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Abstract

As in the immediately preceeding companion paper, we consider distributed iterative inter-

ference avoidance algorithms for uplink wireless systems where base stations share informa-

tion (collaborate). Here we investigate simplifications possible under a flat channel assumption

where the gains are identical for all signal space dimensions over the channel between a given

user and a given base. Flat channels lead to structural covariance properties which both sim-

plify calculation of sum capacity, and in addition, reduce the complexity of interference avoid-

ance algorithms. The results also suggest that steering energy selectively at the bases using

simple directive antennas might be used as an additional adaptation method to both increase

sum capacity and to render uniform shared signal to interference/noise ratios to all users.
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1 Introduction

In this companion paper to [1] we consider a special case where the gains between each user

and each base are identical across signal space dimensions. In a frequency division scheme this

would correspond to the physical properties of closely spaced channels (within the cohenence

bandwidth) where line of sight propagation predominated. Such “flat” channels could arise in a

variety of settings where a single path (not necessarily line of sight (LOS)) predominates between

transmitters and receivers. We will show how such flat channels lead to structural properties for the

received covariance which can be exploited by suitable modifications of the interference avoidance

algorithm. We will find that for flat channels, interference avoidance might be used not only for

sum capacity capacity maximization, but perhaps more importantly for uniformization of signal to

interference/noise ratios (SINRs) for all users under suitable received power constraints.

2 Flat Channel Simplifications

In the previous paper [1] we considered general gain matricesG`. For simplicify, we first consider

the simplest of flat channels where the gain between a given user and a given base is identical over

all signal space dimensions and derive structural properties ofCsum-maximizingR. Later, we

will adapt the results to include carrier phase rotation induced by different pathlengths between

receivers and transmitters. So, our gain matrices are

G` =


g`1I

...

g`BI

 (1)

which results in

R(`) =


g2
`1S`S

>
` · · · g`1g`BS`S

>
`

...
...

...

g`Bg`1S`S
>
` · · · g2

`BS`S
>
`

 (2)

and

R =
∑
`

R(`) + W (3)
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whereW is the noise covariance.1 We can now state some useful properties of the system covari-

ance matrixR under a flat channel assumption:

1. R is composed ofN ×N sub-blocks

2. Each sub-block,Rij satisfies

Trace[Rij] =
∑
`

g`ig`jTrace
[
S`S

>
`

]
+ Trace[Wij] = Eij = Eji (4)

As usual, we seek to maximize|R|. We recall that a positive definiteN×N matrixX with constant

trace has maximum|X| whenX = Trace[X]
N

I [2]. Unfortunately, unless the off-diagonal blocks of

R have zero trace, the covarianceR cannotbe a scaled identity matrix. So, we seek the structure

of R which maximizes the determinant subject to the imposed block trace constraints.

First consider a single user and white noise/interference. It is easy to see that such a user sees

N identical channels corresponding to theN signal space dimensions. It is intuitively obvious

following a water filling argument [3] that such a user should place equal amounts of power in

each dimension resulting in a scaled identity codeword covariance matrixSS> and therefore in

R being composed ofN × N scaled identity sub-blocks. However, with more than one user and

colored noise/interference, the optimal structure ofR seems less obvious. Thus, we will derive

a general upper bound on the determinant for matrices sharing the structure ofR and sufficient

conditions such that the bound is met.

2.1 Bounds on|R|

Consider the optimization

max
Trace[Rij=Eij ]

|R| (5)

To proceed, we first define a classQNJ of positive definite (∈M+) matricesQ where the subscript

N denotes the size of the square sub-blocks andJ denotes the number of vertical and horizontal

sub-blocksQij with trace constraint Trace[Qij] = Eij. SinceQ ∈ M+ we also haveQij = Q>ji.

For this class of matrix we have:
1Noise in this context could mean Gaussian other-system interference. For a more careful definition of the structure

of W, please see the companion paper [1].
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Theorem 1 Let

Q =



Q11 Q12 · · · Q1J

Q21 Q22
...

...
...

...

QJ1 · · · · · · QJJ


(6)

whereQ ∈ QN,J . Let the trace constraints of the sub-blocks be Trace[Qij] = Eij. Then the

determinant ofQ is maximized when

Qij =
Eij
N

IN (7)

so that

max
Q∈QN,J

|Q| = 1

NNJ
|E|N (8)

where the elements of the symmetricJ × J matrixE are{Eij}.

We prove Theorem 1 in the following sections using a recursive approach.

