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Abstract— We consider a communication system with multiple
independent user-base pairings in a white Gaussian noise envi-
ronment, and for which a simultaneous water filling condition is
satisfied by users at their respective bases. We focus on the low
mutual interference case for which the simultaneous water filling
solution is unique and users overlap completely in the signal
space. We show that when users at other bases are treated as
Gaussian noise, simple separation of users in signal space usually
offers much better performance than simultaneous water filling.
We then present a distributed algorithm which iteratively moves
users toward greater separation in the signal space.

I. INTRODUCTION

In wireless communication systems, nodes are distributed
over some region and at any given instant, active nodes are
either transmitters or receivers. For simplicity we will assume
a one to one mapping between transmitters and receivers, but
this condition can be relaxed with no loss of generality. We
will call the receivers “bases” and transmitters “users.” Now
suppose the spectrum used is unlicensed, then we readily see
that any given transmission must cope with interference from
other users. That is, when no cooperation among users is
assumed, a given user is decoded at its associated base under
the interference generated by all the other users. In general,
this is an instance of the interference channel [7, p. 382] for
which the complete characterization of the capacity region is
still an open problem.

An early formulation of the interference channel problem
is due to Shannon [19] followed by results obtained decades
later by Ahlswede [1], Carleial [3]–[5], Sato [16]–[18], Han
and Kobayashi [9], and Costa [6]. While most of these results
deal with the strong interference case [3], [4], [9], [17], [18],
we note the work of Costa [6] which suggests that weak and
moderate interference are more important from a practical
perspective. Recent research [21] approaches the Gaussian
interference channel from a non-cooperative game theoretic
perspective in which users compete for data rates. Each user’s
objective is greedy performance maximization without regard
for other users in the system, and it is shown [21] that in the
case of low interference a simultaneous water filling solution is
equivalent to a Nash equilibrium for this Gaussian interference
channel game.

More insight into greedy simultaneous water filling dis-
tributions that correspond to interference channels with two

transmitters and receivers (two user-base pairs) is provided in
[13] where a relationship between the geographical distribution
of the users and bases (characterized by the user-base gains)
and the set of potential water filling solutions is presented.
The system, which is depicted in Figure 1, is similar to that
considered by Costa [6] and Yu [21] and assumes flat channels
for both users to both bases, with the relative gain of each user
to its associated base normalized to 1, and to the neighboring
base �������
	�������
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Fig. 1. The system with two transmitters and receivers considered in [13].

Reference [13] shows that three structurally distinct signal
space configurations correspond to simultaneous water filling
solutions: 1) Complete overlap: users evenly distribute their
transmitted energy in all dimensions of the signal space, gen-
erating the largest amount of interference; 2) Partial overlap:
users share only a subset of the signal space and generate less
interference; and 3) No overlap: users reside in orthogonal
subspaces and do not interfere with each other. It is also
shown in [13] that multiple Nash equilibria are possible. Table
1 summarizes the results in [13] and relates the number of
potential Nash equilibria and overlap scenarios to the relative
gains of users to bases.
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In this paper we focus on “low interference” where �$#%��&(')�
and where simultaneous water filling represents a unique Nash
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Fig. 2. Simultaneous water filling and signal space partitioning for a
symmetric system with two mutually interfering users

equilibrium. We compare this solution to simple and fair
allocation of signal space over users, and show that better
performance is possible through separation. We also propose
a distributed algorithm – or more precisely, an etiquette
– that moves a symmetric system from complete overlap
between users (corresponding to simultaneous water filling)
to separation of users in signal space, thus improving each
user’s rate.

