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Abstract

As in the immediately preceeding companion paper, we consider distributed iterative inter-
ference avoidance algorithms for uplink wireless systems where base stations share informa-
tion (collaborate). Here we investigate simplifications possible under a flat channel assumption
where the gains are identical for all signal space dimensions over the channel between a given
user and a given base. Flat channels lead to structural covariance properties which both sim-
plify calculation of sum capacity, and in addition, reduce the complexity of interference avoid-
ance algorithms. The results also suggest that steering energy selectively at the bases using
simple directive antennas might be used as an additional adaptation method to both increase

sum capacity and to render uniform shared signal to interference/noise ratios to all users.
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1 Introduction

In this companion paper to [1] we consider a special case where the gains between each user
and each base are identical across signal space dimensions. In a frequency division scheme this
would correspond to the physical properties of closely spaced channels (within the cohenence
bandwidth) where line of sight propagation predominated. Such “flat” channels could arise in a
variety of settings where a single path (not necessarily line of sight (LOS)) predominates between
transmitters and receivers. We will show how such flat channels lead to structural properties for the
received covariance which can be exploited by suitable modifications of the interference avoidance
algorithm. We will find that for flat channels, interference avoidance might be used not only for
sum capacity capacity maximization, but perhaps more importantly for uniformization of signal to
interference/noise ratios (SINRs) for all users under suitable received power constraints.

2 Flat Channel Simplifications

In the previous paper [1] we considered general gain mattge$or simplicify, we first consider

the simplest of flat channels where the gain between a given user and a given base is identical over
all signal space dimensions and derive structural properti€gsghrmaximizing R. Later, we

will adapt the results to include carrier phase rotation induced by different pathlengths between

receivers and transmitters. So, our gain matrices are

gnl
G, = : 1)
9ol
which results in
2 T T
951505, o gn9eBSeS,
R({) = : .. : 2)
9eB90SeS, -+ gipSeS,

and
R = Z R({)+W 3)
0
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whereW is the noise covarianceWe can now state some useful properties of the system covari-

ance matrixR under a flat channel assumption:
1. Ris composed ofV x N sub-blocks

2. Each sub-blockR;; satisfies

J

TracelR;;) = Y guge;Trace[S,S/ | + TracelW,j] = E; = Ej; (4)
l

As usual, we seek to maximizR|. We recall that a positive definit€ x N matrix X with constant
trace has maximunX| whenX = %I [2]. Unfortunately, unless the off-diagonal blocks of
R have zero trace, the covarianBecannotbe a scaled identity matrix. So, we seek the structure
of R which maximizes the determinant subject to the imposed block trace constraints.

First consider a single user and white noise/interference. It is easy to see that such a user sees
N identical channels corresponding to thesignal space dimensions. It is intuitively obvious
following a water filling argument [3] that such a user should place equal amounts of power in
each dimension resulting in a scaled identity codeword covariance n$srixand therefore in
R being composed aV x N scaled identity sub-blocks. However, with more than one user and
colored noise/interference, the optimal structurdRo$eems less obvious. Thus, we will derive
a general upper bound on the determinant for matrices sharing the strucBraraf sufficient
conditions such that the bound is met.

2.1 Bounds onR|

Consider the optimization

max IR| (5)
Tracer.;=k;,]

To proceed, we first define a cla@s;; of positive definite € M™) matricesQ where the subscript
N denotes the size of the square sub-blocks Ani@notes the number of vertical and horizontal
sub-blocksQ;; with trace constraint Trad€),;] = E;;. SinceQ € M™ we also have,; = JTZ
For this class of matrix we have:

INoise in this context could mean Gaussian other-system interference. For a more careful definition of the structure

of W, please see the companion paper [1].
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Theorem 1 Let

Qu Qi -+ Qus
Q _ Q:21 Q22 ) (6)
QJl e e QJJ

whereQ € Qy, ;. Let the trace constraints of the sub-blocks be Tt&re] = E;;. Then the
determinant of) is maximized when

E;
Qij = NJIN (7)
so that
1 N

where the elements of the symmetfis J matrixE are { £ }.

We prove Theorem 1 in the following sections using a recursive approach.