2.2 The Kernel of Recursion

Let Q ∈ QN,J+1 be

Q =

 A B>

B C

 (9)

whereA isNJ ×NJ , C isN ×N andB isN ×NJ . We will derive structural properties on any

Q which has maximum|Q|.
We may factorQ as

Q =

 A 0

B I


 I A−1B>

0 C−BA−1B>

 (10)

so that

|Q| = |A||C−BA−1B>| (11)

The termQ
A
≡ C − BA−1B> is called the Schur complement ofA in Q and if Q ∈ M+ then

Q
A
∈ M+ [4]. We then note that since|Z| ≤

[
Trace[Z]

N

]N
with equalityiff Z ∝ I for anyN × N
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matrix with a trace constraint [2] we must have

|Q| ≤ |A|

Trace[C]− Trace
[
BA−1B>

]
N

N ≤ |A|
Trace[C]−min

B
Trace

[
BA−1B>

]
N


N

(12)

with equalityiff (C−BA−1B>) ∝ I. We therefore turn our attention to minimizing Trace
[
BA−1B>

]
in B .

Consider that

BA−1B> = UDV>ΨΩ−1Ψ>VD>U> (13)

whereA = ΨΩΨ>, an eigendecomposition andB = UDV> the usual singular value decompo-

sition with

D =
[
D 0

]
(14)

whereD is anN ×N diagonal matrix containing the singular values ofB. We then have

Trace
[
BA−1B>

]
= Trace

[
DV>ΨΩ−1Ψ>VD>

]
= Trace

[
D>DP>Ω−1P

]
(15)

after definingV>Ψ = P>. This expression reduces to

Trace
[
D>DP>Ω−1P

]
=
∑
ij

p2
ij

d2
j

ωi
(16)

where thed2
j are the elements of the diagonal matrixD>D of whichN are the squared singular

values ofB and the rest are zero. Thepij are the elements of theP matrix. SinceP is the product

of two unitary matrices, it is itself a unitary matrix so that

∑
i

p2
ij =

∑
j

p2
ij = 1 (17)

So, the problem is now

min
B

Trace
[
D>DP>Ω−1P

]
= min
{pij ,di}

∑
ij

p2
ij

d2
j

ωi
(18)

Now, consider that via equation (17)p2
ij is a probability mass function ini and also inj.

Therefore, we can rewrite the optimization as

min
{pij ,di}

∑
i

Ei[d
2]

ωi
(19)
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where

Ei[d
2] =

∑
j

p2
ijd

2
j (20)

Assume with no loss of generality that thed2
j and theωi are fixed and ordered from largest to

smallest. We first note that ∑
i

Ei[d
2] =

∑
j

d2
j (21)

and

d2
JN ≤ Ei[d

2] ≤ d2
1 (22)

Now for the moment, imagine we can choose anyEi[d
2] we’d like subject to the constraints of

equation (21) and equation (22). That is, ignore the underlying structure of theEi[d
2] as generated

from squared entries of a unitary matrix. We then note that ifE1[] 6= d2
1, we can always reduce

Trace
[
D>DP>Ω−1P

]
by reducing one of the otherEi[d2] (which multiplies another1/ωi >

1/ω1) by someε and addingε to E1[d2]. If no such greater1/ωi exists, then we can still increase

E1[d2] to its maximum with no penalty to the objective. For completeness, please note that if

E1[d2] < d2
1 then the sum constraint on theEi[d2] in equation (21) guarantees there exists at least

oneEi[d2] from whichε can be “borrowed.”

Thus, at any minimum we must haveE1[d2] = d2
1. However, to do so implies thatp11 = 1

which implies thatp1j = 0, j 6= 1 and thatpi1 = 0, i 6= 1 – further implying thatEi[d2] ≤ d2
2,

i > 1. Proceeding recursively, we see that to minimize Trace
[
D>DP>Ω−1P

]
, we will have

pij =

 1 i = j, j = 1, 2, · · · , JN
0 otherwise

(23)

so that

min
B

Trace
[
D>DP>Ω−1P

]
= min
{dj}

N∑
i=1

d2
i

ωi
(24)

Equation (23) implies that the right singular basis set ofB and the eigenvector matrix ofA should

be identical2 and that the singular valuesdi of B should be ordered from largest to smallest mag-

nitude if the eigenvalues ofA are ordered from largest to smallest.
2V = Ψ in equation (13).
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Now, consider the optimization over the{dj} of equation (24). Owing to the trace constraint

on sub-blocks ofQ we have

B =
[

B1 · · ·BJ

]
(25)

with eachBj anN ×N matrix and with Trace[Bj] = EBj
. We then note that

BB> = UD2U> (26)

