off. In this scenario, the packets do not traverse the 
Berkleley and access point A overlay nodes and do not get 
redirected to access point B.  They instead go through California 
Tech, MIT, and access point B and are delivered directly to the 
Mobile Client. 

5.2 Experimental Results 
Initial results of our measurements with the Iperf tool have shown 
that the packet delay with Mobile IP is 443 msecs as compared to 
225 msecs with our setup. Furthermore, by manually triggering 
the change in the routing paths when the connectivity of the 
Mobile Client between access point A and B changed, we have 
found that it takes approximately 3.5 seconds for the new routes 
to propagate in the network and for the video to get restored. 

Figure 10 shows the throughput from the Video Server to the 
Mobile Client with different offered loads.  With an offered load 
of 50 Mbps, the deviation in throughput is higher. However, the 
average throughput for both offered loads tends to be 
approximately the same. These values can be justified after 
looking at the throughput characteristics of the OpenVPN links in 
Table 1. 

 

Figure 10. Throughput characteristics of received video. 

 

The OpenVPN link between the Video Server and California 
Tech has a throughput of 1.25 Mbps inferring that it is the 
bottleneck of the video connection. It is therefore worthwhile to 
note that the selection of links during integration is important as it 
may dictate the results of an experiment. In addition, the 
throughput variation indicates the need for QoS guarantees over 
virtual overlay links to accommodate experiments that are delay 

sensitive.  Currently, there are no standard Quality of Services 
(QoS) guarantees on the PlanetLab nodes for bandwidth, IO or 
CPU time. The GENI effort aims to address this issue [17]. 

 

Table 1.  Throughput, delay, and jitter on OpenVPN links 

OpenVPN 
LINKs 

THROUGHPUT 
Mpbs 

DELAY 
usec 

JITTER 
Usec 

Access point A 
to Berkeley 4.01 83 3.0 

Access point B 
to MIT 4.25 99 2.9 

Server bridge to 
California Tech 1.25 19 7.5 

 

6. DISCUSSION 
The integration lessons from ORBIT and VINI can be generalized 
and applied to the integration of other wired and wireless testbeds. 
The utilization of Ethernet tunnels instead of IP tunnels has 
allowed the support of non-IP protocols and broadcast packets for 
network layer experimentation. 

While VINI provides a powerful platform to create controlled 
network topologies, it’s automatically generated underlying 
configuration files require intimate knowledge of VINI’s inner 
workings. As previously described, VINI links together Click 
modular software router, UML, UML Switch, XORP BGP/OSPF 
routing software and OpenVPN using a system of Unix sockets, 
UDP sockets and Linux Tap/Tun interfaces. By carrying Ethernet 
traffic to the user space, we allow users with basic knowledge in 
Linux and Linux networking to use the integrated testbed without 
knowing the details of the lower layers of virtualization on the 
nodes (e.g., Click) or having to modify the underlying system. 
Therefore, transparency aids the user to expedite the deployment 
of an experiment. 

PlanetLab nodes use virtualization to accommodate multiple 
users. The cost of providing Layer 3 experiments through virtual 
internetworking at the UML level is, however, a lower 
performance since forwarding data packets in the UML kernel 
incurs nearly 15% additional overhead [16].  

As previously discussed in Section 3, it is not preferred to 
virtualize wireless nodes because users typically require access to 
the entire protocol stack to investigate lower layer issues 
(assuming a single wireless card per node). However, it is 
important to note that ORBIT nodes have 2 wireless interfaces, 
and we could potentially use two instances of UML and support 
two concurrent experiments by attaching an interface to each 
virtual machine. We chose not to provide concurrent support for 
two experiments per node as there is currently no control 
mechanism within UML to provide access to the lower layer 
stack. Access to the physical and MAC layers is typically needed 
in experiments that involve wireless nodes. We instead spatially 
divide the ORBIT grid such that each VINI-ORBIT experiment 
gets a portion of the wireless nodes. Experiments use orthogonal 
frequencies, which limits the number of concurrent experiments 
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based on the number of orthogonal frequencies available on the 
802.11a/b/g interfaces. 

Eventhough the aforementioned proof-of-concept experiment was 
based on 802.11a/b/g, the ORBIT grid can also provide support 
for experiments involving heterogeneous wireless networks. In 
addition to 802.11a/b/g, a subset of ORBIT nodes are equipped 
with Zigbee, Bluetooth, and GNU radios.  A researcher can 
therefore choose to integrate a wired testbed with groups of 
ORBIT nodes that use different wireless technologies.  

Another aspect of integration is the unification of the control and 
management architectures of both wired and wireless testbeds. An 
ORBIT user wanting to run an integrated experiment can 
communicate with a centralized control and management 
infrastructure that allocates to the user the Orbit grid for a 
particular time slot, while at the same time communicates with 
VINI nodes and set ups the required authentication information 
needed for OpenVPN tunnel creation. In addition, it can authorize 
the ORBIT user to use specific slivers on the VINI nodes. On the 
other hand, a VINI user wanting to run an integrated experiment 
can communicate with a control and management plane that 
allocates ORBIT nodes for the user as well as copy the required 
authentication keys to enable OpenVPN tunnel creation on the 
ORBIT nodes. Therefore, there is a need for an identity-
management federation across both testbeds. In order to allow for 
this integration from the perspective of an ORBIT user, we 
extended the ORBIT control framework to include VINI nodes 
through the use of a single programming script and experimental 
methodology.  This unified control and management architecture 
is currently missing from the perspective of a VINI user. 

7. CONCLUSION 
In this paper, we presented an integrated architecture solution that 
enables network layer experiments over wired and wireless 
networks on existing Internet links with realistic background 
traffic. Our solution provides an abstraction of the underlying 
software architecture that simplifies the configuration complexity 
of setting up experiments. In addition, it supports non-IP traffic 
and broadcast traffic, as well as any- to-any host connectivity. 
The usefulness of this integrated architecture was demonstrated 
through the investigation a video hand-off design as an alternative 
to Mobile IP. 

The results of the research discussed in this paper provide a 
valuable basis on which researchers can build and prototype 
mixed wired/wireless experiments. Such a platform will assist in 
developing next generation protocols that address many core 
issues such as mobility and location-directed broadcasts over 
extensive network architectures. The results of these experiments 
may one day power the next generation of network devices 
designed for the wireless information age. 
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