II. SIMULTANEOUS WATER FILLING: AN INEFFICIENT

NASH EQUILIBRIUM

In game theory, a Nash equilibrium is defined by a set
of strategies such that each player’s strategy is an optimal
response to the other players’ strategies [8, p. 11]. From this
perspective, a Nash equilibrium is reached for the Gaussian
interference channel game if and only if a simultaneous water
filling solution is satisfied for both users [21], and the optimal
strategy of each user is to water fill the signal space regarding
the other user as noise. Furthermore, a Nash equilibrium is
said to be Pareto deficient (or non-Pareto-optimal) if at least
one player would do better and the other one would do no
worse by switching to a different strategy [22, p. 52]. Such
Nash equilibria are not necessarily efficient in that there exist
cooperative strategies where both players achieve better returns
– a classical example is the Prisoner’s Dilemma [22, p. 51]
and tit for tat strategies [10].

Let us consider the symmetric system with two user-base
pairs as in Figure 1, with equal user powers

�
, equal gains �

from one user to the neighboring base, and equal background
noise level at each base assumed white and Gaussian with
variance ��� . Let � be the dimensionality of the signal space.
It has been proven in [13] that when a simultaneous water
filling distribution is satisfied, both user transmit covariance
matrices have the same eigenvectors. Thus, the simultaneous
water filling distribution can be graphically illustrated as in
the upper diagram of Figure 2, and we will compare it with
the signal space partitioning between the two users illustrated
in the lower diagram of Figure 2.
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Fig. 3. Capacity variations as a function of user subspace width

With the simultaneous water filling distribution each user
achieves the capacity����� 	 �  ����� � �"! �

� � !#�$�%�'& (1)

while in the case of signal space partitioning user capacities
are given by � # 	)(  �*�+� � �"! �

( � � & (2)� & 	 �-, (
����� � �"! �. �/, ('0 ���1& (3)

with ( being the number of dimensions occupied by user 1.
We note that as the number of signal space dimensions (occupied by user 1 increases,

� # increases and
� & decreases.

For the symmetric system under consideration the optimum
point corresponds to equal partitioning of the signal space,
for which both user capacities are equal, and the collective
capacity1 [13] 2

	 � #3! � & 	
	4(  �*�+� � �"! �

( � �1& ! �/, (
����� � �5! �. �/, ('0 � �1& (4)

is maximized. This can be observed in Figure 3 where the
capacity that corresponds to the simultaneous water filling
solution

� ���
is compared to

� # and
� & for a system with� 	 �76+6 , � 	 �76+6 , � � 	86 � 6 � , � 	96 � : , and ( ranging from 1

to 99 dimensions2. We note that for a wide range of values for( both users achieve higher rates
� # and

� & if they partition
the signal space than

� ���
corresponding to the simultaneous

water filling solution. We also note that the collective capacity2
is maximized when users span orthogonal subspaces of equal

dimension, and that
2

does not vary significantly over the
range of values ( for which

� # and
� & are larger than

� ���
.

1The term collective capacity is used to distinguish it from the information-
theoretic sum capacity used in related work on multibase systems [12], [15].

2The values ; � � , respectively ; �=<>< , correspond to the extreme cases
in which user 1, respectively user 2, reside in only one signal dimension.



We define the point for which the collective capacity
2

is
maximized as the social optimum for the system.

We can also compare simultaneous water filling and signal
space partitioning as a function of the gain � . In the case of
simultaneous water filling

2
is given by2 ��� 	9� �*�+� � �� ��! � ! � & (5)

where � 	 ��� . � ��� 0 represents the raw SNR of each user.
When users partition the signal space in equal orthogonal
subspaces we have2������

	 � # ! � & 	 �  �*�+� .  � ! � 0 (6)

We note that simultaneous water filling collective capacity2 ��� depends on both the gain � and the raw SNR per user� , whereas signal space partitioning collective capacity
2	�����

depends only on � .
In illustration, Figure 4 plots

2 ��� and
2 �����

as a function of
the gain � and user SNR in dB for a signal space with � 	�� 6�6
dimensions, user power

� 	 �76+6 , gain � 	 6�� �!� � � 6�� 
 ,
and background noise level � � 	 �76��	 � � � � . We note that
only for small values of the gain � and user SNR � the
simultaneous water filling does slightly better than signal space
partitioning. Otherwise, the collective capacity under signal
space partitioning is larger than it is under simultaneous water
filling solution.