However, owing to the structure ofB we also have

BB> =
∑
j

BjB
>
j =

∑
j

UjDjU>j (27)

so that

D2 =
∑
j

U>UjDjU>j U =
∑
j

Z>j DjZj (28)

whereZj = U>Uj. This leads to

d2
i =

J∑
j=1

N∑
n=1

z2
ind

2
jn (29)

wherezin are the elements ofZ and thence to

Trace
[
BA−1B>

]
=

N∑
i=1

d2
i

ωi
=
∑
ijn

z2
ind

2
jn

ωi
(30)

Now, consider that

Trace[Bj] = Trace
[
UjDjV

>
j

]
= Trace

[
DjV

>
j Uj

]
= Trace[DjPj] = EBj

(31)

where as beforePj is a unitary matrix obtained from the multiplication of two unitary matrices

Uj andV>j whose elementspin(j) obey equation (17) and for which no entrypin(j) can have

magnitude larger than 1. We then have

Trace[DjPj] =
∑
n

djnpnn(j) = EBj
(32)

We can now form the constrained optimization of equation (30) as

min
{djn}

∑
ijn

z2
in(j)d2

jn

ωi
+
∑
j

λj

(∑
n

pnn(j)djn − EBj

)
(33)
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with λj the constraint constants so that at the extremal points we must have

∑
i

z2
in(j)djn
ωi

= −λj
2
pnn(j) (34)

or

djn = −λj
2
pnn(j)

/∑
i

z2
in(j)

ωi
(35)

Multiplying both sides bypnn(j) and summing overn we have

∑
n

djnpnn(j) = EBj
= −λj

2

∑
n

p2
nn(j)

/∑
i

z2
in(j)

ωi
(36)

so that

λj = −2EBj

/∑
n

p2
nn(j)

1∑
i

z2
in(j)

ωi

(37)

We then re-evaluate the metric in equation (30) and obtain

∑
jn

d2
jn

∑
i

z2
in(j)

ωi
=
∑
j

∑
n

EBj
djnpnn(j)

∑
n

p2
nn(j)

1∑
i

z2
in(j)

ωi

=
∑
j

E2
Bj∑

n

p2
nn(j)

1∑
i

z2
in(j)

ωi

(38)

We first notice that minimization of equation (38) can be cast as separate minimizations for

eachj. So, we seek to maximize

max
{pnn(j),zin(j)}

∑
n

p2
nn(j)

1∑
i

z2
in(j)

ωi

(39)

We then note that equation (39) is increasing in thep2
nn(j), so at the maximum we must have all

p2
nn(j) = 1. Thus, we must haveUj = Vj – i.e., eachBj should be symmetric with eigenvalues

djn.

Now we notice that
1

ω1

≤
∑
i

z2
in(j)

ωi︸ ︷︷ ︸
qn(j)

≤ 1

ωN
(40)

and also that ∑
n

qn(j) =
∑
i

1

ωi
(41)
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by equation (17). We therefore seek to maximize

Q(j) =
∑
n

1

qn(j)
(42)

Ignoring the detailed structure of theqn(j) for now and looking only to the constraints of

equation (40) and equation (41), we note thatQ(j) can always be increased if there existsqn(j) >

1/ω1 and anotherqk(j) with qn(j) < qk(j) < 1/ωN by reducingqn(j) and increasingqk(j) by ε to

maintain the sum constraint of equation (41). That is, supposex < y. Then(
1

x− ε
+

1

y + ε

)
−
(

1

x
+

1

y

)
=

ε

x(x− ε)
− ε

y(y + ε)
> 0 (43)

sincex(x− ε) < y(y + ε).

So, with no loss of generality we setz2
1n(j) = δ1n which owing to the structure of the unitary

matrix Zj impliesz1k = 0, k > 1 andzk1 = 0, k > 1. Thus, for the remaining choices ofzin(j)

we must have
1

ω2

≤
∑
i6=1

z2
in(j)

ωi︸ ︷︷ ︸
qn(j)

≤ 1

ωN
(44)

and ∑
n6=1

qn(j) =
∑
i6=1

1/ωi (45)

Recursive application of this procedure leads to

z2
in(j) = δin (46)

and thence to ∑
i

z2
in(j)

ωi
=

1

ωn
(47)

and

λj = −2
EBj

N∑
i=1

ωi

(48)

With p2
nn(j) = 1 and equation (35) we then have

djn = ωn
EBj

N∑
i=1

ωi

(49)
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n = 1, 2, · · · , N .

We summarize the results as a theorem:

Theorem 2 LetA be aJN ×JN positive definite matrix with diagonal factorizationΦΩΦ> and

B be a matrix composed ofJ N ×N sub-blocks arranged as

B =
[

B1 · · · BJ

]
(50)

and having Trace[Bj] = EBj
and singular value decompositionB = UDV>. Further, assume

that the eigenvalues ofA and the singular values ofB are arranged in descending order.

