

A Wired-Wireless Testbed Architecture for Network Layer
Experimentation Based on ORBIT and VINI

George C. Hadjichristofi, Avi Brender, Marco Gruteser, Rajesh Mahindra, Ivan Seskar
WINLAB, Rutgers University

671 Route 1 South
North Brunswick, NJ 07310, USA

gh@winlab.rutgers.edu, abrender@eden.rutgers.edu, {gruteser, rajesh,
seskar}@winlab.rutgers.edu

ABSTRACT
Renewed interest has emerged in novel internet architectures that
among other aspects can better address the specific requirements
of wireless networks, such as increased host mobility, router
mobility, or flow control over fast-changing links. Most existing
testbeds, however, focus either on wired or wireless networks and
provide inadequate support for experimentation with novel
network architectures spanning the wired and wireless domain.

This paper presents an initial design of a global-scale wired-
wireless testbed and its prototyping based on the existing ORBIT
and VINI testbeds. It allows researchers to define custom network
topologies comprising both wired and wireless nodes and
experimenting with new network and transport layer protocols in
these networks. The testbed relies on virtualization on wired
nodes, trading a slight performance penalty for the ability to allow
simultaneous usage for multiple long-running experiments.

Categories and Subject Descriptors: D.4.7
[Operating Systems]:Organization and Design---Distributed
systems; C.2.3 [Computer-Communication Networks]: Network
Operations---Network management; D.4.8 [Operating Systems]:
Performance---Operational analysis

General Terms: Design, Experimentation

Keywords: VINI, ORBIT, PlanetLab, Integration,
Architecture, Experiments

1. INTRODUCTION
As the continued expansion of the Internet is exposing security
and host mobility limitations, among others, in the original
design, renewed interest has emerged in a fundamental redesign
of the internet architecture. This is accompanied by the GENI
effort to provide a testbed for experimentation with novel network
architecture concepts.

Most existing large-scale network testbed designs, however,
concentrate either on wired networks (e.g., PlanetLab[1] or VINI

[2][3], Emulab[4][5]) or on controlled wireless experimental
platforms such as the Open Access Research Testbed for Next-
Generation Wireless Networks (ORBIT) testbed [6], the Ad Hoc
Protocol Evaluation Testbed (APE) [7], MIT Roofnet, Transit
Access Points (TAPs) [8], and WHYNET [9]. We are only aware
of the expansion of Emulab with wireless nodes as a first
integrated design, providing emulation capabilities to test novel
network concepts.

In this paper, we design and prototype a testbed that provides
global-scale experimentation with custom topologies involving
wired and wireless nodes based on the existing ORBIT and VINI
testbeds. Both testbeds are in daily heavy use, but have only
allowed exclusively wired or wireless experiments. Using the
integrated platform, researchers will be able to emulate real
network topologies with wired nodes at PlanetLab sites around
the world and wireless nodes at the ORBIT facility. The
contribution of this paper is a framework for integrating wired and
wireless testbeds to support Layer 3 experimentation. In our
design, the wired and wireless testbeds may be physically disjoint
and may belong to different organizations or parties (i.e., do not
share the same control and management framework, and network
architecture [4][5]). To the best of our knowledge, this is the first
attempt for such an integration.

In section 2, we describe the ORBIT and VINI testbeds. Section 3
specifies our design goals and requirements for this integration
and section 4 provides the design aspects and implementation
details of the integrated solution. Section 5 demonstrates a proof-
of-concept Layer 3 experiment deployed over the integrated wired
and wireless testbed. Section 6 discusses our solution.

2. BACKGROUND
ORBIT is a wireless network of 400 nodes arranged in a two-
dimensional grid [6]. The project is currently being developed and
operated by WINLAB at Rutgers University. Researchers must
use an online scheduler to reserve time slices on the grid, during
which time they have full access to every node. During a time
slot an ORBIT user can image all of the radio nodes with an
operating system of his choice and carry out various experimental
scenarios.

VINI is a virtual network infrastructure that allows network
researchers to evaluate their protocols and services and runs on
the PlanetLab wired testbed [1][2][3]. PlanetLab is a global
research network operated by Princeton University. Currently
there are nearly 800 nodes available for use at 379 locations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WiNTECH’07, September 10, 2007, Montréal, Québec, Canada.
Copyright 2007 ACM 978-1-59593-738-4/07/0009...$5.00.

around the world. Each physical PlanetLab node runs
virtualization software known as Linux VServer. Each
experimenter is given a sliver, or a virtualized section of a
physical node. Each sliver is created on every PlanetLab node that
is part of the experiment.

