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The Performance of  Random  and  Optimal 
Scheduling in a Time-Multiplex  Switch 

Abstract-In a time-multiplex switching system, the incoming  traffic 
must be scheduled to  avoid  conflict  at the switch output  (two or more 
users converging simultaneously  upon a single  output).  Two scheduling 
algorithms,  random scheduling and optimal  scheduling, are explored in 
this paper. Random scheduling is computationally simple, whereas 
optimal scheduling is currently very difficult. We have  found, using- a 
traffic model appropriate for circuit switched traffic that increases of 
typically 10 to 15 percent in offered  load  can  be  obtained through optimal 
scheduling (as compared to the much simpler random scheduling 
algorithm). The improvement is a function  of the number of time slots (or 
circuits) per time-multiplexed frame, and falls to zero  for  both very small 
and very large frame  sizes.  Thus, in many circuit switching applications, 
providing a computationally  expensive  optimal  schedule may not be 
warranted. This  conclusion  has important ramifications  for  both  elec- 
tronic and emerging photonic switching systems since it reduces the 
importance of the costly  design feature of optimal scheduling. 

A 
I. INTRODUCTION 

TIME-Multiplex  switch  routes  time-multiplexed  traffic 
(or  circuits) from its  inputs to its  outputs.  Switching  is 

accomplished by dividing  time  into “frames” of  duration Cr 
where C is an integer and r is  the  duration  of the elementary 
time  unit,  the “time slot. ” A user  requiring one fixed-rate 
circuit  is assigned one  free time  slot per  frame in which to 
transmit a fixed-length information  packet. The switch then 
routes the  packet to the  appropriate  output  during that time 
slot.  This  arrangement  remains in effect until the  user no 
longer needs the  circuit.  Since  each  request for a  connection  is 
assumed to  arise randomly,  and  the  switch may not send two 
packets to  the  same output during  the  same time slot, some 
scheduling  must  be done  to avoid  conflict at the switch  output 
(two or more users  converging  simultaneously upon a  single 
output);  such  conflict  would  result in the loss  of one of the 
packets. 

Optimal  scheduling is a  means to  increase the  load which 
may be  offered for a fixed blocking  probability and thereby 
better utilize the  capacity of the  system. The best utilization 
would occur were  the  traffic  scheduled at the  start  of  each 
frame  according to user demand. Unfortunately, given a 
stochastically varying load,  the problem  of  providing  such  a 
schedule for each frame is  computationally  difficult. There- 
fore, the  question arises of  whether  providing an optimal 
schedule  allows  dramatic  increases in offered  load.  Barta and 
Honig [ 11 addressed  this  question for  the N user M port case 
and found little to be  gained by computing  optimal  schedules 
frame by frame.  However,  their analysis,  primarily for a 
satellite switching  system  where N % M ,  is not valid for the 
case N = M a s  could  be  expected in a  terrestrial switching 
system wherein  each source has  a  dedicated  switch port. This 
paper  addresses  the case where N = M for a time-multiplexed 
switching system in order  to examine  whether optimal 
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scheduling would benefit  a  land-based  communications net- 
work. 

We have  found,  using  a model appropriate for circuit- 
switched traffic,  that  increases of typically 10 to 15 percent  in 
offered load can  be obtained through  optimal  scheduling (as 
compared to a much simpler “random” scheduling al- 
gorithm).  This  improvement  varies with the  number of time 
slots (or circuits) per time-multiplexed frame, and  falls to  zero 
for both very  small  and  very large  frame sizes. Thus, 
providing  a  computationally  expensive  optimal  schedule may 
not be warranted if the  frame size  can  be varied with relative 
impunity in a  given  system. This conclusion has important 
ramifications for both electronic and emerging  photonic 
switching systems  since  it  reduces the importance of the costly 
design feature  of  optimal  scheduling. In what follows,  the 
switching system  under  consideration  and  the  analytic ap- 
proach to evaluate the system  performance are quantitatively 
described. 