Then, Trace
[
BA−1B>

]
is minimizediff :

• B = UDΦ>. That is, the right basis singular basis set ofB and the eigenvector matrixΦ

are identical.

• EachBj = UjDjV
>
j is symmetric (Vj = Uj) so that the singular valuesdjn are also the

eigenvalues.

• Uj = U

• The eigenvalues ofBj satisfy

djn =
ωn
N∑
i=1

ωi

EBj

whereω1, · · · , ωN are theN largest eigenvalues ofA.

The resulting minimum value is

min
B

Trace
[
BA−1B>

]
=

∑
j

E2
Bj

N∑
i=1

ωi

(51)

2.3 Show forJ = 2

We now return to the factorization of equation (12) and note that since

|Q| ≤ max |A|

Trace[C]−min
B

Trace
[
BA−1B>

]
N


N

(52)
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andA ∈ QN,J−1, further factorizations of each leftmost determinant are possible until we have

N ×N A, B andC at which point the following theorem follows as a consequence of Theorem 2

and equation (11).

Theorem 3 Let

Q =

 A B>

B C

 (53)

whereQ ∈ QN,2 with submatricesA, B andC all N ×N .

ThenQ ∈ QN,2 has maximum determinantiff eachN × N submatrix is a scaled identity

matrix.

Proof: V ia Theorem 2, Trace
[
BA−1B>

]
is minimized whenB is a scaled replica ofA. |A|

is maximized whenA = Trace[A]
N

I, a scaled identity matrix [2, 5]. Via Theorem 2 we then have

B = Trace[B]
N

I. Likewise, from equation (11) and we see that
∣∣∣C−BA−1B>

∣∣∣ meets the bound of

equation (12) whenC = Trace[C]
N

I thus completing the proof.•

2.4 Assume forJ and Prove for J + 1

Suppose following equation (12) thatQ ∈ QN,J+1 and that the sub-block traces ofA ∈ QN,J are

{Eij}. Then assume that|A| is maximized whenA has scaled identity sub-blocks. Scaled identity

sub-blocks forA impliesJ distinct eigenvalues forA, each repeatedN times sinceA = E⊗ IN ,

the Kronecker product of theJ × J symmetric matrixE = {Eij} and anN × N identity matrix

[4]. Since the eigenvalues of eachBj must be scaled replicas of the largestN eigenvalues ofA,

eachBj must be a scaled identity matrix. Then, to maximize the determinant in equation (11)

we must haveC a scaled identity matrix as well. Thus, theQ which maximizes|Q| has each

Qij = (Trace[Qij] /N)I. This completes the proof of Theorem 1.

Thus, the covariance matrixR for a system withB bases belongs to the classQN,B, and to

maximize|R| each of the sub-blocks ofR should be a scaled identity matrix if possible. We now

apply Theorem 1 to special cases.
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2.5 Sum Capacity Bounds in White Noise/Interference

If we assume independent white noise/interference then each block ofW is of the formWij =
ωij
N

IN , i, j = 1, . . . , B whereωij = Trace[Wij]. From equation (4) we have the sub-block traces

of R as

Eij =
L∑
`=1

M`g`ig`j + ωij (54)

Direct application of Theorem 1 toR results in:

L∑
`=1

g`ig`jS`S
>
` =

Eij − ωij
N

IN (55)

which can always satisfied if each of theSkS
>
k is a scaled identity matrix (although there may be

other solutions as well). We state this result as a theorem:

Theorem 4 For white noise/interference with sub-block tracesωij, sum capacity is maximized

when all the codeword covariances are

SkS
>
k = Xk =

Mk

N
IN

and the corresponding sum capacity value is

Cmax =
N

2
[log |E| − log |ω|] (56)

whereω is aB ×B matrix with elements{ωij = Trace[Wij]}.

2.6 Sum Capacity Bounds in Colored Noise

For colored noise, the trace constraints are identical to equation (55). Theorem 1 requires that

L∑
k=1

gikgjkXk + Wij =
Eij
N

IN (57)

whereXk = SkS
>
k . Owing to the structure of the covariance matrix, equation (57) can be inter-

preted as a set of1
2
B(B + 1) equations inL unknown covariances{Xk}.

The question is whether there exists a realizable/feasible set{Xk}which satisfies equation (57),

and if no such set{Xk} exists, what the actual optimizing set should be. We do not consider the

latter question here and simply assume that whether a feasible solution to equation (57) exists or

not, Theorem 1 provides an upper bound which we state as:
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Theorem 5 For a multiple base system withB basestations,L transmitting locations andNB ×
NB noise covariance matrixW, the maximum sum capacity is achievediff the codeword ensemble

covariancesXk = SkS
>
k satisfy

L∑
k=1

gikgjkXk + Wij =
Eij
N

IN i, j = 1, 2, . . . , B

and the associated sum capacity value is

Cmax =
1

2
[N log |E| −NB logN − log |W|] (58)

If no feasible{Xk} exists, thenCmax serves as an upper bound.