2.2 The Kernel of Recursion

LetQ € Qu,j41 be
A BT
B C

Q= (9)

whereAisNJ x NJ,Cis N x N andB is N x N.J. We will derive structural properties on any
Q which has maximumQ|.

We may factorQ as

A0 I A BT
Q= B (10)
B 1 0 C—BA'BT
so that
|Ql = |A||C—-BA'B'| (11)

The term% = C — BA'B’ is called the Schur complement &f in Q and if Q € M™ then

N
% € M [4]. We then note that sind@| < [w with equalityiff Z o« I forany N x N
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matrix with a trace constraint [2] we must have

Trace[C] — IrgnTrace[BA—lBT}
N

Trace[C| — Trace[BA—lBT} N

<A
Ql < 4| <

< |A]

(12)
with equalityiff (C—BA~'BT)  I. We therefore turn our attention to minimizing Tra{&A‘lBT}
inB.

Consider that
BA'B" =UDV'¢Q '¢'VD'U’ (13)
whereA = Q¥ ', an eigendecomposition ail= UDV " the usual singular value decompo-
sition with
D— [ D 0 } (14)

whereD is anN x N diagonal matrix containing the singular valuesfWe then have
Trace BA™'B"| = Trace DV ¥Q ' VD'| = Trace[D'DP'Q'P] (15)
after definingV ' & = PT. This expression reduces to
T To-1 d;
— 2
Trace]D'DP'Q"'P| = > pijji (16)

where thed? are the elements of the diagonal maffiX D of which N are the squared singular
values ofB and the rest are zero. Thg are the elements of tHe matrix. SinceP is the product

of two unitary matrices, it is itself a unitary matrix so that
Zp?j = Zp?j =1 (17)
i j
So, the problem is now

mmTrace[DTDPTQ 'P| = min Z pr (18)

pl] 1}

Now, consider that via equation (1}% is a probability mass function in and also inj.

Therefore, we can rewrite the optimization as

- E;[d?]
19
i >, (19)
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where
Eid*] = p}d; (20)
j

Assume with no loss of generality that tblgaand thew; are fixed and ordered from largest to
smallest. We first note that

S B =Y d (21)

and
diy < Eild?] < df (22)

Now for the moment, imagine we can choose #&hjyi?| we'd like subject to the constraints of
equation (21) and equation (22). That is, ignore the underlying structure éf tié as generated
from squared entries of a unitary matrix. We then note tha, {f # d2, we can always reduce
Trace[DTDPTQ‘lP} by reducing one of the othef;[d?] (which multiplies anotheil /w; >
1/wy) by somee and adding to F;[d?]. If no such greatet /w; exists, then we can still increase
E1[d?] to its maximum with no penalty to the objective. For completeness, please note that if
E\[d?] < d2 then the sum constraint on tf&[d?] in equation (21) guarantees there exists at least
one E;[d?] from whiche can be “borrowed.”

Thus, at any minimum we must havg [d?] = d2. However, to do so implies that, = 1
which implies thaip;; = 0, j # 1 and thatp;; = 0, ¢ # 1 — further implying thatF;[d?] < d3,

i > 1. Proceeding recursively, we see that to minimize Tf@&DP ' Q~'P|, we will have

1 Z:j’]: 1a27"'7‘]N
Pij = . (23)
0 otherwise
so that
. T To-1 I 3
ménTrace[D DP'Q'P| =min}" (24)

{dj} i=1 Ws
Equation (23) implies that the right singular basis sdBafnd the eigenvector matrix @& should
beidentical? and that the singular valués of B should be ordered from largest to smallest mag-

nitude if the eigenvalues di are ordered from largest to smallest.