11. PROBLEM DESCRIPTION AND ANALYSIS 
The Time-Multiplex Switch and a  Poisson  Traffic  Model 

The system  under  consideration is shown  in Fig. 1. N 
independent sources  are connected to separate  ports of an N X 
N nonblocking switch.  Each user is  allowed C time slots per 
frame to transmit  information  packets to information  sinks at 
the switch  output.  Each  time  slot  corresponds to  one circuit 
connection. The switch  distributes  these  packets to  the 
appropriate sinks, Each source generates  calls  according to a 
Poisson process with rate X and the probability that any given 
call  is  destined for sink j is 1/N. The call holding time is 
exponentially  distributed  with mean 1/p, thus the normalized 
average load  presented  by  each  source  is A = X/Cp. ‘ The 
average call holding  time 1/p and the mean time between 
arrivals l/X are assumed to be much greater than the  frame 
length, Cr. 

Optimal and Random Scheduling 
During  each frame  the switch  is  called  upon to supply paths 

between sources and sinks.  Let tij be  the number  of  time  slots 
requested by source i for transmission to sink j. For N sources 
and N sinks, the request  matrix  (traffic  matrix)  is  defined as 

T =  [tu]  (1) 

where  the tu are nonnegative  integers.  Given T,  the  system 
must assign  time  slots  in  such  a way that two simple 
constraints are not violated: 

1) The number  of  time  slots used by a given source  cannot 
exceed C in a  given frame. 

2 )  The number  of  packets  destined for a  particular  sink 
cannot  exceed C in a  given frame. 

These  conditions  correspond to constraints on the row and 
column  sums  of T.  No row or column  sum  of T may exceed C .  
This  condition will be called  the  “scheduling criterion.”  It has 
previously been shown that if T satisfies  the  scheduling 

I The normalized average load  is  defined as A = ( X / C p )  since  the 
maximum  number of calls  which may be  supported by a given  port  is C. 
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Input 0 x x o x  0 x x o x  x 
C time slots/frame 

N X N  I SWITCH 1 
Fig. 1. An N X N time multiplex switch. 

criterion  then  it  is  possible  to  assign  time  slots so that no 
conflict  results [ 2 ] ,  [3]. Consider adding a single  request  to  a 
traffic  matrix T which  satisfies  the  scheduling  criterion. If this 
new request  causes  the  scheduling  criterion  to be violated then 
it  must be dropped. If not then the  call can be  scheduled, 
although  the  scheduling may involve  rescheduling of calls in 
progress.  A  scheduling  algorithm is termed optimal if it can 
provide  an  assignment  for  any new request not violating the 
scheduling  criterion. An optimal  schedule,  however, may be 
difficult  to  compute [4], [SI. Thus,  alternative  suboptimal 
methods  which  cause  greater  packet loss are  often  used. 

The  simplest  alternative  method,  random  scheduling,  is best 
understood by again  considering  the  addition of a single 
request  to  an  existing  schedule.  This  request may be  granted 
only if one or more  unused  time  slots  on  the input and  one or 
more  unused  time  slots  on  the  output  coincide in time. If  not 
then  the  request will be  blocked.  This  concept  is  illustrated in 
Fig. 2. Random  scheduling  is  a  technique  whereby  for  a given 
request, such a pair of free  time  slots is chosen  at  random  from 
all  those  available. 

C. A Coupled  Markov Chain Model of Input/Output 

Consider  the  Markov  chain of Fig. 3 in which  each  state 
represents  the  number of calls  currently  active  on  a  given  port 

The  rate  at  which new call  connections  are  requested by the 
source  is A. However, the system will not accept  a given call 
unless the  appropriate  input  to  output path is already  available 
(random  assignment) or can  be  made  available  (optimal 
assignment).  Thus  the  rate  at  which  calls  are accepted by a 
given input  for  a given output  depends  on  the  number of calls 
currently  active  on  that  input,  the  number of calls  currently 
active  on  the  output,  and  for  random  assignment,  the 
distribution of active  calls  on  the  input  and  output.  This 
acceptance  rate, hk, will  be  less than or equal  to A. The 
situation is identical  for  an  output port.2  Define A k  as: 

(input or  output). Let k < C calls be active on a given input. 

hk = A(  1 - Pr [output  time  slot unavailable1 k calls  active]) 

This idea of modulating  the  effective  arrival  rate with the 
probability of call  blockage  was  first  introduced by Lundkvist 
[6] (see  also [7]) in the  blocking  analysis of a  crossbar type 
switch.  The  actual  form of (2)  will, of course,  depend  upon  the 
system  under  consideration. 