3 TSC and Interference Avoidance Simplifications

For single receiver systems in white noise, the Total Squared Correlation (TSC) is usually defined

as the sum of squared correlations of codewords (signature sequences) at the receiver. For col-

ored noise, it has also been more generally defined as the trace of the squared covariance matrix,

Trace[R2] [5] and we will use that definition here. We will show that under certain circumstances,

minimizing TSC in flat channel multibase systems is equivalent to maximizing sum capacity and

that this equivalence allows simplification of the interference avoidance algorithm.

3.1 Bounds on TSC for Multiple Receiver Systems

First we note that

Trace
[
R2
]

=
∑
ij

Trace[RijRji] =
∑
ij

Trace
[
R>ijRij

]
(59)

and then via Theorem 2 withA = I we must have

∑
ij

Trace
[
R>ijRij

]
≥ 1

N
(Trace[Rij])

2 (60)

with equality iff Rij = Trace[Rij ]

N
I. So, Trace[R2] is minimizediff each of its sub-blocks is a

scaled identity matrix. We state this result as a theorem:
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Theorem 6 LetR ∈ QNB with sub-block traces Trace[Rij] = Eij. Then

Trace
[
R2
]
≥
∑
ij

E2
ij

N
(61)

with equalityiff the sub-blocks ofR satisfyRij = Eij
N

I

We now draw a parallel between sum capacity maximization and TSC minimization. Notice

that if λi are the eigenvalues ofR, for TSC we seek to minimize

Trace
[
R2
]

=
∑
i

λ2
i (62)

and for sum capacity we seek to maximize

log |R| =
∑
i

log λi (63)

Optimization of either metric overR ∈ QNB, a convex class, will result in the same set of opti-

mizingR via Schur convexity [6,7]. However, we are not necessarily optimizing over the class of

R ∈ QNB, but rather, over the codeword setsSi which imposes another set of constraints onR.

Therefore, the optimization of TSC and sum capacity will in general be different as illustrated by

a simple example.

Consider

R = GSS>G> + W (64)

and note that

G = g ⊗ I =


g1I
...

gBI

 (65)

whereg is aB-dimensional vector,I is anN ×N identity matrix and⊗ is the Kronecker product

[4]. We can then define

U =
1

|g|
G (66)

and see thatU has orthonormal columns so thatU>U = I. We then define the orthonormal

complement ofU asŪ and note that

[
U Ū

]  U>

Ū>

 = I (67)
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We can now apply a similarity transform toR U>

Ū>

R
[

U Ū

]
= R′ =

 |g|2SS> + W′
11 W′

12

W′
21 W′

22

 (68)

where

W′
11 = U>WU (69)

W′
12 = U>WŪ (70)

W′
21 = Ū>WU (71)

and

W′
22 = Ū>WŪ (72)

Under a similarity transform, the eigenvalues ofR are unchanged and we still have|R| = |R′| and

Trace[R2] = Trace[(R′)2]. But via Schur factorization [8] we have

max
S
|R′| = max

S
|W′

22|
∣∣∣|g|2SS> + W′

11 −W′
12(W′

22)−1W′
21

∣∣∣ (73)

whereas
min

S
Trace[(R′)2] = min

S
Trace

[
(|g|2SS> + W′

11)2
]

+2Trace[W′
12W

′
21] + Trace[(W′

22)2]
(74)

In both cases optimization requiresSS> to waterfill the covariance with which it appears [1,5,9].

But if W′
12(W′

22)−1W′
21 6= 0, the optimizingSS> might be different for TSC and sum capacity.

Therefore, TSC minimization and sum capacity maximization are in general different problems for

multiple base systems.

Nonetheless, there are a variety of different conditions under which the optimization of TSC

and sum capacity will be equivalent such as when

W′
12(W′

22)−1W′
21 ∝ I (75)

or when the noise covariance has scaled identity sub-blocks among others. However, we will opt

for the simplest operational requirement – so long asR can be realized with scaled identity sub-

blocks, maximizing sum capacity will be equivalent to minimizing TSC, owing to Theorem 1 and

Theorem 6. Heuristically, we can always be assured that such realizations are possible when the
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noise covarianceW has white (scaled identity) sub-blocks, as well as being reasonably assured

when the signal energies are sufficiently large in each sub-block that complete waterfilling over the

fixed colored noise is possible.