To conclude, we note that by comparing the collective ca-
pacity values

2 �����
and

2 ��� corresponding to the two scenarios
for a given gain, signal space partitioning does better than the
simultaneous water filling solution, that is

2 ������� 2 ��� , when
the raw SNR � satisfies � � � ,  �

 � & (7)

Thus, the raw SNR criterion can be used to choose between
simultaneous water filling and signal space partitioning.
III. THE SOCIAL OPTIMUM FOR A MULTIPLE USER/BASE

SYSTEM

The analysis presented in the previous section which com-
pares the collective capacity achieved by signal space parti-
tioning with that corresponding to simultaneous water filling
can be extended to any number of users � . While a general
rigorous analysis of the � user case is complex and requires
knowledge of all gains � ��� between users and bases implied
by the geographic distribution of users/bases, we present for
simplicity the analysis for a symmetric system characterized
by the same value � for all gains. We note that in the case of
“low interference” for multiple users all products � ��� � ��� ' � ,
and implies a unique simultaneous water filling solution in
which all users overlap in all signal space dimension [11].
For the symmetric system case this implies that simultaneous
water filling in which users overlap in all signal dimensions
is obtained for � & ' � . For such a system, the expressions of
collective capacity in equations (5) and (6) become2 ��� 	�� �  ������� �. � , � 0 � � !)� ! ��� (8)

and 2 �����
	 �  �*�+� . � � ! � 0 (9)

The raw SNR criterion used to compare simultaneous water
filling with signal space partitioning in this case implies that2 ������� 2 ��� when

�
� �� , � � �� � �"!�� � , � , �� & (10)

Using equations (8) and (9) one can obtain plots similar to
those in Figure 4 showing again that only for small values
of gain and SNR does simultaneous water filling do slightly
better than signal space partitioning. Otherwise, the collective
capacity under signal space partitioning is larger than for
simultaneous water filling, and the difference between them
becomes more significant as the number of users � increases.
In illustration we present plots for � 	 : and � 	 �76+6 in
Figures 5 and 6.

Based on the previous analysis, we concentrate on signal
space partitioning as a social optimum for a system with �
mutually interfering user-base pairs. which implies an orthogo-
nal signaling scheme. We note that orthogonal signaling based
on Frequency Division Multiple Access (FDMA) was analyzed
in the context of a Gaussian interference channel scenario
with two transmitters and receivers in [2] and a cooperative
broadcast scenario was proposed to optimize performance.

Let us denote by
� � the power corresponding to user � ,

and assume the same (white and Gaussian) background noise
level at each base with variance � � . With user � residing in a
subspace of dimension ( � , its capacity is expressed as� � 	 ( � �*�+� � �"! � ���� ( � & (11)

and the collective capacity becomes2
	 � #5! � &"! � � �7! ��� 	

	)( # �*�+� � �"! � #� � ( # & ! ( & �*�+� � �"!
� �� � ( & & ! � � �>!

! �-,�� � � #�! # ( �
�����#" �"! � ��%� . �-, � � � #�! # ( � 0%$ (12)

The necessary condition for extremum& 2& ( � 	 6�� � 	���� � � � �'� , � (13)

implies that the collective capacity is maximized when� #( # 	
� &( & 	 � � � 	

� ��-, � � � #�! # ( � (14)

We note that a similar result was obtained in [2] using
a different performance criterion than the collective capacity
used in this work and [13]. In light of this result we observe
that more energetic users require a larger subspace, or equiva-
lently more bandwidth, at the socially optimal point – a sort of
“Might makes right” property also seen in the case of optimal
signal constellations for single base systems where oversized
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Fig. 4. Water-filling and separation collective capacity as a function of gain
and noise level for a symmetric system with � ��� users