If  it is  assumed that the  sources  are  independent and that 
each  call  generated by source j has  probability 1/N of being 
destined for  port N ,  then as N becomes  large,  the  number of 
calls  passing  from  a given input  to  a given output  becomes 
negligible relative  the  total  number of calls being handled. 
This  implies that the  number of calls  currently  being handled 

* The  system is symmetric in that a request for  connection  from  source i to 
sink j may be equally well viewed as  a  request  for  connection  from sink j to 
source i. 

I I 

(a) 

Output  x x o x  0 x 0 x x 0 0 

Input  0 x x 0  x 0 x x o x  x 

o u t p u t  x x o x  0 x 0 x 0 x 0 

(b) 
Fig. 2. An illustration of coincidence and noncoincidence of free  time  slots 

at the output of a time-multiplex switch (X = occupied time slot, 0 = free 
time slot). (a) Two  pairs of common  time  slots. (b) No common  time slots. 

c 2C 3c cc 

Fig. 3.  Discrete-state continuous-time Markov  chain model of time-multi- 
plex switch input (or output). Each state corresponds  to  the  number of 
active calls  currently  being handled by a given I / O  port.  The constant p is 
the average call termination  rate (I/p is the call holding time) and hk is the 
call  acceptance  rate  from  state k .  . 

by input i becomes  independent of the  number of calls  being 
handled by output j ;  the  fact  that input i is handling k calls 
gives no  information about the  number of calls  on  output j .  In 
addition,  as N becomes  large,  the  time  between  requests  for 
connection  between  a given input and output  becomes  large 
compared  to  the  settling  time of the  Markov  chain;  each  output 
and input chain  approach  dynamic  independence.  The  assump- 
tion of independence3  allows  a  simple  calculation of A k .  

D. Derivation of the Call Acceptance  Rate, A k  

1) Optimal Scheduling: In  the  case of optimal  scheduling, 
the  call  request  can  be  granted if the  appropriate  output  has  a 
free  time  slot. If necessary,  all  existing  connections will be 
reassigned  to  different  time  slots  to  accommodate  the new 
request.  Thus, for a call from source i to sink j, blocking will 
occur only if output j andlor  input i is  currently  handling C 
calls.  Let Z,(k) be  the  steady-state  probability that k calls are 
active  on a given input and let O,(k) be similarly  defined  for 
the  output  to  which  a  connection is sought.  Since  all  the 
Markov  chains are identical, I, (k)  = O,(k). Thus, 

Xk=h(l-I,(c))=h(l-O,(C)) (3) 
for  every  input and output  chain. 

2) Random Scheduling: For random  scheduling, the 
calculation of the  conditional  probability that the appropriate 
output slot is available  given k calls are active  on  the currenl 
input is slightly  more  complex. As illustrated in Fig.  2(b). 
blocking will occur  when  there  are  no  free  time  slots  commor 
to the input and output.  Since  free  slots  are  chosen  at  random 
assume that any k calls  carried by a given port are distributec 
randomly  over  the C time  slots.  Furthermore,  since the traffic 
between  any  two  inputs  and  outputs is small compared  to thc 
total traffic  carried by either  (large N ), the  locations o 
occupied  time  slots at the  input  and  output  ports will bc 
approximately  independent.  This  assumption  allows  the  fol 

The  effect of this assumption will be quantitatively evaluated in Appendi 
I by a comparison of simulation results and  the theoretical results derives 
herein.  It should be noted, however, that the assumption of independence wi 
provide  an  upper bound on  the  blocking  probability.  Correlation between a 
input and output  port  can only increase  the incidence of common free tim 
slots between the  two  ports; given that an input slot is unoccupied,  correlatio 
will impose that the  corresponding  output  slot will have  a  higher probability c 
being unoccupied as well. 
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lowing  formulation.  Let i be  the  number  of  calls  on  the  input 
and let u be  the  number  of  calls on the  output.  Then, 

8 15 

C 

Pr [blocked1 i] = O,(a) Pr [blockedla, i] . (4) 
0=0 

The probability that  no c o m m ~ n  free  time  slot  exists  given i 
occupied  input slots and u occupied  output  slots may  be found 
as follows. 