2.1 VINI and ORBIT Architectures
The VINI virtual network infrastructure creates virtual nodes that
run on existing PlanetLab nodes. Each virtual node has access to
one or more virtual network resources that can be used during
experiments. VINI leverages a number of technologies, which
have been integrated together [3]. Figure 1 shows the basic
components that are utilized in a VINI virtual node.

Figure 1. VINI software architecture.

User Mode Linux (UML) runs as a user-space process and is a
full-featured Linux kernel [10]. It creates a virtual environment
complete with network devices and a file system. The UML
instance is started from within the experimenter’s slice on
PlanetLab. Each virtual environment on a PlanetLab-VINI node
communicates with other virtual environments by creating an
overlay topology with UML interfaces as the end points.

XORP, running within UML, is an open source routing protocol
suite [11]. XORP implements a number of routing protocols,
including BGP, OSPF, RIP, PIM-SM, IGMP, and MLD. It
manipulates routes in the data plane through forwarding engines,
such as the Linux kernel routing table and the Click modular
software router discussed later on. XORP generally assumes that
each link to a neighboring router is associated with a physical
interface. Within UML, it has the impression that the Ethernet

interfaces are directly connected to neighbors. For example, if an
MIT sliver is to be connected to Alaska and California, within
UML packets sent out via eth1 would be sent to California and
packets sent out via eth2 would be sent to Alaska (see Figure 1).
In reality, all packets going in and out of UML are sent first
through the UML switch and Click modules at the lower layers.
The IP addressing scheme used in UML provides each virtual link
with its own class C IP address.

The UML switch is a virtual switch used to connect UML and
Click through Unix sockets. Click is a modular routing software
created and maintained by MIT [12][13]. All packets leaving
UML are sent through the UML Switch to Click for inspection.
Click is highly configurable and can inspect, modify, and route
any type of packet. All the information exchanged between
Click and UML must be Ethernet encapsulated. Click creates
UDP sockets on a specified port for VINI related packets and
maps the packets sent on these UML interfaces to the
appropriate UDP tunnel.

OpenVPN [14] was introduced into the VINI software
architecture with the main scope of connecting an outside
machine to a VINI experiment, as an edge node, and allowing
for IP traffic injection into VINI. It is ran on every VINI virtual
node and is linked with the Click router trough Unix sockets
allowing for appropriate packet framing of ingress traffic as
Ethernet packets. In the reverse direction, Click must strip
Ethernet headers on packets from UML and deliver them to
OpenVPN. OpenVPN on VINI nodes uses the PlanetLab slice’s
tun0/24 and is configured as a server that pushes IP addresses in
10.0.0.0/8 range.

Figure 2. Setting up an experiment using the ORBIT
framework.

Contrary to VINI, a user of the wireless ORBIT testbed is not
restricted by any software architecture constraints. An ORBIT
user has complete freedom to install and run any operating system
and related software on ORBIT nodes and carry out wireless
experiments during a reserved time slot. More specifically, if an

Console
Support
services

Gateway

Internet

2

1
Experiment

Script
Experiment

Script

START

NodeHandler
Agents

NodeHandler

3

Orbit nodes

MIT PlanetLab node
VINI virtual node

Alaska
VINI
node

UML

Unix Socket

Unix Socket

eth1 eth2

UML Switch

OpenVPN

Click

XORP

UDP tunnel

California
VINI
node

UDP tunnel

Non-VINI
node

tunnel

U
D

P tunnel

VINI Ingress

tun0

ORBIT user needs to run an experiment he/she typically logs onto
the console and uses the NodeHandler to communicate with the
NodeHandler Agents running on the ORBIT nodes, as shown in
Figure 2. The NodeHandler can deploy the experiment for the
user based on a given experimental script. A series of operating
system images are already available and preconfigured with the
NodeHandler and any other required communication software
that enable the dynamic execution and control of experiments
on all of the 400 ORBIT nodes. The usage model of ORBIT is
different compared to VINI’s. ORBIT experiments mainly have
a short duration whereas PlanetLab-VINI experiments tend to
be long-running.

3. DESIGN GOALS AND REQUIREMENTS
The integration between wireless and wired networks for network
layer experiments needs to satisfy the following goals:

• No packet type restrictions: Any type of Ethernet encapsulated
packet should be able to propagate between the two networks.
These packet types include both IP and non-IP packets.

