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Abstract— We study a multiple channel direct sequence ultra-
wideband (DS-UWB) system which transmits the same infor-
mation bit over a set of parallel channels corresponding to
a set of orthogonal pulses. It is known that by employing
mutually orthogonal (MO) ternary complementary set of spread-
ing sequences, one can efficiently suppress both multipath and
multiuser interference. Similar to a multicarrier DS-CDMA
system, the multichannel DS-UWB system can have a high peak
to average power ratio (PAPR) which may limit its application.
In this paper, we analyze the PAPR of the multichannel UWB
system by studying its upper bound. The bound illustrates how
column sequences of MO complementary set matrices with small
out-off-phase aperiodic autocorrelation functions (ACF) allow for
lowering the PAPR. Hence, we develop an algorithm to construct
the spreading sequence sets which may result in data sequences
with reduced PAPR, while at the same time, preserving the
complementarity and orthogonality which alleviate the multipath
and multiuser interference.

Index Terms— ultra-wideband (UWB), ternary sequence, com-
plementary set, peak to average power ratio (PAPR)

I. I NTRODUCTION

We study ternary direct sequence based UWB (TS-
UWB) [1]. Ternary signaling which includes epochs of zero
signal amplitude constitutes a natural framework for studying
impulse based UWB systems. As an extension of binary
antipodal signaling, ternary signaling gives the designer much
more flexibility in spreading sequence design.

For impulse based UWB systems, we have proposed a mul-
tichannel TS-UWB signaling which simultaneously transmits
orthogonal pulses carrying the same information bit [2]. We
demonstrated how, by employing ternary mutually orthogonal
complementary set of sequences as the spreading sequences,
the multipath interference and multiple access interference are
efficiently suppressed.

Akin to the multicarrier direct-sequence code-division mul-
tiple access (MC-DS-CDMA) signaling [3], the transmitted
signal of the multichannel UWB system is the sum of the sig-
nals from all parallel channels, so its envelope and transmitted
power may vary significantly. Hence, such signaling poten-
tially suffers a high peak to average power ratio (PAPR) which
may limit its application. Great efforts have been devoted
to PAPR analysis and reduction in multicarrier modulation
systems (see, e.g., [3]–[5]). However, to our best knowledge,
there is no PAPR analysis for impulse based multichannel
UWB signaling in the literature, this being a promising tech-
nique for high bit-rate transmission, in particular, for indoor
environments where multipath can be significant.

In this paper, we derive an upper bound on the PAPR
for multichannel DS-UWB system using orthogonal pulses.
The bound shows that data sequence [5] with small out-off-
phase aperiodic autocorrelation functions (ACF) can lower the
PAPR of the system. Therefore, we construct the spreading
sequence sets which can result in data sequences with small
aperiodic ACF. On the other hand, the spreading sequence sets
preserve the complementarity and orthogonality to mitigate the
multipath and multiuser interference.

The remainder of this paper is organized as follows. The
multiple channel DS-UWB system is briefly described in
Section II. In Section III, we analysis the PAPR of the
multichannel DS-UWB system and describe the upper bound
on its PAPR. The PAPR reduced ternary complementary sets
are constructed in Section IV. Finally, the conclusion is given
in Section V.

II. M ULTIPLE CHANNEL UWB SYSTEM

We transmit the same information bit overM parallel
channels. The information bit is spread over a set of parallel
channels each corresponding to one of a set of orthogonal
pulses. The transmitted signal for userk is given by

S(k)(t) =
∑

r

M∑
m=1

b(k)
r P (k)

m (t− rTs) (1)

where the pulse train for userk and code channelm is

P (k)
m (t) =

N−1∑
n=0

c(k)
m,nψm(t− nTc) (2)

br is the binary antipodal symbol transmitted overM parallel
channels andr is its index. TheM spreading sequences
(c(k)

m,0, c
(k)
m,1, · · · , c(k)

m,N−1), m = 1, 2, ...M , assigned respec-
tively to M parallel channels are ternary sequences in this
paper.N is the sequence length.Tc is the chip duration time
and Ts = NTc is the symbol period.ψm(t) is the signaling
pulse chosen from the orthogonal set of pulses and assumed
known to the receiver.