We refine these general notions by noting that if Trace[R2] meets the bound of Theorem 6 we

require
L∑
`=1

g`ig`jS`S
>
` + Wij =

Eij
N

I (76)

This constitutes a set ofB(B−1)
2

in L unknown covariances. LettingX` = S`S
>
` we then have the

following theorem:

Theorem 7 Minimization of TSC and maximization of sum capacity are equivalent problems if

there exists a solution to theB(B−1)
2

set of equations inL unknown covariancesX`

L∑
`=1

g`ig`jX` + Wij =
Eij
N

I (77)

such that eachX` is positive semidefinite and Trace[X`] = M`.3

In all that follows we will assume that the conditions of Theorem 7 can be satisfied.

3.2 Subspace Interference Avoidance

Equation (68) is the basis for a simple interference avoidance algorithm. Specifically,

The Flat Channel Eigen-Algorithm

1. Start with a random codeword ensemble{Sk} and a specified set of transmit locations which

determine the gain vectors{gk}

2. For some userk, computeUk as in equation (66)

3. Compute

Ak = U>k
(
R−GkSkS

>
k G>k

)
Uk (78)

3We have assumed thatS hasM` unit norm columns.
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4. Replace codewordi of userk (ski) by a minimum eigenvector of

SkS
>
k − skis

>
ki +

1

|gk|2
Ak (79)

5. Repeat in some reasonable sequence4 of k andi. Use escape procedures if necessary [9].

6. Stop when within some tolerance of the optimal fixed point.

Since at each step interference avoidance will decrease TSC, and since TSC is bounded from

below, the algorithm must converge in TSC. In addition, a proof similar to those found in [1,9] can

be formulated to show that all codewords become eigenvectors of their respectiveSkS
>
k − skis

>
ki +

1
|gk|2

Ak under a specific update sequence calledGreedy+ interference avoidance [1, 9]. This in

turn implies that eachSkS>k waterfills its respectiveAk/|gk|2. That is, at the equilibrium we will

have [
SkS

>
k + Ak/|gk|2

]
Sk = αkSk (80)

for αk some constant. If not, then escape procedures [9] can be applied until equation (80) is true

∀k.

Thus, the stopping rule consists of evaluating when all covariances simultaneously waterfill

their respectiveAk/|gk|2 to within some tolerance, and it is obvious that such simultaneous water-

filling is a necessary condition for the optimum codeword ensemble lest we have a contradiction.

Furthermore, Trace[R2] is strictly convex. That is, for0 ≤ λ ≤ 1 andR1 6= R2 we can show

Trace
[
(λR1 + (1− λ)R2)2

]
≤ λTrace

[
R2

1

]
+ (1− λ)Trace

[
R2

2

]
(81)

by expanding

λ2Trace
[
R2

1

]
+(1−λ)2Trace

[
R2

2

]
+2λ(1−λ)Trace[R1R2] ≤ λTrace

[
R2

1

]
+(1−λ)Trace

[
R2

2

]
(82)

and rearranging

−λ(1− λ)Trace
[
R2

1

]
+ (1− λ)(1− λ− 1)Trace

[
R2

2

]
+ 2λ(1− λ)Trace[R1R2] ≤ 0 (83)

4We leave the last step nonspecific since it has been previously shown that a variety of update sequences lead to

optimal results [1].
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and factoring to obtain

−λ(1− λ)
[
Trace

[
R2

1

]
+ Trace

[
R2

2

]
− 2Trace[R1R2]

]
= −λ(1− λ)

[
Trace

[
(R1 −R2)2

]]
≤ 0

(84)

which is clearly true, with equalityiff λ = 0, 1.

Thus, simple adaptation of results for sum capacity in [10, 11] shows that another type of si-

multaneous “waterfilling” (equation (80))is the optimal solution for TSC as well. Therefore, since

interference avoidance applied to TSC produces simultaneously “waterfilled” ensembles, interfer-

ence avoidance is guaranteed to produce codeword ensembles which absolutely minimize TSC.

MAKE SURE THIS IS TRUE!!!!! Check Wei’s paper CARE-
FULLY. Convexity of the metric should be enough.

Of course, the algorithm is not guaranteed to renderR as a set of scaled identity blocks since

it may be impossible to do so. For example, consider a single user with
I
...

I

SS>
[

I · · · I

]
+ W =


SS> · · · SS>

...
...

...

SS> · · · SS>

+


W1

...

WB

 (85)

and non-whiteWj. However, when itis possible to satisfy the conditions of Theorem 7 then

minimizing TSC is equivalent to maximizing sum capacity and interference avoidance will produce

an optimum codeword ensemble.