• Arbitrary topology creation: The solution should provide
researchers with the capability to connect any wireless node to
any wired node in different combinations and carry network layer
and above experiments. Figure 3 shows a sample network
configuration where wireless nodes (e.g., ORBIT nodes) are
connected to wired (e.g., PlanetLab-VINI) nodes. One or more
wireless nodes are connected to multiple wired nodes in the
integrated overlay network.

• Transparency: While a software architecture on a testbed may
provide a platform to deploy controlled network experiments it
should not impose a high learning curve on users to setup these
experiments. In addition, it should not require the users to make
extensive modifications to the existing software architecture to
deploy an experiment.

Figure 3. Sample configuration of the integrated testbed.

Reflecting back to the goals of this design, there are certain
requirements or restrictions that are imposed for a successful
integration of wireless and wired testbeds. Currently, most of the
traffic carried out in the Internet uses IP. Experiments that aim to
investigate non-IP traffic would have to be executed in an isolated
testbed that may not properly reproduce a real-life network

environment. Since the focus of this paper is on large scale multi-
user testbeds that may be deployed across the globe then the
notion of non-IP traffic needs to be addressed within the context
of overlay networks. Overlay networks typically utilize IP tunnels
and each overlay may represent an experiment that slices the
resources of both wired and wireless testbeds. It is therefore
important that the new integrated design accommodates the entire
non-IP packet within the overlays’ tunnels.

Another aspect that needs to be addressed is virtualization.
Virtualization based on solutions such as VMware, Xen, or UML
allow the creation of slices across a testbed and accommodate
multiple users. Experiments on wired networks have been based
on Layer 3 of the OSI stack, or above. However, typical
experiments on wireless testbeds are based on the entire OSI stack
and thus impose limitations in terms of virtualizing the wireless
interface at the physical and MAC layers. In order to allow a user
the flexibility to experiment with these lower layers, we chose not
to virtualize the wireless nodes for this integration, but simply
spatially segment the wireless testbed and allow each network
slice full access to a specific segment of nodes.

4. INTEGRATION OF ORBIT AND VINI
In this section, we identify the various aspects of the architecture
of the two testbeds that need to be modified or augmented to
facilitate their integration and meet the goals mentioned in
Section 3. The solution presented below represents the
architecture that proved to provide the most flexibility and
functionality and the least complexity in deployment.

4.1 VINI Architecture Components
OpenVPN IP tunnels allow the injection of an outside computer
into a VINI experiment, but with limited capabilities. The current
configuration allows a single host running an OpenVPN client to
establish a VPN tunnel into VINI and inject IP traffic across a
virtual network topology. This limitation has to be removed to
allow a whole network of computers to be connected to VINI at
multiple connection points.

In addition, OpenVPN in VINI uses IP tunnels (i.e., IP packets
within IP) rather than Ethernet tunnels (i.e., Ethernet packets
within IP). Modifying OpenVPN to use Ethernet links has many
advantages over IP links, including but not limited to:

• Non-IP Protocols: An Ethernet-based OpenVPN link allows
experimenters to run any protocol (e.g., NetBIOS or IPX) that is
framed in Ethernet packets.

• Dynamic IP addresses: For security and routing reasons, when
using an IP OpenVPN link in the existing VINI architecture, all IP
addresses and ranges for which the link is responsible must be
configured in advance and cannot be changed without breaking
the VPN tunnel. Ethernet tunnels do not suffer from this
limitation because the Ethernet tunnels simply pass all Ethernet
frames through the tunnel without any IP requirements or routing
complications.

• Broadcast Packets: OpenVPN IP links support unicast packets
only and do not support broadcast/multicast packets. This is
problematic because routing protocols operating on Layer 3 of the
OSI stack may rely on broadcast packets to discover neighbors or
peers. OpenVPN Ethernet links allow broadcast packets (Ethernet

WirelessWireless

wireless node wired node
(ORBIT) (VINI)

Wireless
Network

WirelessWirelessWireless
Network

address: FF-FF-FF-FF-FF-FF or IP address range 240.0.0.0/4) to
flow between VINI and ORBIT.

Another VINI architecture aspect that needs modifications is
the Click modular router. Click performs forwarding of packets
based on IP addresses, which restricts users into having
predefined IP ranges that should be modified in Click as the
experiment changes to reflect the proper IP routing scheme. In
order to remove the need to modify Click on a per experiment
basis and make experiments independent of IP protocols,
changes are needed on Click so that Ethernet packets are
delivered to the user space (i.e., UML) instead of IP packets.
Within UML, an experimenter can then work in the familiar
Linux environment and create the proper network
drivers/modules to handle IP or non-IP packets.