Since  occupied input and  output  slots are assumed  randomly 
distributed and independent,  it will suffice  to  consider  the 
input time  slot  distribution  fixed and the  output  arrangement 
random.  Thus, let the  first i time  slots on the  input be occupied 
and let the u output slots  be  randomly  distributed (i.e., see  Fig. 
4). If i + u c C then a  common  free  time  slot must exist  since 
the u occupied  output  slots  could not span  the C - i free  input 
slots. For i + u 2 C blocking  occurs  only if C - i of  the u 
occupied  output time  slots  coincide with the C - i unoccupied 
input time  slots. The remaining  output  slots may be  randomly 
distributed.  Thus,  out  of (s) possible  time  slot  arrangements, 
( c l , )  will result in blocking.  Therefore, 

The  expression  of (Sa) reduces  to 

Pr [blockedli, a]  = 
i!a! 

C! ( i+a-C) !  
, i + a C .  (5b) 

Substitution of  this  result  into (4) allows hk to  be  calculated  as 

C k!u!  

C!(k+  u- C)! o - C - k  

E. Calculating the Steady-State  Probability Distribution, 

The  equations  governing  the  flow  of  probability mass in the 
Markov  chain  of  Figure 3 may  be  obtained  by  inspection as, 

Z m  (k)  

- W ( 0 )  + P I U ) ,  

x k -  I I (k  - 1) - ( h k  + kp) l (k )  + (k + l),uJ(k+ I), 
i ( k )  = 

1 5 k l C -  1 

xc- 1I(C- 1) - C p I ( C ) ,  k = C  

(7) 

The  chain  is  ergodic, so for a given set  of  nonzero h k ,  Z(k) will 
approach  zero and a  steady-state, Z,(k) exists.  Note,  however, 
that the h k  in (7) depend upon the  unknown O,(k) = Z,(k) 
[see (3) and (6)]. This  dependence  complicates  the task  of 
explicitly finding Z ,  (k )  using equation (7). The method  used 
here is to rewrite  the h k  in  terms  of Z(k); substitute O(k) for 
O,(k) in equations (3) and (6), and since  the input  and output 
Markov  chains are identical  further  substitute Z(k) for O(k). 
Since this substitution  renders  equation (7) nonlinear,  the 
steady-state  distribution  must  be  found  numerically. 

Input x x x x x x x 0 0 0 0  

Output x x o x  0 x 0 x 0 x 0 

+ C-i __1 
Fig, 4. Fixed distribution of i occupied time slots  on input with random 

distribution of u time slots  on output (i = 7 u = 6) .  

F. Derivation of Blocking Probabilities 

given load is then 
I) Optimal Scheduling: The probability of  blocking for  a 

PB = I,(k)P[blockedJ k ]  
C 

k=O 

c- I 

= Im(k)Om(C) + I m ( C )  
k=O 

= [2 -Im(C)lIa(C). (8) 
2) Random Scheduling: The probability of blocking for  a 

given load  may be  calculated by  finding the  steady-state 
probability distribution I ,  (a)  and using the relation 

C 

Pe = Im(k)P  [blockedJk] 
k=O 

C C 

= I m ( k )  k!a!  (9) 
k=O o = C - k  C!(k+ 0- C ) !  

111. RESULTS AND DISCUSSION 
The blocking  probabilities  resulting  from optimal  and 

random scheduling  were  calculated  as  functions of percent 
loading for  various  frame  lengths, C.  These  results are 
summarized in Fig. 5. It is readily  seen that optimal 
scheduling provides  a  lower  blocking  probability Pa for  a 
given load. For C 2 20, and  reasonable blocking probabilities 
(< optimal  scheduling  yields  a Ps approximately  one 
order  of  magnitude  smaller than that supplied  by random 
scheduling.  This  benefit,  however, is misleading since it is 
possible to  achieve  a  specified Ps with  random scheduling by 
decreasing  the  load  a  small  amount  from that at which optimal 
scheduling achieves  the  same Ps. Thus,  the  difference in 
maximum achievable  load at fixed Pe is  an  important 
parameter in the comparison  of  optimal and  random schedul- 
ing.  Define  percent  improvement as 

where  optimal and  random are the  percent  loads at which optimal 
and random  scheduling  achieve  the  required Ps , respectively. 