2V = W in equation (13).
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Now, consider the optimization over t{d; } of equation (24). Owing to the trace constraint
on sub-blocks of) we have
B:[B1 ---BJ} (25)

with eachB; an N x N matrix and with TracéB;] = Eg,. We then note that
BB' = UD?U" (26)
However, owing to the structure & we also have
=>_B;Bj =3 U,D,U; (27)
j j

so that
=Y U'U,D;U;U =) Z/D;Z; (28)
J J

whereZ; = U'U;. This leads to

Z Z Zm gn (29)

j=1n=1
wherez;, are the elements & and thence to

2 d2
Trace BA™'B'| = Z =y Zinin (30)
=1 Wi ign
Now, consider that
Trace[B,] = Trace[UijVjT] = Trace[DjVjTUj] = Trace[D,P;] = Ep, (31)

where as befor®; is a unitary matrix obtained from the multiplication of two unitary matrices
U; and V] whose elements;,(j) obey equation (17) and for which no enty,(j) can have

magnitude larger than 1. We then have
TraceD;P;] Zdjnpm = Ep, (32)

We can now form the constrained optimization of equation (30) as

min Z m i Z A (Z Pon(J)djn — EBJ) (33)

{din} 5
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with \; the constraint constants so that at the extremal points we must have

an(j)d]n >\j -
zi: T = _Epnn(] ) (34)
or )
djn = =% Pun(J) /Z » (35)
Multiplying both sides by,,,,(j) and summing over we have
. Aj . 22.(j
> djnpun(j) = B, = =773 pun(i) /Z % (36)
so that
1
Aj = —2EB, / > o) (37)
)
We then re-evaluate the metric in equation (30) and obtain
Z > “;, =2 i Z — (38)
Y Zp"” N am Y
Z m Z m
i Wi Wi

We first notice that minimization of equation (38) can be cast as separate minimizations for
eachj. So, we seek to maximize

> pa.0

39
{pnn( )zm (€2} s ( )

We then note that equation (39) is increasing inghgj), so at the maximum we must have all
p2,.(j) = 1. Thus, we must hav¥J; = V, —i.e., eactB; should be symmetric with eigenvalues
din.

Now we notice that

1 Zin(d) _ 1
wy ; w;  WN ( )
N—_————
and also that
. 1
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by equation (17). We therefore seek to maximize

QU= !

() 2
Ignoring the detailed structure of thg(j) for now and looking only to the constraints of

equation (40) and equation (41), we note t&j) can always be increased if there exigtsj) >

1/wy and anothey, (7) with ¢, (j) < qx(j) < 1/wy by reducingy,(j) and increasingy(j) by e to

maintain the sum constraint of equation (41). That is, suppose,. Then

1 1 1 1 € €
(x—e+y+e>_<$+y>:x(x—e)_y(y+e)>0 (43)

sincez(xz —€) < y(y +¢€).

So, with no loss of generality we set (j) = 41, which owing to the structure of the unitary
matrix Z; implieszy, = 0, £ > 1 andz,; = 0, £ > 1. Thus, for the remaining choices of,(j)

we must have

2 .
(%)) i#1 Wi WN
N———
an(5)
and
> 1)) =) 1w (45)
n#l i#1
Recursive application of this procedure leads to
and thence to ,
zn(J) _ 1
B = — 47
by (47)
and
Eg.
=250 (48)
> wi
=1
With p2, (j) = 1 and equation (35) we then have
Eg.
djn = Wn NBJ (49)

S,
i=1
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n=12---,N.
We summarize the results as a theorem:

Theorem 2 Let A be aJN x JN positive definite matrix with diagonal factorizatid@Q® " and
B be a matrix composed of N x N sub-blocks arranged as

B=|B, --- By (50)

and having TracéB;] = Eg, and singular value decompositidd = UDV". Further, assume
that the eigenvalues &£ and the singular values d are arranged in descending order.
Then, TraceEBA*lBT] is minimizedff:

e B =UD®'. Thatis, the right basis singular basis set®fand the eigenvector matri®
are identical.

EachB; = U,D; V] is symmetric V; = Uj) so that the singular values;, are also the

eigenvalues.

U,=U

The eigenvalues dB; satisfy

Wn
djn = B,
> _wi
=1
wherew, - - - ,wy are theN largest eigenvalues oX.

The resulting minimum value is
> Fs,
min TraceBA™'B"| = -2 (51)

N
> wi
i=1

2.3 ShowforJ =2
We now return to the factorization of equation (12) and note that since

Trace|C] — mBinTrace[BA—lBT}

< A
QI < max |A| <

(52)
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andA € Qy ;_1, further factorizations of each leftmost determinant are possible until we have
N x N A, B andC at which point the following theorem follows as a consequence of Theorem 2
and equation (11).