The impulse response of the UWB channel withL resolv-
able paths is

h(t) =
L−1∑

l=0

αlδ(t− τl) (3)

whereαl andτl denote the channel gain and the propagation
delay of thelth path, respectively.



When sufficient multipath resolution is available, small
changes in the propagation time only affect the path delay
and path component distortion can be neglected. Under these
assumptions, path coefficientsαl can be modelled as indepen-
dent real valued random variables whose sign is a function of
the material properties and, generally, depends on the wave
polarization, angle of incidence, and the frequency of the
propagating wave [6]. We quantize the multipath delay into
bins, i.e.τl = lTc.

For an asynchronous UWB system withK users, the
corresponding received signal model is:

r(t) =
K∑

k=1

L−1∑

l=0

αls
(k)(t− lTc − τ (k)) + n(t) (4)

where τ (k) accounts for propagation delay and lack of syn-
chronism between transmitters,n(t) is a white Gaussian noise
process. For the system with short sequences, the delayτ (k) is
assumed to be uniformly distributed in the interval[0, NTc),
and in this paper, we quantize it into bins.

We have demonstrated [2] that, when the spreading se-
quence set{(c(k)

m,0, c
(k)
m,1, · · · , c(k)

m,N−1)}M
m=1 assigned to userk

is a ternary complementary set and the ternary complementary
sets between any two users are mutually orthogonal, the
multipath interference as well as multiple access interference
are efficiently suppressed by employing a correlator receiver.

Hence, the purpose of this paper is to solve the potential
PAPR problem caused by multiple channels while at the same
time maintaining the complementarity and orthogonality of the
spreading sequence sets.

III. PEAK TO AVERAGE POWER RATIO ANALYSIS

The complementary set containsM complementary se-
quences with sequence lengthN is represented by matrixC
as follow,

C =




c1,0 c1,1 c1,2 · · · c1,N−1

c2,0 c2,1 c2,2 · · · c2,N−1

...
...

...
. ..

...
cM,0 cM,1 cM,2 · · · cM,N−1




M×N

where the sum of the aperiodic ACF of theM sequences, i.e.
(cm,0, cm,1, cm,2, · · · , cm,N−1), m = 1, 2, ...M , vanishes for
every l 6= 0,

M∑

i=1

N−1−l∑
n=0

ci,nci,n+l = 0, ∀l 6= 0

The complementary set matrixC can also be repre-
sented by its resulting data sequencesc0, c1, ...cN−1, i.e.
C = [c0 | c1 | c2 | ... | cN−1]M×N . The N resulting data
sequencescn =(c1,n, c2,n, c3,n, · · · cM,n), n = 0, 1, ...N − 1,
affect the PAPR of the multichannel UWB system. Note that
the information bits won’t affect the instance power of the
transmitted signal, since all the parallel channels carry the
same information bit at the same time. Thus, in this section,
we can analysis the PAPR and derive an upper bound on it by
ignoring the information bits.

During a chip periodTc, the corresponding multichannel
UWB signal of a single user is given by

Scn(t) =
M∑

m=1

cm,nψm(t− nTc), for n = 0, 1, ...N − 1

Then, the corresponding instantaneous envelope power is,

Pcn
(t) = S2

cn
(t)

=

(
M∑

m=1

cm,nψm(t− nTc)

)(
M∑

l=1

cl,nψl(t− nTc)

)

= 2
M−1∑

l=1

M−l∑
m=1

cm,ncm+l,nψm(t− nTc)ψm+l(t− nTc)

+
M∑

m=1

c2
m,nψ2

m(t− nTc) for n = 0, 1, ...N − 1

We assume the orthogonal pulses have the zero amplitude
out of the chip duration. Then, the instantaneous power over
symbol period is given by,

Pc(t) =
N−1∑
n=0

Pcn(t)U(t− nTc)

where U(t) =
{

1 t ∈ [ 0, Tc)
0 otherwise

.