A plot of  percent  improvement  versus  frame  length C is 
provided in Fig. 6 .4  It  is readily  seen that no dramatic 

All the curves must pass through the point (C, percent improvement) = 
( I ,  0) regardless of the PR criterion; the random assignment and optimal 
assignment Markov  chains  are identical for C = 1 .  The intercept of each 
curve with this common point is omitted in Fig. 6 for clarity. 
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Fig. 7.  Maximum  load  which satisfies PB = p as a function of framelength, 
IC08 1-08 C(optimal scheduling). Triangle-p = lo-*. Square-p = X-p  = 
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I 

le-10 

Offered Load  per Time Slot (%) Offered  Load per Time slot (%) 
10 20 40 60 80100 

(C) (d) 
with C is  presented  in  Fig. 7. For more  palatable  maximum 
loads (> 50 percent) C must  be  larger  than 20. In +is regime 
of C,  however,  percent  improvement  lies below 15 percent. 
Thus,  given  the  complexity  of  finding  an  optimal  schedule,  a I I 

0 01 0 01 sacrifice  of = 15  percent  in  maximum  load may be completely 

PB P B  It is  also  noteworthy  that for either  scheduling  scheme  at 
0.m1 0 w o 1  acceptable. 

IC-OB le-08 constant  load  of  less  than 100 percent, PB --* 0 as C is 

le-08 le-08 increased;  even for random  scheduling  the  blocking  probabil- 

1-10 
ity as a  function of load will approach  a  step  function (PB = 1 

10 20 40 Bo 801W 
le-IO 

10 20 40 60 80100 for A > 1, zero otherwise).  This  trend may be seen in Figs.  5 
Offered Load  per Time Slot (%) Offered  Load  per Time Slot (%) and 6. Thus,  the percentage  improvement  must  approach  zero 

(e) ( f )  as C --* 03. Therefore,  a  given PB could be met  with random 
scheduling by increasing C ,  thereby  achieving  greater  trunk- 

Fig. 5. Blocking probability  versus offered load  per  time slot for random ing efficiency, and the improvement using optimal  scheduling 
scheduling  and  optimal scheduling; dependence on C, the  number of time 
slots per  frame; C as shown. Dashed lines represent  results  from  random would be  minimal.  Of  course,  the  bandwidth  required by each 
scheduling and solid lines those for optimal scheduling. port  and  the  number  of  fixed-rate  circuits which could  be 

handled  would be commensurately  larger. 

P e r c e n t  

5- 10 30 50 70 90 

Framelength  C 

Fig. 6. Percent  improvement  versus  framelength C for fixed PB.  Triangle- 
Pe = lo-*. Square-PB = I O - 3 .  X-P, = 

improvements in load-bearing  capabilities are attainable using 
optimal  scheduling  over  random  scheduling. The largest 
improvements are - 20 percent (C c: 10). It should be noted, 
however,  that  a  frame  size  of C 5 10 produces  poor  switch 
performance  (maximum  load =40 percent  at PB = 
This  poor  performance  results  from  the  fact  that  for  smaller C 
there are  fewer opportunities  for  the  occurrence of common 
free  time  slots  between  a  given  input  and  output. A quantita- 
tive  illustration how maximum  offered  load  at  fixed Pe varies 

IV. CONCLUSIONS 
For a time-multiplexed switch  handling  circuit-switched 

traffic  subject  to  a  fixed  blocking  probability  criterion, an 
increase in the  permissible  offered  load of typically 10 to 15 
percent,  can  be  achieved by performing  optimal  scheduling 
rather  than  random  scheduling of the  offered  traffic. The 
derivation  of  an  optimal  schedule,  however,  is  a  difficult  task 
using current  computational  techniques. To circumvent  this 
problem  and still achieve  almost  optimal  performance,  the 
number  of  time  slots  per  frame  could  be  increased  and  a much 
simpler  random  schedule  employed. 

APPENDIX I 

COMPARISON OF THEORETICAL AND SIMULATION RESULTS 

To test the validity of  the  independence  assumption  made in 
Section 11-C, the  time-multiplex  switch  structure  was simu- 
lated for C = 30 and various  numbers of input  ports  (users), 
N: For  the  case  of  random  scheduling,  blocking  probability  as 
a function  of offered  load  was  calculated. The results are 
compared  to  the blocking probability  versus  loading  curve  for 
random  scheduling  found by analysis for C = 30 (Fig. 8). For 
N 2 20 the  analytic  and  simulated  results are virtually 
identical. This fact  suggests  that  independence of the  input and 
output Markov  chains  is  a  reasonable  analytic  assumption. 
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