Theorem 3 Let

A BT
B C

whereQ € 9Oy, with submatrices\, BandC all N x N.
ThenQ € Qy. has maximum determinaiff each/N x N submatrix is a scaled identity

Q= (53)

matrix.

Proof: Via Theorem 2, Trac%BA*lBT} is minimized whenB is a scaled replica oA. |A]
is maximized whemA = %I, a scaled identity matrix [2,5]. Via Theorem 2 we then have
B = WI. Likewise, from equation (11) and we see t'ﬁt— BA‘lBT’ meets the bound of

equation (12) whelC = WI thus completing the proofe

2.4 Assume forJ and Prove for J + 1

Suppose following equation (12) th@ € Oy ;41 and that the sub-block traces Afe Qy ; are
{E;;}. Then assume thaA | is maximized whem has scaled identity sub-blocks. Scaled identity
sub-blocks forA implies J distinct eigenvalues foA, each repeatefy times sinceA = E ® I,
the Kronecker product of thé x J symmetric matrix = {£;;} and anNV x N identity matrix
[4]. Since the eigenvalues of eaB} must be scaled replicas of the largéstigenvalues o,
eachB; must be a scaled identity matrix. Then, to maximize the determinant in equation (11)
we must haveC a scaled identity matrix as well. Thus, tkgwhich maximizesQ| has each
Q;; = (Trace[Q;;] /N)I. This completes the proof of Theorem 1.

Thus, the covariance matriR for a system withB bases belongs to the clagsy 5, and to
maximize|R| each of the sub-blocks @ should be a scaled identity matrix if possible. We now

apply Theorem 1 to special cases.
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2.5 Sum Capacity Bounds in White Noise/Interference

If we assume independent white noise/interference then each blddk isfof the formW,; =
%IN, i,j =1,..., B wherew;; = TracelW,,;]. From equation (4) we have the sub-block traces

of R as
L

Ei; = Mgugej + wij (54)
=1

Direct application of Theorem 1 & results in:

Eij — wi]’
—1] 55
— (55)

L
> 90:90iSeS, =
(=1
which can always satisfied if each of tBgS; is a scaled identity matrix (although there may be

other solutions as well). We state this result as a theorem:

Theorem 4 For white noise/interference with sub-block traces, sum capacity is maximized
when all the codeword covariances are

M
SkST - Xk - WkIN

and the corresponding sum capacity value is

Y flog | B - log w] (56)

Cmax =
2

wherew is aB x B matrix with elementgw;; = Trace[W,;|}.

2.6 Sum Capacity Bounds in Colored Noise

For colored noise, the trace constraints are identical to equation (55). Theorem 1 requires that

L EZ
Z Girgin X + Wy = Iy (57)
k=1 N

whereX, = S,S,. Owing to the structure of the covariance matrix, equation (57) can be inter-
preted as a set fB(B + 1) equations inZ unknown covariancegX}.

The question is whether there exists a realizable/feasib{eggtwhich satisfies equation (57),
and if no such se{X,} exists, what the actual optimizing set should be. We do not consider the
latter question here and simply assume that whether a feasible solution to equation (57) exists or

not, Theorem 1 provides an upper bound which we state as:
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Theorem 5 For a multiple base system with basestations[. transmitting locations andv B x
N B noise covariance matri¥V, the maximum sum capacity is achieviédhe codeword ensemble

covariancesX,; = S;S,; satisfy

L E..
k=1 N

and the associated sum capacity value is

1
[Nlog |E| — NBlog N — log |W|] (58)

Cmax = 3
2

If no feasible{ X, } exists, ther(,,., serves as an upper bound.

3 TSC and Interference Avoidance Simplifications

For single receiver systems in white noise, the Total Squared Correlation (TSC) is usually defined
as the sum of squared correlations of codewords (signature sequences) at the receiver. For col-
ored noise, it has also been more generally defined as the trace of the squared covariance matrix,
Trace[R?| [5] and we will use that definition here. We will show that under certain circumstances,
minimizing TSC in flat channel multibase systems is equivalent to maximizing sum capacity and

that this equivalence allows simplification of the interference avoidance algorithm.