4.2 ORBIT Architecture Components
ORBIT nodes do not have a predefined software architecture as
compared to VINI nodes. Therefore, the integration issue as it
relates to ORBIT deals more with deriving a solution that
provides a desirable integrated topology rather than modifying an
existing software architecture. On the ORBIT side, the integrated
solution should enable a VINI node to communicate to one or
more ORBIT nodes or groups of nodes. Two possible candidates
that provide different topology characteristics are the Router
configuration and the Bridge configuration.

In the Router configuration, an ORBIT node is set up as a router
and is connected to the VINI network as seen in Figure 4. An
OpenVPN tunnel is used to provide a point-to-point link between
the two networks. The ORBIT Router A node supports the
protocol of the packets received from the OpenVPN link through
proper configuration within Linux.

It should be emphasized that although the example uses IPv4
routing, this design can utilize non-IP routing as well. In addition,
this configuration enables Router A to run any of the routing
protocol supported through XORP in the VINI environment and
therefore exchange routes automatically with VINI nodes. In
terms of integration, this set up can be visualized as adding nodes
(e.g., Router A) and extending the existing VINI core network
while providing access to a wireless networks. Typically, this
mode can be utilized to enable integration of multi-hop wireless
networks with a wired testbed.

Figure 4. Integration using the router configuration.

In the Ethernet Bridge configuration, the ORBIT node bridges the
OpenVPN interface with the wireless interfaces and removes the
need to carry routing. Such a setup allows for experiments where
multiple wireless end nodes are attached to VINI nodes and can
be visualized as adding a wireless interface to a VINI node that is
physically disjoint.

An example of a bridge configuration is shown in Figure 5. The
VINI interface (172.20.0.1) is virtually connected to the Bridge
A’s wireless interface, which essentially makes that VINI node a
wireless node attached to the ORBIT network or retrospectively
provides the VINI node access to wireless ORBIT nodes (e.g.,
172.20.0.2 and 172.20.0.3). Once again, IPv4 is used here as an
example, but this framework will allow non-IP and broadcast
packets. Typically, this mode can be utilized to enable the
integration of access point functionality on the wired testbed
nodes (i.e., one hop wireless connectivity).

Figure 5. Integration using the bridge configuration.

4.3 IMPLEMENTATION
The modifications applied to ORBIT and VINI testbeds are
presented in the following subsections.

4.3.1 VINI Modifications
For ingress traffic we pass Ethernet packets from OpenVPN to the
UML instead of IP packets as currently utilized by VINI. We
achieve this feature by modifying both OpenVPN and Click
configurations. Ethernet tunnels are enabled by changing
OpenVPN links between ORBIT and VINI to use Linux Tap
devices instead of Tun devices. Therefore, any traffic from
ORBIT to VINI is now delivered via OpenVPN Ethernet tunnels
instead of OpenVPN IP tunnels. We then elect to send packets
from OpenVPN directly to UML with no modifications. Since
packets coming in from OpenVPN are already Ethernet
encapsulated they do not need to be encapsulated again by Click.
The Click forwarding mechanism is disabled and packets are sent
directly to UML without inspecting the packet contents with a
directive such as: “openvpn :: Socket(UNIX_DGRAM,
“/tmp/click.sock”) -> openvpn.” Therefore, the UML instance
handles all the packet routing decisions. The standard Linux
‘route’ command can be used within UML to direct packets. The
advantage of this configuration is the support of broadcast traffic
and non-IP based protocols. Non-IP routing protocols can be
implemented and tested within UML. In the current VINI
architecture, Click routes packets based on IP addresses, which

172.20.0.1

172.20.0.2

172.20.0.3

192.168.102.2
192.168.102.1

192.168.100.1

192.168.101.1

192.168.101.2

192.168.100.2

ROUTER A

Wireless Link

Wired link

Orbit nodes VINI nodes

OpenVPN
tunnel

172.20.0.1

172.20.0.2

172.20.0.3

192.168.100.1

192.168.101.1

192.168.101.2

192.168.100.2

BRIDGE A

Wireless Link

Wired link

Orbit nodes VINI nodes

Link to wireless Interface

OpenVPN
tunnel

PlanetLab node
VINI virtual node

tap0

UML

Unix Socket

Unix Socket

eth1 eth2

UML Switch

OpenVPN

Click

XORP

Other
VINI

nodes
UDP tunnel

Non-VINI
node

tunnel

eth3

2

1

3

restricts experiments to IP protocols. An additional benefit of this
configuration is that it removes the need to modify the Click
configuration for each experiment through the VINI setup files.