The peak amplitude of all the orthogonal pulses may or may
not be the same value, we define

λ = max
m

(
sup

t∈[0,Tc]

|ψm(t)|
)

for m = 1, 2, ...M

where supt∈[0,Tc] |ψm(t)| denotes the peak value of pulse
|ψm(t)| over time period[0, Tc].

Hence, the peak envelope power (PEP) corresponding with
spreading sequence setC during the whole symbol periodTs

is given by,

PEP (C) = sup
t∈[0,Ts]

Pc(t)

= max
cn

(
sup

t∈[nTc,(n+1)Tc]

Pcn(t)

)

≤ λ2 max
cn

(∣∣∣∣∣
M∑

m=1

c2
m,n

∣∣∣∣∣ + 2

∣∣∣∣∣
M−1∑
m=1

M∑

l=m+1

cm,ncl,n

∣∣∣∣∣

)

≤ λ2 max
cn


θcn(0) + 2

∑

l 6=0

|θcn(l)|

 (5)

where θcn denotes the aperiodic autocorrelation function
(ACF) of sequencecn = (c1,n, c2,n, c3,n, · · · cM,n), n =
0, 1, ...N − 1 which is

θcn(l) =
M−l∑
m=1

cm,ncm+l,n for l = 0, 1, ...M − 1

We normalize the information symbol energy overM
channels to be 1. Thus,
∫ Ts

0

Pc(t)dt =
M∑

m=1

(∫ Ts

0

N−1∑
n=0

c2
m,nψ2

m(t− nTc)dt

)
= 1



Then, the average power corresponding to the spreading
sequence setC over a symbol periodTs is,

Pav(C) =
1
Ts

∫ Ts

0

Pc(t)dt =
1
Ts

(6)

From (5) and (6), the PAPR can be derived as,

PAR(C) =
PEP (C)
Pav(C)

≤ λ2

Ts
max
cn


θcn(0) + 2

∑

l 6=0

|θcn(l)|

 (7)

The above upper bound on the PAPR of multichannel UWB
system associated with spreading sequence setC highlights
the intimate relationship with the aperiodic ACF ofC’s
resulting data sequences. In the next section, we construct the
ternary complementary setC whose resulting data sequences
have very small aperiodic ACF, thus lower the PAPR of the
multichannel UWB system.

IV. D ESIGN OFTERNARY COMPLEMENTARY SETS

WITH PAPR REDUCTION

Before we introduce the algorithm to construct the ternary
complementary sets with PAPR reduction, let us go through
some concepts and lemmas [7] first.

A set ofM sequences{ai}M
i=1 is said to be a complementary

set of sequences, if the sum of the aperiodic ACF of theM
sequences vanishes for everyl 6= 0,

M∑

i=1

θai,ai(l) =
M∑

i=1

N−1−l∑
n=0

ai,nai,n+l = 0, ∀l 6= 0

whereθai,ai denotes the aperiodic ACF of sequencesai with
length N and ai,n denotes thenth element in the sequence
ai. WhenM = 2, then we said{a1, a2} is a complementary
pair.

A set of complementary sequences{bi}M
i=1 is a mate of

the set{ai}M
i=1 if the length of bi is equal to the length

of ai, for 1 ≤ i ≤ M , and
∑M

i=1 θai,bi
(l) = 0 for any l.

Complementary sets are said to be mutually orthogonal (MO)
complementary sets if any pair of them are mates.

Lemma 1: Let {a1, b1} be a complementary pair with
sequence lengthN , then{a1

←−b1, b1(−←−a1)} is a complementary
pair with sequence length2N , where a1

←−b1 denotes the
concatenation of two sequencesa1 and

←−b1,
←−b1 denotes the

reverse of the sequenceb1 and −←−a1 denotes the sequence
whose ith element is the negation of theith element in
sequence←−a1.