3.1 Bounds on TSC for Multiple Receiver Systems

First we note that

Trace[Rﬂ =Y TracelR;R;;] = Trace[RiTjRij} (59)

iJ iJ

and then via Theorem 2 witA = I we must have

1
> Trace[RR;;| > ~ (TracelR,;])* (60)
ij
with equalityiff R;; = %I. So, TracéR?| is minimizediff each of its sub-blocks is a

scaled identity matrix. We state this result as a theorem:
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Theorem 6 LetR € Qyp with sub-block traces Trad® ;| = E;;. Then

E2
Trace[RQ} > ]\zfj (61)
ij

with equalityiff the sub-blocks dR satisfyR,; = }f\; I

We now draw a parallel between sum capacity maximization and TSC minimization. Notice
that if \; are the eigenvalues &, for TSC we seek to minimize
Trace[R?| = Y_ X’ (62)
and for sum capacity we seek to maximize

log|R| = log \; (63)

Optimization of either metric oveR € Qyp, a convex class, will result in the same set of opti-
mizing R via Schur convexity [6, 7]. However, we are not necessarily optimizing over the class of
R € Qyp, but rather, over the codeword s&swhich imposes another set of constraintsRn
Therefore, the optimization of TSC and sum capacity will in general be different as illustrated by

a simple example.

Consider
R=GSS'G" +W (64)
and note that
gl
G=gI=| : (65)
gl

whereg is a B-dimensional vectod, is an/N x N identity matrix andx is the Kronecker product
[4]. We can then define

e (66)
g

and see thalJ has orthonormal columns so thet' U = I. We then define the orthonormal

complement oU asU and note that

UT

o | I (67)

v o]




Popescu and Rose: IA & Collaborative Multibase Systems, Part I1 16

We can now apply a similarity transform B

U'lr [ U U } _p | BSST WL W ] (68)
UT W/21 Wl22
where
W), =U'WU (69)
W/, =U"WU (70)
W, =U'"WU (71)
and
W, = U'WU (72)

Under a similarity transform, the eigenvaluesbare unchanged and we still ha\ie| = |R’| and

Trace[R?] = Trace|[(R’)?]. But via Schur factorization [8] we have

max [R'| = max Wi, |[gSST + Wi, — Wiy (Why) "Wy, (73)

whereas
msinTrace[(R’)Q] = mgnTrace[(| g’SST + W’11)2] 74)
+2Tracel W), WY, | + Trace[(W,)?]

In both cases optimization requir88 ™ to waterfill the covariance with which it appears [1,5, 9].
But if W/,(Wi,)"*W), # 0, the optimizingSS' might be different for TSC and sum capacity.
Therefore, TSC minimization and sum capacity maximization are in general different problems for
multiple base systems.

Nonetheless, there are a variety of different conditions under which the optimization of TSC

and sum capacity will be equivalent such as when
W,12<W,22)_1W/21 o 1 (75)

or when the noise covariance has scaled identity sub-blocks among others. However, we will opt
for the simplest operational requirement — so londRasan be realized with scaled identity sub-
blocks, maximizing sum capacity will be equivalent to minimizing TSC, owing to Theorem 1 and

Theorem 6. Heuristically, we can always be assured that such realizations are possible when the
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noise covariancd has white (scaled identity) sub-blocks, as well as being reasonably assured
when the signal energies are sufficiently large in each sub-block that complete waterfilling over the
fixed colored noise is possible.

We refine these general notions by noting that if Tf@&#& meets the bound of Theorem 6 we

require

L Ez
> 0690;SeS, + Wi = NJI (76)
=1

This constitutes a set (ﬁ% in L unknown covariances. Lettin§, = S,S;/ we then have the

following theorem:

Theorem 7 Minimization of TSC and maximization of sum capacity are equivalent problems if
there exists a solution to th%(BQ;l) set of equations i, unknown covarianceX,

L Ez
Z 9eigei Xy + Wy = WJI (77)
(=1

such that eaclX, is positive semidefinite and Tra¢,| = M,.2

In all that follows we will assume that the conditions of Theorem 7 can be satisfied.