1 a) New interface binds to OpenVPN
b) Enable forwarding and arp

2 a) Forward ingress traffic to UML
b) Forward egress traffic to OpenVPN based on UML
 Ethernet address

3 a) Changed addressing scheme
b) Utilized Tap instead of Tun interfaces to bind to
 OpenVPN and use Ethernet tunnels
c) Changed from server to client setup to point-to-point
 setup

Figure 6. Key modifications of VINI architecture.

The method for handling egress traffic from the VINI UML
instance to ORBIT in the modified architecture involves creating
a new virtual interface in each UML instance, eth3 (see Figure 6).
The VINI configuration scripts assign each eth3 interface a
unique MAC address and its own IP address in the 192.168.0.0/16
range. Packets sent out from UML through this eth3 interface
are assigned this known MAC address. Click is again modified
to process Ethernet packets coming from the source MAC
address of eth3 and send matching packets through OpenVPN
links. Within the UML instance, eth3 interface is seen as a
regular Ethernet interface and is expected to act as a normal
interface. The interface can be assigned multiple IP addresses
(aliases) on different subnets and can be used for any Linux
routing implementation.

Another issue that we had to address during the integration of
PlanetLab-VINI and ORBIT was the dynamic allocation of IP
addresses. Both testbeds utilize the private class A reserved IP
range 10.0.0.0/8, which lead to IP address conflicts. More
specifically, each VINI instance uses the PlanetLab slices tap0
interface, which is assigned a unique class C address space within
the 10.0.0.0/8 address space. OpenVPN server in VINI attempts
to push routes for 10.0.0.0/8 to OpenVPN clients that need to
connect to VINI. On the other hand, ORBIT nodes use class A
addresses to communicate between the management console and
to access other ORBIT services. Thus, connectivity to the ORBIT
nodes running OpenVPN clients (i.e., ORBIT nodes) during
integration was lost. This problem was alleviated by assigning
address from 172.16.0.0/12 and 192.168.0.0/16 to OpenVPN
servers and clients, which are private IP ranges and will not
conflict with standard ORBIT or PlanetLab IP ranges. Some other
modifications that were made included enabling IP packet
forwarding and ARP responses on UML instances, both of which
were disabled in VINI by default.

Overall, the aforementioned modifications accommodate both
ingress and egress flows and create a virtual Ethernet link
between the UML eth3 interface and the interface on ORBIT
nodes without Click having to know the details of the traffic
flowing between the two points. Figure 6 summarizes the key
modifications on the VINI architecture.

4.3.2 ORBIT Modifications
An ORBIT baseline image was used as a foundation for building
the ORBIT node with router or bridge functionality. The baseline
image was Debian GNU with Linux kernel 2.6.12. OpenVPN was
compiled and installed along with OpenSSL [15]. The Linux
kernel was recompiled with the Tunneling and Bridging options
to enable the creation of Tap interfaces for OpenVPN and to
allow the operation in bridging mode. Bridgeutils was also
compiled and installed to provide the node with the proper tools
to create, modify and delete bridges.

The Bridge configuration (described in Section 4.2) is
accomplished using the Linux bridge tool, brctl (see Figure 7). A
TAP interface, tap0 is created using the Linux ‘mknod’ command
so that OpenVPN can use that device to pass packets. A bridge
interface, br0 is then created and linked to the tap0 interface
forming a virtual Ethernet bridge. An IP address is assigned to
br0 to provide the OpenVPN link endpoint with an IP addresses.
Thus, the UML eth3 interface on VINI (shown in Figure 6) is
linked to tap0 on ORBIT, which is bridged to ath0, the wireless
interface. Packets sent out of the eth3 interface will go onto the
ORBIT wireless network.

In the Router configuration, a tap0 device is again created and
linked to a bridge, br0 device (see Figure 8). An IP address (and
optional multiple aliases) are assigned to br0 and traffic is routed
between br0 and other interfaces (e.g., wireless interface ath0).

For both Bridge and Router configurations, the VINI scripts are
set to automatically generate commands for the ORBIT control
framework to image, power on, and configure the ORBIT Bridge
and Router nodes. Thus, automatic topology creation during
experiments is facilitated.

Figure 7. Example of Bridge IP configuration.

Figure 8. Example of Router IP configuration.