4 Discussion and Conclusions

Under an assumption of flat channels between users and multiple collaborating bases, we have

derived easily computable bounds on sum capacity. In addition, assuming that there exists a code-

word ensemble which renders the received covariance matrix as a set ofN × N scaled identity

matrix sub-blocks, we have derived a simplified interference avoidance algorithm based on to-

tal squared corellation (TSC). Whereas the complexity of each interference avoidance step in the

general multiple base case [1] is on the order of(NB)3 owing to the necessary inversion of the

received covariance matrixR, for flat channels, the complexity is on the order of(NB)2 + N3

where the first term is the complexity of the subspace projection from step 3 of the interference
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avoidance algorithm, and the second term is the complexity of finding the minimum eigenvector

in step 4.

Numerical tests for a variety of dimensions and numbers of users and bases show that the sum

capacity improvement afforded by interference avoidance is generally not as large as for non-flat

gains [1]. For example, withN = 6 signal space dimension,B = 4 bases and20 users, the

improvement over randomly chosen codewords was on average12% as compared to an average

of 30% for non-flat channels. However, a secondary feature of optimal codeword ensembles is

to make user codeword SINRs uniform – which could be useful for integrated receiver structures.

That is, each “rail” associated with each codeword would receive the same power, see the same

type of interference and have the same SINR. This uniformity plays to the inherent parallelism of

integration.

The uniformity of SINRs for codewords and previous results for single receiver systems where

interference avoidance maximized user capacity [5] naturally raised the issue making SINRs uni-

form across all users. Here the ultimate SINRs users receive is preordained by the values of the

{gk} – and this suggested an amusing/interesting sub-problem which arises at the fixed points pro-

duced by interference avoidance. Specifically, assume that the optimum ensemble always produces

Rij = Trace[Rij ]

N
I. Using the definitionEij = Trace[Rij] andE the matrix whose elements are

Eij we will then have

R = E⊗ I (86)

With γk defined as the SINR experienced by any codewordi of userk, ski, we then have (assuming

MMSE filtering [1])

G>k R−1Gkski =
γk

1 + γk
ski (87)

We then note that [4]

R−1 = E−1 ⊗ I (88)

Furthermore, if we defineW as theB×B matrix with elements Trace[Wij], andP = Trace
[
SkS

>
k

]
∀k, then

E = P
∑
`

g`g
>
` +W (89)
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Finally we note that

Gk = gk ⊗ I (90)

so that all told, for any codewordski we have

s>kiG
>
k R−1Gkski = g>k E−1gk =

γk
1 + γk

(91)

Now, what is interesting about equation (91) is that it is a standard interference avoidance

problem owing to the definition ofE in equation (89). That is, one could imagine iteratively

adjusting thegk to greedily maximizeγk; i.e., makegk a maximum eigenvector of(E−Pgkg
>
k )−1.

If we assume|gi| = |gj| = g ∀i, j then the end result would be uniform SINR for all users since

we could5 have

E =
Etot
B

I (92)

whereEtot is the total energy incident on the receivers

Etot =
∑
`

PTrace
[
g`g

>
`

]
+ Trace[W ] (93)

andB is the number of receivers. Therefore we would have

g>k E−1gk = g2 B

Etot
(94)

and then

γk = γ =
Bg2

Etot−Bg2
(95)

This would constitute the attainment of a sort ofuser capacity[6] for the system.

An amusing (and infeasible) way to adjust thegk might be to perform a sort ofspatial interfer-

ence avoidance where users changed positions to achieve the optimumgk. Of course, producing

arbitrarygk would generally be infeasible with the three degrees of freedom afforded by user posi-

tion. A more practical (and feasible) idea would be to use moderately directive antennas where the

modulated waveform could be split according to the optimalgk and steered independently toward

different bases – a sort of simplistic multi-antenna array.
5Assuming enough received signal energy and at leastB users so thatP

∑
` g`g>` could be chosen to make

P
∑
` g`g>` +W ∝ I.
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Of course, if such splitting were possible, then it would also be possible to send different signals

to different bases resulting in a received signal model of

r =
∑
ki

s′ki + w (96)

where eachs′ki is anNB-dimensional vector constrained only in its norm (i.e., a received power

constraint). Note that equation (96) is different from the constrained model

r =
∑
ki

Gkski + w (97)

used in this paper. Under the model of equation (96) the only constraint is on Trace[R] and not on

the sub-blocks soR could be rendered (via interference avoidance or any other optimal codeword

generation algorithm) as a scaled identity matrix thereby resulting in a greater sum capacity than

that achievable under sub-block trace constraints.

Of course, the complexity of such a general procedure would be on the order of(NB)3. In

contrast, energy steering alone has complexityB3 and would be decoupled from codeword adap-

tation. Thus, the total complexity of energy steering and codeword adaptation would be on the

order ofB3 + (NB)2 + N3, a substantial reduction over(NB)3. So, we close with this notion of

“spatial interference avoidance” (or “gross energy steering interference avoidance”), an interesting

curiosity which may (or may not) be useful under practical constraints on transceiver complexity.