3.2 Subspace Interference Avoidance

Equation (68) is the basis for a simple interference avoidance algorithm. Specifically,

The Flat Channel Eigen-Algorithm

1. Start with a random codeword ensemfie } and a specified set of transmit locations which
determine the gain vectofgy }

2. For some usér, computeU,, as in equation (66)

3. Compute
Ar=U] (R-GiSi8[G]) U, (78)

SWe have assumed th&ithasM, unit norm columns.
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4. Replace codewordof userk (s;;) by a minimum eigenvector of

1
‘ng

SkS, — spsy; + A, (79)

5. Repeat in some reasonable sequénté andi. Use escape procedures if necessary [9].

6. Stop when within some tolerance of the optimal fixed point.

Since at each step interference avoidance will decrease TSC, and since TSC is bounded from
below, the algorithm must converge in TSC. In addition, a proof similar to those found in [1,9] can
be formulated to show that all codewords become eigenvectors of their res;ﬁ%ﬁi&e skis; +
@Ak under a specific update sequence callrdedy+ interference avoidance [1,9]. This in
turn implies that eacB,S; waterfills its respective\ ; /|g,|>. That is, at the equilibrium we will
have

{SkSkT. + Ak;/’gkﬂ Si = xSy, (80)

for a;, some constant. If not, then escape procedures [9] can be applied until equation (80) is true
VEk.

Thus, the stopping rule consists of evaluating when all covariances simultaneously waterfill
their respective\ ;. /|gx | to within some tolerance, and it is obvious that such simultaneous water-
filling is a necessary condition for the optimum codeword ensemble lest we have a contradiction.
Furthermore, TracfR?] is strictly convex. That is, fob < A < 1 andR; # R, we can show

Trace[(ARl +(1- A)Rz)ﬂ < ATrace[Rﬂ +(1- A)Trace[Rg} (81)
by expanding

AQTrace[Rﬂ +(1— )\)QTrace[Rﬂ +2X(1 = \)TracelR R, < )\Trace[Rﬂ +(1— A)Trace[Rg}
(82)

and rearranging

—A(1— /\)Trace[Rﬂ +(1=N1 =X~ 1)Trace[R§} +2X(1 — M) TracelR;Ry) <0 (83)

“We leave the last step nonspecific since it has been previously shown that a variety of update sequences lead to

optimal results [1].
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and factoring to obtain

—A(1 =) [Trace[Rﬂ + Trace[Rg} — 2Trace[R1R2]} = —A1-)\) [Trace[(Rl - R2)2H <0
(84)
which is clearly true, with equalitiff A = 0, 1.
Thus, simple adaptation of results for sum capacity in [10, 11] shows that another type of si-
multaneous “waterfilling” (equation (80ig the optimal solution for TSC as well. Therefore, since
interference avoidance applied to TSC produces simultaneously “waterfilled” ensembles, interfer-

ence avoidance is guaranteed to produce codeword ensembles which absolutely minimize TSC.

FULLY. Convexity of the metric should be enough.
Of course, the algorithm is not guaranteed to refflexrs a set of scaled identity blocks since

it may be impossible to do so. For example, consider a single user with
I SST ... SST W,
SSTIT I wW=| o | (85)
I SST ... SST W;

and non-whiteW;. However, when itis possible to satisfy the conditions of Theorem 7 then
minimizing TSC is equivalent to maximizing sum capacity and interference avoidance will produce

an optimum codeword ensemble.

4 Discussion and Conclusions

Under an assumption of flat channels between users and multiple collaborating bases, we have
derived easily computable bounds on sum capacity. In addition, assuming that there exists a code-
word ensemble which renders the received covariance matrix as a 8etolV scaled identity

matrix sub-blocks, we have derived a simplified interference avoidance algorithm based on to-
tal squared corellation (TSC). Whereas the complexity of each interference avoidance step in the
general multiple base case [1] is on the orde( §f3)? owing to the necessary inversion of the
received covariance matriR, for flat channels, the complexity is on the order(&fB)? + N3

where the first term is the complexity of the subspace projection from step 3 of the interference
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avoidance algorithm, and the second term is the complexity of finding the minimum eigenvector
in step 4.