5. INTEGRATED MOBILITY SCENARIO
In this section we provide proof-of concept of the integrated
architecture by deploying a Layer 3 experiment over PlanetLab-
VINI and ORBIT. The objective of this experiment is to
investigate hand-off issues between access points that may belong
to different Internet Service Providers (ISPs). Although mobility
support is a requirement in the Internet, IP does not properly
addresses its specific needs. Designs that have been proposed to
better support mobility use some form of triangular routing (e.g.,
Mobile IP). In this experiment, we investigate ways to simplify
hand-off by removing triangular routing.

5.1 Experiment Description
 Figure 9 represents the topology that is used in the experiment.
Three VINI nodes are physically located in Berkeley, California
Tech, and MIT, and communicate with each other via UDP
tunnels. A Video Server is linked to the California Tech VINI
node by using an ORBIT node with the Bridge configuration, as
previously described. We then attach two access points, A and B,
to the other VINI nodes and configure them in the Router mode.

The ath0 wireless interfaces on the four ORBIT nodes are
configured with 172.16.X.X IP addresses and are assigned proper
channel, essid, and frequency. The tap0/br0 interfaces are
configured with 192.168.X.X IP addresses. OSPF is utilized to
automatically set up connectivity between nodes.

The overlay connectivity of the integrated testbed can be shown
by performing traceroute from the Mobile client (node1-2), to
Access Point B (node1-3):

node1-2.sb2.orbit-lab.org:~# traceroute 192.168.103.2

traceroute to 172.16.1.2 (172.16.1.2), 30 hops max, 40 byte
packets

 1 node1-1. (172.16.0.1) 0.521 ms 0.495 ms 0.451 ms

 2 eth2.berkeley (192.168.107.1) 73.075 ms 103.113 ms 74.466
ms

 3 eth3.caltech (192.168.100.3) 86.964 ms 86.009 ms 103.015
ms

 4 eth3.mit (192.168.101.3) 167.395 ms 184.267 ms 170.087 ms

 5 tap0.node1-3 (192.168.103.2) 192.127 ms 177.791 ms
189.877 ms

The path between the Mobile Client and Access Point B is
through access point A (node 1-1), Berkeley, California Tech,
MIT, and onto the tap0 interface of Access Point B, which is
the expected path. Thus, it can be seen that in addition to
ORBIT-to-ORBIT node connectivity in the 172.16.0.0/12
range, the ORBIT nodes have access to the VINI nodes on the
192.168.0.0/16 network.

Figure 9. Integrated architecture to test hand-off in a mobility
scenario.

The execution steps of the experiment are as follows; initially,
video is streamed from the Video Server to the Mobile Client
through access point A. As the Mobile Client moves away from

ROUTER

tap0ath0

Linux Routing

CONFIGURATION
Ifconfig br0 192.168.102.1 netmask 255.255.255.0
Ifconfig ath0 172.19.0.1 netmask 255.255.255.0
route add –net 172.20.0.0/24 gw 172.19.0.3

192.168.102.1172.19.0.0/24
&

172.20.0.0/24
Through 172.19.0.3

br0

BRIDGE

br0
tap0ath0

CONFIGURATION
Ifconfig br0 192.168.102.2 netmask 255…

192.168.102.0/24192.168.102.0/24
192.168.102.2

California Tech

Berkeley MIT

OpenVPN
Ethernet
Tunnel

OpenVPN
Ethernet
Tunnel

OpenVPN
Ethernet
Tunnel

Access
Point A
(Router
Mode)

Access
Point B
(Router
Mode)

Video Server

Mobile Client

192.168.107.1

192.168.100.2

192.168.100.3

192.168.101.2

192.168.101.3

192.168.105.1

192.168.103.1

192.168.107.2
192.168.103.2

br0:192.168.105.2192.168.105.3

172.16.0.2

172.16.0.1 172.16.0.1

UDP tunnel

(Bridge
Mode)

Orbit nodes VINI nodes

access point A connectivity breaks and the video freezes. Access
point A senses that the link is broken and through OSPF
advertises that it is no longer in the routing path of the Mobile
Client. That update is propagated and reflected in all the nodes.
Meanwhile, the Mobile Client establishes connectivity to the
network via access point B, which in turn advertises the new link
to the Mobile Client. Once the new routing information is
propagated in the network the video is restored.

 It is important to note that this investigation is different from
Mobile IP because in the case of mobile IP access point A would
relay the packets of the Mobile Client to access point B after the
hand-off. In this scenario, the packets do not traverse the
Berkleley and access point A overlay nodes and do not get
redirected to access point B. They instead go through California
Tech, MIT, and access point B and are delivered directly to the
Mobile Client.