Lemma 2: Let {ai, bi},i = 1, 2, ...M , respectively be
M complementary pairs with the same sequence length.
Then, all these2M sequences form a complementary set
{a1, b1, a2, b2, ..., aM , bM}.

A. Design Algorithm

Step by step, we construct ternary complementary sets
whose resulting data sequences are all within ternary sequence
set T(M,Z, SAP ), whereM is the length of resulting data
sequence and is required to be an even number,Z is the
number of the zero elements in the ternary sequence. For any
ternary sequencec ∈ T, the sum of the absolute values of the
aperiodic ACF of all the non-zero shifts, i.e.

∑M−1
l=1 |θc,c(l)|,

is equal toSAP . By choosing theSAP as small as possible, we
construct the ternary complementary set with PAPR reduction.

Step 1: In the ternary sequence setT(M, Z, SAP ), we
do the brute force search work to find seed sequencec0 =
(c1,0, c2,0, ..., cM,0), such that,

c1 = (c1,1, c2,1, ..., cM,1)
= (c2,0,−c1,0, c4,0,−c3,0, ..., cM,0,−cM−1,0)

where bothc0 andc1 are within setT(M,Z, SAP ).
Thus, we get the PAPR reduced ternary complementary set

C(0) as follow,

C(0) =




c1,0 c1,1

c2,0 c2,1

...
...

cM−1,0 cM−1,1

cM,0 cM,1




=




c1,0 c2,0

c2,0 −c1,0

...
...

cM−1,0 cM,0

cM,0 −cM−1,0




Example 1: In setT(8, 1, 5), we can find seed sequence as
c0 = (+ − − + + + 0 +). We reorganize the elements ofc0

and get the sequence

c1 = (c1,1, c2,1, ..., cM,1)
= (c2,0,−c1,0, c4,0,−c3,0, ..., cM,0,−cM−1,0)
= (−−+ + +−+0)

It can be verified that both of them are within the set
T(8, 1, 5). Thus,C(0) is given by,

C(0) =




c1,0 c1,1

c2,0 c2,1

...
...

c8,0 c8,1


 =




+ −
− −
− +
+ +
+ +
+ −
0 +
+ 0




8×2

Proposition 1: C(0) is a ternary complementary set with
PAPR reduction.

Proof: The complementarity of C(0) can be
proved by using Lemma 1 and Lemma 2. Since
the sequencec0 and c1 satisfy the requirement that
{(c2i−1,0, c2i−1,1), (c2i,0, c2i,1)}, i = 1, 2, ...M/2, are
respectively M/2 ternary complementary pairs. Based on
Lemma 2,C(0) = {(c1,0, c1,1), (c2,0, c2,1), · · · , (cM,0, cM,1)}
is a ternary complementary set. On the other hand, based on
the properties of seed sequencec0, both sequencec0 and c1

are within small aperiodic ACF sequence setT(M,Z, SAP ).
Step 2: We can recursively extendC(0) to be the PAPR

reduced ternary complementary set with longer spreading
sequence length.



TABLE I

THE SPREADING SEQUENCE LENGTHN(p)

p 0 1 2 3 4 5 6 · · ·
N (p) 2 4 8 16 32 64 128 · · ·

Let C(p) denotes ternary complementary set consistingM
2

complementary pairs with sequence lengthN (p). By applying
the procedure inLemma 1, we obtain M

2 complementary
pairs with sequence lengthN (p+1) = 2N (p), according to
Lemma 2, all theseM

2 complementary pairs form a ternary
complementary setC(p+1). The spreading sequence lengthsN
of each step are shown in TABLE I.

Example 2: Based onLemma 1, we construct ternary
complementary setC(1) and C(2) with PAPR reduction from
ternary complementary setC(0) constructed inExample 1.