Numerical tests for a variety of dimensions and numbers of users and bases show that the sum
capacity improvement afforded by interference avoidance is generally not as large as for non-flat
gains [1]. For example, witiv' = 6 signal space dimensiol = 4 bases an@0 users, the
improvement over randomly chosen codewords was on ave2{geas compared to an average
of 30% for non-flat channels. However, a secondary feature of optimal codeword ensembles is
to make user codeword SINRs uniform — which could be useful for integrated receiver structures.
That is, each “rail” associated with each codeword would receive the same power, see the same
type of interference and have the same SINR. This uniformity plays to the inherent parallelism of
integration.

The uniformity of SINRs for codewords and previous results for single receiver systems where
interference avoidance maximized user capacity [5] naturally raised the issue making SINRs uni-
form across all users. Here the ultimate SINRs users receive is preordained by the values of the
{gx} — and this suggested an amusing/interesting sub-problem which arises at the fixed points pro-
duced by interference avoidance. Specifically, assume that the optimum ensemble always produces
R, = WI. Using the definition®;; = Trace[R,;;| andE the matrix whose elements are

E;; we will then have

R=E®I (86)

With ~,. defined as the SINR experienced by any codewaiftuserk, s;;, we then have (assuming
MMSE filtering [1])

G R Gisp = — sy, 87
k ¥k = TS (87)
We then note that [4]

R'=E'®I (88)

Furthermore, if we defin®V as theB x B matrix with elements TraddV;;|, andP = Trace[SkSH
Vk, then

E=PY gg +W (89)
0
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Finally we note that
Gr=g,®l (90)

so that all told, for any codeworg,; we have

THATp-1 Tp-1 Yk
G, R Gysy;, = g, E = 91
Spi Tk kSki = 8 8k 1+ (91)

Now, what is interesting about equation (91) is that it is a standard interference avoidance
problem owing to the definition oE in equation (89). That is, one could imagine iteratively
adjusting theg;, to greedily maximizey,; i.e., makeg, a maximum eigenvector ¢ — Pg;.g/ ).

If we assumdg;| = |g;| = ¢ Vi, j then the end result would be uniform SINR for all users since
we could have

Etot
E= I 2
B (92)

whereFEiqt is the total energy incident on the receivers
Etot= ), PTrace{gggﬂ + Trace[W] (93)
1

and B is the number of receivers. Therefore we would have

B B
ngE 1gkz = QQE— (94)
tot

and then
Bg?
Y= 7 T 5.9
Etot — By
This would constitute the attainment of a sorugkr capacity6] for the system.

Ve = (95)

An amusing (and infeasible) way to adjust gemight be to perform a sort apatialinterfer-
ence avoidance where users changed positions to achieve the opgmudh course, producing
arbitraryg; would generally be infeasible with the three degrees of freedom afforded by user posi-
tion. A more practical (and feasible) idea would be to use moderately directive antennas where the
modulated waveform could be split according to the optigaahnd steered independently toward

different bases — a sort of simplistic multi-antenna array.

SAssuming enough received signal energy and at I&astsers so that’ ", g.g, could be chosen to make
Py ,eg +WxL
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Of course, if such splitting were possible, then it would also be possible to send different signals

to different bases resulting in a received signal model of
ki

where eacls), is an N B-dimensional vector constrained only in its norm (i.e., a received power
constraint). Note that equation (96) is different from the constrained model

r= Z Gispi +W (97)

ki

used in this paper. Under the model of equation (96) the only constraint is on[Ria@ed not on
the sub-blocks s® could be rendered (via interference avoidance or any other optimal codeword
generation algorithm) as a scaled identity matrix thereby resulting in a greater sum capacity than
that achievable under sub-block trace constraints.

Of course, the complexity of such a general procedure would be on the ordatB)f. In
contrast, energy steering alone has comple&ityand would be decoupled from codeword adap-
tation. Thus, the total complexity of energy steering and codeword adaptation would be on the
order of B® + (N B)? + N3, a substantial reduction ovéN B)3. So, we close with this notion of
“spatial interference avoidance” (or “gross energy steering interference avoidance”), an interesting

curiosity which may (or may not) be useful under practical constraints on transceiver complexity.