5.2 Experimental Results
Initial results of our measurements with the Iperf tool have shown
that the packet delay with Mobile IP is 443 msecs as compared to
225 msecs with our setup. Furthermore, by manually triggering
the change in the routing paths when the connectivity of the
Mobile Client between access point A and B changed, we have
found that it takes approximately 3.5 seconds for the new routes
to propagate in the network and for the video to get restored.

Figure 10 shows the throughput from the Video Server to the
Mobile Client with different offered loads. With an offered load
of 50 Mbps, the deviation in throughput is higher. However, the
average throughput for both offered loads tends to be
approximately the same. These values can be justified after
looking at the throughput characteristics of the OpenVPN links in
Table 1.

Figure 10. Throughput characteristics of received video.

The OpenVPN link between the Video Server and California
Tech has a throughput of 1.25 Mbps inferring that it is the
bottleneck of the video connection. It is therefore worthwhile to
note that the selection of links during integration is important as it
may dictate the results of an experiment. In addition, the
throughput variation indicates the need for QoS guarantees over
virtual overlay links to accommodate experiments that are delay

sensitive. Currently, there are no standard Quality of Services
(QoS) guarantees on the PlanetLab nodes for bandwidth, IO or
CPU time. The GENI effort aims to address this issue [17].

Table 1. Throughput, delay, and jitter on OpenVPN links

OpenVPN
LINKs

THROUGHPUT
Mpbs

DELAY
usec

JITTER
Usec

Access point A
to Berkeley 4.01 83 3.0

Access point B
to MIT 4.25 99 2.9

Server bridge to
California Tech 1.25 19 7.5

6. DISCUSSION
The integration lessons from ORBIT and VINI can be generalized
and applied to the integration of other wired and wireless testbeds.
The utilization of Ethernet tunnels instead of IP tunnels has
allowed the support of non-IP protocols and broadcast packets for
network layer experimentation.

While VINI provides a powerful platform to create controlled
network topologies, it’s automatically generated underlying
configuration files require intimate knowledge of VINI’s inner
workings. As previously described, VINI links together Click
modular software router, UML, UML Switch, XORP BGP/OSPF
routing software and OpenVPN using a system of Unix sockets,
UDP sockets and Linux Tap/Tun interfaces. By carrying Ethernet
traffic to the user space, we allow users with basic knowledge in
Linux and Linux networking to use the integrated testbed without
knowing the details of the lower layers of virtualization on the
nodes (e.g., Click) or having to modify the underlying system.
Therefore, transparency aids the user to expedite the deployment
of an experiment.

PlanetLab nodes use virtualization to accommodate multiple
users. The cost of providing Layer 3 experiments through virtual
internetworking at the UML level is, however, a lower
performance since forwarding data packets in the UML kernel
incurs nearly 15% additional overhead [16].

As previously discussed in Section 3, it is not preferred to
virtualize wireless nodes because users typically require access to
the entire protocol stack to investigate lower layer issues
(assuming a single wireless card per node). However, it is
important to note that ORBIT nodes have 2 wireless interfaces,
and we could potentially use two instances of UML and support
two concurrent experiments by attaching an interface to each
virtual machine. We chose not to provide concurrent support for
two experiments per node as there is currently no control
mechanism within UML to provide access to the lower layer
stack. Access to the physical and MAC layers is typically needed
in experiments that involve wireless nodes. We instead spatially
divide the ORBIT grid such that each VINI-ORBIT experiment
gets a portion of the wireless nodes. Experiments use orthogonal
frequencies, which limits the number of concurrent experiments

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3

3.5

4
Throughput from Video Server to Mobile Client with varying offered load

Time(secs)

Th
ro

ug
hp

ut
 (M

bp
s)

50 Mbps avg 0.9
1 Mbps avg 0.975

based on the number of orthogonal frequencies available on the
802.11a/b/g interfaces.

Eventhough the aforementioned proof-of-concept experiment was
based on 802.11a/b/g, the ORBIT grid can also provide support
for experiments involving heterogeneous wireless networks. In
addition to 802.11a/b/g, a subset of ORBIT nodes are equipped
with Zigbee, Bluetooth, and GNU radios. A researcher can
therefore choose to integrate a wired testbed with groups of
ORBIT nodes that use different wireless technologies.