A Incorporating Carrier Phase Delays

We have thus far assumed complete synchronization at all receivers between all users. Although

in baseband such an assumption can be justified through sufficiently long frame durations relative

the communications bandwidth allotted, simple propagation delay can cause signals modulated

on (say) the in-phase rail to appear on the quadrature rail at the receiver. And although all these

relative phases can be compensated for a single user, compensation for multiple users with different

delays to the same receivers is not possible in general for omnidirectional transmission.6

We therefore introducecarrier rotation matricesto cover such cases, and although this com-

plicates the problem slightly, the same types of structural results observed in the synchronized
6If broad beams can be directed independently from transmitters to bases (as in section 4) then phase COULD be

adjusted by each transmitter so that all are properly syncrhonized at each receivers.
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problem still apply because the covariance will still have a fixed trace constraint under codeword

variation.

To proceed, we first assume a set of baseband complete orthonormal waveforms in some allot-

ted bandwidth,{φi(t)}, i = 1, 2, · · · , N/2 where for simplicity and conformance with our previous

calculations we assumeN even. We then assume a modulation with bothsinωct andcosωct which

provides forN passband orthonormal basis functions. Then we represent theith signature wave-

form of user̀ as

s`i(t) =



s
(1)
`i φ1(t) cosωct

s
(2)
`i φ1(t) sinωct

s
(3)
`i φ2(t) cosωct

s
(4)
`i φ2(t) sinωct

...

s
(N)
`i φN

2
(t) sinωct


→ s`i =



s
(1)
`i

s
(2)
`i

s
(3)
`i

s
(4)
`i

...

s
(N)
`i


(98)

anN -dimensional codeword.

We then assume that for typical propagation delaysτ we haveφi(t) ≈ φi(t − τ) for i =

1, 2, · · · , N/2, but thatcosωc(t−τ) = cosωcτ cosωct+sinωcτ sinωct and similarly for the quadra-

ture rail insinωct. That is, the propagation delay causesφi(t) cosωct to appear asαφi(t) cosωct±
√

1− α2φi(t) sinωct where−1 ≤ α ≤ 1. We therefore define the2× 2 rotation matrix as

O(θ) =

 cos θ sin θ

− sin θ cos θ

 (99)

and note that the received signal vector after propagation delayτ is

O(θ)

O(θ)
...

O(θ)

 s`i = Ω(θ)s`i (100)

whereθ = −ωcτ . The effect of propagation delay is therefore to pairwise rotate signal space

components. We also note thatO−1(θ) = O(θ)> = O(−θ)
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If we then define the carrier phase rotation from user` to receiverj asθ`j and thenceΩ`j =

Ω(θ`j) as the correspondingN × N rotation matrix , we can rewrite the received covariance as

R = {Rij}, where

Rij = Qij + Wij =
∑
`

g`ig`jΩ`iS`S
>
` Ω>`j + Wij (101)

The rotation matrix associated with a given user can also be defined as

Ω` =



Ω`1

Ω`2

...

Ω`B

 (102)

and using the gain matrices associated with each user defined in equation (1) we can write the

received covariance matrix compactly as

R = Q + W =
∑
`

GS`S
>
` G> + W (103)

where

G = Ω`G` (104)

Once again we seek to maximize|R| or minimize Trace[R2].

The following lemma will allow us to provide simple bounds for|R| using Theorem 1 and for

Trace[R2] using Theorem 6.

Lemma 1 LetA be a2× 2 symmetric matrix

A =

 a b

b c


Then

Trace[AO(θ)] = Trace[O(θ)A] = Trace[A] cos θ

Using the definition ofO(θ), the proof is trivial.

Now, considerΩ`iS`S
>
` Ω>`j. We have following Lemma 1

Trace
[
Ω`iS`S

>
` Ω>`j

]
= Trace

[
S`S

>
` Ω>`jΩ`i

]
= Trace

[
S`S

>
` O(θ`i − θ`j)

]
= M` cos(θ`i − θ`j)

(105)

Therefore, we have
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Theorem 8 For flat channels with constant phase rotation, the sub-block traces orR are

Trace[Rij] = Eij =
∑
`

g`ig`jM` cos(θ`i − θ`j) + Trace[Wij] (106)

So, flat channels with phase rotation still have covariance matrices with sub-block trace con-

straints. Therefore, all the bounds derived on|R| and Trace[R2] for constant sub-block traces hold

under carrier phase rotation. And in cases where there exist codeword ensembles which can render

R as scaled identity blocks, the bounds will once again be met with equality.
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