0
0.2

0.4
0.6

0.8
1

0
10

20
30

40
50

60

0

200

400

600

800

1000

1200

ρ [dB]
Gain g

C
sep

C
wf

bi
ts

/c
ha

nn
el

 u
se

Fig. 5. Water-filling and separation collective capacity as a function of gain
and noise level for a symmetric system with � ��� users
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Fig. 6. Water-filling and separation collective capacity as a function of gain
and noise level for a symmetric system with � � ����� users

users command private channels for communication [14], [20].
We also note that for a symmetric system with equal user
powers, the social optimum implies the natural partitioning of
the signal space in orthogonal subspaces of equal dimension.

IV. A DISTRIBUTED SPLITTING ALGORITHM

We consider an � -user symmetric system with equal user
powers and identical white background noise and note that
the greedy optimum has white user spectra [11], [13]. We
seek an algorithm which moves a system from simultaneously
water filled to spectrally equipartitioned without explicit sig-
naling or coordination between users – though some implicit
cooperation is assumed since the equipartitioned solution is
Nash-unstable. For this reason, the algorithm is essentially an
etiquette by which users of the system choose to abide.

We assume an-interference limited systems where the back-
ground noise is assumed much smaller than interfering signals.
This condition serves double duty in that the raw signal to
noise ratio is chosen large enough to satisfy the condition
of equation (10). Thus, if some dimension of signal space
is devoid of interfering user signal power, then noise in
that dimension will be at the ambient level and this fact
will be observable by all user-base pairs. From a practical
perspective, such occupied dimensions (or subspaces) can be
readily identified using signal covariance methods.

Now consider a two-phase algorithm performed sequentially
by each user assuming initially white spectra:

Splitting Algorithm

1) Set ( 	 �
2) Identify a signal space representation (eigenvectors).
3) Vacate #��� # of the dimensions in which resident, choos-

ing first those dimensions with largest other-user energy
4) Wait for other users to finish
5) Set ( 	 ( ! �
6) If no interferers in resident space, STOP
7) Else, go to 2.

An illustration of the procedure is provided in FIGURE 7
for � 	
	 users. We see that users monotonically reduce
their signal space occupancy until the stopping criterion is
met. Specifically, each user occupies #��� # of the entire signal
space at the completion of step ( since��
�  # . � , � ! � 0 	 ��

�  # 
 ! � 	 (��. ( ! � 0�� 	 �( ! � (15)

In addition, users actively avoid dimensions with greatest
occupancy.

From a more practical perspective, so long as the users
update asynchronously and none updates twice in a given
cycle, sequencing could be accomplished by a two phase
random update procedure where users decided when to vacate
portions of the signal space according to (say) an exponen-
tial distribution with mean � ����� and then waited another
(deterministic) characteristic time ��� �

� ����� before all
subsequent updates until the stopping rule pertained. A formal
proof of convergence is provided in [11].
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Fig. 7. The splitting algorithm for � ��� users. In step ; � � , users 1,
2 and 3 each retreat from half the signal space – which half is arbitrary but
shown simply-connected for clarity. In step ; � � , users 1 and 2 then retreat
from one third of their current occupancy which in this case is only a portion
of that which they share with user 3. User 3 then retreats from the dimensions
which overlap users 1 and 2 to fully complete the process.

V. CONCLUSIONS

In this paper we have focused on the simultaneous water
filling solution for a Gaussian interference channel with low
interference. We have shown that this solution is often Pareto
deficient and that orthogonal signaling offers better perfor-
mance and leads to a socially optimal point in such cases. To
decide Pareto deficiency, we have defined a raw SNR crite-
rion that can be used to choose between simultaneous water
filling and signal space partitioning. We have also proposed
a distributed algorithm (etiquette) that moves a symmetric
system from simultaneously water filled to fair orthogonal
signal space partitions.
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