A Incorporating Carrier Phase Delays

We have thus far assumed complete synchronization at all receivers between all users. Although
in baseband such an assumption can be justified through sufficiently long frame durations relative
the communications bandwidth allotted, simple propagation delay can cause signals modulated
on (say) the in-phase rail to appear on the quadrature rail at the receiver. And although all these
relative phases can be compensated for a single user, compensation for multiple users with different
delays to the same receivers is not possible in general for omnidirectional transrhission.

We therefore introducearrier rotation matriceso cover such cases, and although this com-

plicates the problem slightly, the same types of structural results observed in the synchronized

6If broad beams can be directed independently from transmitters to bases (as in section 4) then phase COULD be
adjusted by each transmitter so that all are properly syncrhonized at each receivers.
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problem still apply because the covariance will still have a fixed trace constraint under codeword
variation.

To proceed, we first assume a set of baseband complete orthonormal waveforms in some allot-
ted bandwidth{¢,(¢)},i = 1,2, ---, N/2 where for simplicity and conformance with our previous
calculations we assume even. We then assume a modulation with baitho.t andcos w.t which
provides forN passband orthonormal basis functions. Then we represeiﬁ‘thignature wave-

form of user/ as

(1)

sg)qﬁl (t) cosw,t Sy
sg)qbl (t) sinw,t sg)
3 3
s (t) o Sgi)¢2 (t) COs th s, — sgl) (98)
SR BN i O @
Sy Pa2(t) sinw,t Sy
I sgv)gb% (t)sinwt | I ng)

an N-dimensional codeword.

We then assume that for typical propagation delayse haveo;(t) ~ ¢;(t — 7) for i =
1,2,-+-, N/2,butthatcos w.(t—7) = cosw,.T cos w.t+sin w.T sin w.t and similarly for the quadra-
ture rail insinw.t. That is, the propagation delay causeg) cosw,t to appear a&a¢;(t) cosw,.t +
V1 —a2¢;(t) sinw.t where—1 < o < 1. We therefore define thex 2 rotation matrix as

cosf sind

O(0) = (99)

—sinf@ cosf

and note that the received signal vector after propagation deky

se; = Q(0)s; (100)

wheref = —w.7. The effect of propagation delay is therefore to pairwise rotate signal space
components. We also note that*(9) = O(0)" = O(—0)
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If we then define the carrier phase rotation from usty receiver; asf,; and thence?,; =
Q(6,;) as the correspondiny x N rotation matrix , we can rewrite the received covariance as
R = {R;;}, where

Rij = Qij + Wi = 90i96/Q2iSeS; Q; + Wy (101)
l
The rotation matrix associated with a given user can also be defined as
[ Q ]
Q2

Q = _ (102)

QB

and using the gain matrices associated with each user defined in equation (1) we can write the

received covariance matrix compactly as
R=Q+W=> GS;S/G'+W (103)
¢

where
g = O,Gy (104)

Once again we seek to maximi#&| or minimize TracéR?].
The following lemma will allow us to provide simple bounds f&| using Theorem 1 and for

Trace[R?| using Theorem 6.

Lemmal Let A be a2 x 2 symmetric matrix

A =

Then
Trace[AO(0)] = Trace|O(0)A] = Trace[A] cos 0

Using the definition oD (), the proof is trivial.

Now, consideﬂgngSZQZj. We have following Lemma 1

Trace|Q,;S:S, Q)| = Trace[S,S; Q;;Q| = Trace[S,S, O(0 — 0;)] = My cos(6 — 01;)
(105)
Therefore, we have
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Theorem 8 For flat channels with constant phase rotation, the sub-block tracés are
TraCG[RZ’j] = Ez‘j = ZgéingMé COS(QM — 0@) + TraCE[Wij] (106)
1

So, flat channels with phase rotation still have covariance matrices with sub-block trace con-
straints. Therefore, all the bounds derived B and TracéR?] for constant sub-block traces hold
under carrier phase rotation. And in cases where there exist codeword ensembles which can render

R as scaled identity blocks, the bounds will once again be met with equality.
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