Another aspect of integration is the unification of the control and
management architectures of both wired and wireless testbeds. An
ORBIT user wanting to run an integrated experiment can
communicate with a centralized control and management
infrastructure that allocates to the user the Orbit grid for a
particular time slot, while at the same time communicates with
VINI nodes and set ups the required authentication information
needed for OpenVPN tunnel creation. In addition, it can authorize
the ORBIT user to use specific slivers on the VINI nodes. On the
other hand, a VINI user wanting to run an integrated experiment
can communicate with a control and management plane that
allocates ORBIT nodes for the user as well as copy the required
authentication keys to enable OpenVPN tunnel creation on the
ORBIT nodes. Therefore, there is a need for an identity-
management federation across both testbeds. In order to allow for
this integration from the perspective of an ORBIT user, we
extended the ORBIT control framework to include VINI nodes
through the use of a single programming script and experimental
methodology. This unified control and management architecture
is currently missing from the perspective of a VINI user.

7. CONCLUSION
In this paper, we presented an integrated architecture solution that
enables network layer experiments over wired and wireless
networks on existing Internet links with realistic background
traffic. Our solution provides an abstraction of the underlying
software architecture that simplifies the configuration complexity
of setting up experiments. In addition, it supports non-IP traffic
and broadcast traffic, as well as any- to-any host connectivity.
The usefulness of this integrated architecture was demonstrated
through the investigation a video hand-off design as an alternative
to Mobile IP.

The results of the research discussed in this paper provide a
valuable basis on which researchers can build and prototype
mixed wired/wireless experiments. Such a platform will assist in
developing next generation protocols that address many core
issues such as mobility and location-directed broadcasts over
extensive network architectures. The results of these experiments
may one day power the next generation of network devices
designed for the wireless information age.

8. ACKNOWLEDGEMENT
We would like to thank Andy Bavier and Jennifer Rexford at
Princeton University for their help with VINI. This material is

based upon work supported by the National Science Foundation
under Grants No. CNS 0335244 and CNS 0627032.

9. REFERENCES
[1] “PlanetLab: An open platform for developing, deploying,

and accessing planetary-scale services,” https://www.planet-
lab.org/, available May 15, 2007.

[2] “Understanding VINI” , https://www.vini-
veritas.net/documentation/pl-vini/user/understand, available
May 10, 2007.

[3] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J.
Rexford, “In VINI Veritas: Realistic and Controlled Network
Experimentation,” in ACM SIGCOMM, Vol. 36, No. 4, pp.
3-14, October 2006.

[4] “Emulab – Network Emulation Testbed,”
http://www.emulab.net/, available May 20, 2007.

[5] B. White, J. Lepreau, and S. Guruprasad, "Lowering the
barrier to wireless and mobile experimentation," ACM
SIGCOMM Computer Communications Review, Vol. 33, pp.
47-52, 2003.

[6] D. Raychaudhuri, et al., "Overview of the ORBIT radio grid
testbed for evaluation of next-generation wireless network
protocols," in IEEE WCNC, vol. 3, pp. 1664-1669, 2005.

[7] H. Lundgren, D. Lundberg, J. Nielsen, E. Nordstrom, and C.
Tschudin, "A large-scale testbed for reproducible ad hoc
protocol evaluations," in IEEE WCNC, vol. 1, pp. 412-418,
2002.

[8] R. Karrer, A. Sabharwal, and E. Knightly, " Papers from
Hotnets-II: Enabling large-scale wireless broadband: the case
for TAPs," in ACM SIGCOMM Computer Communication
Review, Vol. 34, pp. 27-32, 2004.

[9] WHYNET, http://pcl.cs.ucla.edu/projects/whynet/, accessed
on 12/05/2005.

[10] “User-Mode Linux,” http://user-mode-linux.sourceforge.net/,
available May 5, 2007.

[11] “XORP: Open Source IP Router,” http://www.xorp.org/,
available May 17, 2007.

[12] “Click Modular Router,” http://pdos.csail.mit.edu/click/,
available May 20, 2007.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek, “The Click modular router,” ACM Transactions
on Computer Systems, vol. 18, pp. 263–297, August 2000.

[14] “OpenVPN: An open source SSL VPN solution,”
http://openvpn.net/.

[15] ‘OpenSSL: The Open Source toolkit for SSL/TLS,”
http://www.openssl.org/, available May 19, 2007.

[16] X. Jiang and D. Xu, “Violin: Virtual internetworking on
overlay infrastructure,” in Proc. International Symposium on
Parallel and Distributed Processing and Applications, pp.
937–946, 2004.