C(0) =




+ −
− −
− +
+ +
+ +
+ −
0 +
+ 0




8×2

=⇒ C(1) =




+ − − −
− − + −
− + + +
+ + − +
+ + − +
+ − − −
0 + 0 +
+ 0 − 0




8×4

Further, we can get

C(2) =




+ − − − − + − −
− − + − + + + −
− + + + + − + +
+ + − + − − − +
+ + − + − − − +
+ − − − − + − −
0 + 0 + 0 − 0 +
+ 0 − 0 − 0 − 0




8×8

Proposition 2: The extended sequence setsC(p), p =
0, 1, 2, 3..., are ternary complementary sets with PAPR reduc-
tion.

Proof: The complementarity of the sequence setC(p) can
be verified by usingLemma 2 and Lemma 3. The PAPR
reduction can be proved by observing that all the resulting
data sequencesc(p+1)

0 , c(p+1)
1 ,... c(p+1)

N(p+1)−1
, can be expressed

in terms ofc(p)
0 , c(p)

1 ,... c(p)

N(p)−1
, that is

c(p+1)
i =





c(p)
i for 0 ≤ i ≤ N (p) − 1

−c(p)

i−N(p) for N (p) ≤ i ≤ 3
2N (p) − 1

c(p)

i−N(p) for 3
2N (p) ≤ i ≤ 2N (p) − 1

Note that c(0)
0 and c(0)

1 , the resulting data sequences of
C(0), are within setT(M, Z, SAP ). Thus, all resulting data
sequences ofC(p), i.e. c(p)

0 , c(p)
1 ,... c(p)

N(p)−1
, p = 0, 1, 2, ...,

are within the same ternary sequence setT(M, Z, SAP ) as
well.

Step 3: Based on a single PAPR reduced ternary comple-
mentary setC = [c0, c1, · · · cM−1]M×M constructed above,
we design the mutually orthogonal complementary sets with
PAPR reduction.

Let’s start the construction by introducing the Hadamard
matrix H which can be generated from the following iteration:

H(0) = [+]

H(p+1) =
[

H(p) H(p)

H(p) −H(p)

]
, p = 0, 1, 2...

RepresentHM×M in details as:

HM×M =




h1

h2

...
hM


 =




h1,1 h1,2 · · · h1,M

h2,1 h2,2 · · · h2,M

...
...

. ..
...

hM,1 hM,2 · · · hM,M




M×M

We denote the Kronecker product as⊗. By using Kronecker
product betweenHM×M andCM×M , we get theM2 by M2

matrix D,

D =




D1

D2

...
DM


 = HM×M ⊗ CM×M

=




h1,1C h1,2C · · · h1,MC
h2,1C h2,2C · · · h2,MC

...
...

. ..
...

hM,1C hM,2C · · · hM,MC




M2×M2

The matrixDi, i = 1, 2, ...M , with the dimensionM ×M2

are shown as follows,

Di =
[

hi,1C hi,2C · · · hi,MC
]

=




di
1,1 di

1,2 · · · di
1,M2

di
2,1 di

2,2 · · · di
2,M2

...
...

. . .
...

di
M,1 di

M,2 · · · di
M,M2




M×M2

ReshapeHM×M asH
′
1×M2 below,

H
′
1×M2 = (h1h2 · · · hM )

= (h1,1h1,2 · · ·h1,Mh2,1h2,2 · · ·hM,M )1×M2

Let H̃ denotes the following matrix,

H̃M×M2 =




H
′

H
′

...
H
′




=




h1,1 h1,2 · · · hM,M

h1,1 h1,2 · · · hM,M

...
...

. . .
...

h1,1 h1,2 · · · hM,M




M×M2

By using dot product̄ between matrixDi and matrixH̃,
we obtain the complementary set∆i, i = 1, 2..., M , as shown
in (8). All together, we can generateM MO complementary
sets and assigned them toM users.

Proposition 3: ∆i, i = 1, 2, ...M , are MO complementary
sets, which can be verified by following the similar procedures
in [8].

Proposition 4: Sequence sets∆i, i = 1, 2, ...M , are ternary
MO complementary sets with PAPR reduction.



∆i = H̃ ¯ Di =
[

h1,1hi,1c0 h1,2hi,1c1 · · · h1,Mhi,1cM−1 h2,1hi,2c0 h2,2hi,2c1 · · · hM,Mhi,McM−1

]
M×M2

=




h1,1d
i
1,1 h1,2d

i
1,2 · · · h1,Mdi

1,M2 h2,1d
i
1,M+1 h2,2d

i
1,M+2 · · · hM,Mdi

1,M2

h1,1d
i
2,1 h1,2d

i
2,2 · · · h1,Mdi

2,M2 h2,1d
i
2,M+1 h2,2d

i
2,M+2 · · · hM,Mdi

2,M2

...
...

. . .
...

...
...

. ..
...

h1,1d
i
M,1 h1,2d

i
M,2 · · · h1,Mdi

M,M2 h2,1d
i
M,M+1 h2,2d

i
M,M+2 · · · hM,Mdi

M,M2




M×M2

(8)

Proof: The resulting data sequence of∆i, i = 1, 2, ...M
can be expressedhm,nhi,kcj , where m,n, k ∈ [1,M ] and
j ∈ [0,M − 1]. Since hm,n, m,n ∈ [1, M ], are elements
of Hadamard matrixH, then the resulting sequence of∆i

is the corresponding resulting data sequence ofC, (i.e.
c0, c1, · · · cM−1) multiplied by either ”+1” or ”-1”. From
Proposition 2, we know that all resulting data sequences of
C are within the same ternary sequence setT(M,Z, SAP ).
Hence, all resulting data sequences of MO complementary
sets∆i, i = 1, 2, ...M , are within the setT(M,Z, SAP ).

In Fig. 1, we normalize the PAPR upper bound of proposed
8 by 8 ternary complementary setC(2) in example 2 as 1.
Then, we randomly generate complementary sets with the
same dimension. Fig. 1 demonstrates that the proposed ternary
complementary set may lower the PAPR upper bound by4.5
dB with that of randomly generated complementary sets.
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Fig. 1. Normalized PAPR upper bound of randomly generated complemen-
tary sets Versus that of proposed PAPR reduced ternary complementary set

V. CONCLUSION

In this paper, we analyze the PAPR of the multiple channel
UWB system based on its upper bound. Based on the upper
bound analysis, we further develop an algorithm to construct
the spreading sequence sets which may result in data se-
quences with small aperiodic ACF, thus lower the PAPR of
the signal. On the other hand, the spreading sequence sets
preserve the complementarity and orthogonality to alleviate
the multipath and multiple access interference.
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[2] D. Wu, P. Spasojević, and I. Seskar, “Ternary complementary sets
for orthogonal pulse based UWB,”Conference Record of the Thirty-
Seventh Asilomar Conference on Signals, Systems and Computers, vol. 2,
pp. 1776–1780, Nov. 2003.

[3] X. Zhao and X. Zhang, “Peak-to-average power ratio analysis in multi-
carrier DS-CDMA,”IEEE Transactions on Vehicular Technology, vol. 52,
pp. 561 – 568, May 2003.

[4] C. Zhang, X. Lin, and M. Hatori, “Novel two dimensional complementary
sequences in ultra wideband wireless communications,”IEEE Confer-
enece on Ultra Wildeband Systems and Technologies, Nov. 2003.

[5] C. Tellambura, “Upper bound on peak factor of n-multiple carriers,”
Electronics Letters, vol. 33, pp. 1608 –1609, Sept. 1997.

[6] T. S. Rappaport,Wireless Communications Principles and Practice.
Prentice Hall, 1997.

[7] C. C. Tseng and C. Liu, “Complementary sets of sequences,”IEEE
Transactions on Information Theory, vol. 18, pp. 644 –652, Sep. 1972.

[8] N. Suehiro and M. Hatori, “N-shift cross-orthogonal sequences,”IEEE
Transactions on Information Theory, vol. 34, pp. 143 –146, Jan. 1988.


