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Abstract

We consider information flow via physical transport of inscribed media through space and compare

it to information flow via electromagnetic radiation. Somewhat counterintuitively for point to

point links, physical transport of inscribed mass is often energetically more efficient by many

orders of magnitude than electromagnetic broadcast. And perhaps more surprising, even in a

broadcast setting (depending on the receiver density) inscribed mass transport is still energetically

more efficient. We discuss the implications of these results for terrestrial telecommunications

networks as well as point to point and broadcast communication over great distances with loose

delay constraints.
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1 Introduction

At one time or another, every communications theorist has had the following epiphany:

Driving a truck filled with storage media (books, cd’s, tapes, etc.) across town consti-

tutes a very reliable channel with an extremely large bit rate.

My own epiphany has occurred a few times over many years, but most recently with the study of

short range high data rate channels [1–10] and mobility assisted wireless networks [11, 12] where

communications nodes only transfer data to one another when the channel is good – typically at

close range. One natural extension of this work is to not radiate electromagnetic energy at all, but

rather, to have nodes physically exchange “letters” inscribed on some medium. And from such

imaginings comes a simple question: when is it better to write than to radiate?

To begin, consider that one could easily pack ten ��� GByte laptop disk packs in a small box

and push it across a table – with a correspondingly impressive data rate of about 4.8 Tb/second.

Without much imagination, the idea can be extended to more exotic storage media. Consider a�
mm � “bouillon cube” containing information coded as single stranded RNA (such as the polio

virus). At about 1 base per nm � [13–17], each cube could store about
� ����� Petabits (

� ���	� bits)

of information. A
� � cm � volume of such material, if driven from New York to Boston in an

automobile would constitute a rate of about 
��������� Petabits/second ( 
�� � � �	� bps) – dwarfing by

about six orders of magnitude the 100 Terabit per second theoretical maximum information rate

over optical fiber [18].

Next consider the mass of
� ����� Petabits since mass will determine the amount of energy nec-

essary for transport. Again using the virus analogy, single stranded RNA has an average mass

of about 330 kDa per kilobase. A Dalton (Da) is the molecular weight of hydrogen and is about��� ����� � ������� g [19]. So, the
� � �	� kilobases implied by

� ����� Petabits would weigh �������������� � � �	�
Da. Conversion to more familiar units shows the total mass of our hypothetical

� ����� Petabit mes-

sage would be ��� ��� g. The mass information density would be

 �! ���#"�$ � � � ��� bits % kg (1)

which we will later see is about two orders of magnitude better than rough extrapolations based on

the current best micropatterning technology [20].

This impressive figure, however, may leave some room at the bottom. That is, there is no

published theoretical limit to the amount of information that can be reliably stored as ordered

mass. Thus, although Feynman argued a conservative bound of �&�'�(�'� atoms per bit [15,21], and

RNA molecules achieve densities on the order of � $ atoms per bit [17], our ) $ ����� Petabit/gram

biological “existence proof” could be overly pessimistic by one or more orders of magnitude.

Regardless, the point is that it is not hard to imagine large amounts of information being stored

reliably and compactly using very little mass.
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So, why hasn’t inscribed mass transport been exploited in modern telecommunications net-

works? There are a number of reasons, but two seemingly obvious answers spring to mind. First,

the key problem in telecommunications is energy efficient transport of information and delivering

inscribed mass from New York to Boston would seem to consume a great deal of energy. Second,

modern networks require rapid transport of information while the NY-Boston trip requires approx-

imately 3 hours by car – or a few hundred seconds ballistically. These “answers” illustrate the key

tensions which concern all telecommunications theorists:

tolerable delay

vs.

tolerable energy

vs.

tolerable throughput

In quantifying these tensions for what we will call inscribed mass channels, we will find that

under a surprising variety of circumstances they are, bit for bit, much more energy efficient than

methods based on electromagnetic radiation. Moreover, from a theoretical perspective, the cost

of writing the information into some medium can be made infinitessimally small [22–24], so the

energy savings are not necessarily diminished by adding the inscription cost. Thus, something

seemingly so primitive as hurling carved pebbles through space can require many orders of mag-

nitude less energy and support dramatically more users than isotropically broadcasting the same

information.1

And perhaps even more surprising, it is exactly that image which leads to another interesting

point. In the regime of very large distances with very loose delay requirements, we will find that

mass transport can be many more orders of magnitude more efficient than isotropic radiation. So

much so that even if directed radiation methods are used, somewhat heroic engineering, such as

very long-lived earth-sized directive apertures, is required to make radiation more efficient than

inscribed mass. That is, inscribed mass channels might be a preferred way to carry information

between specks of matter separated by the vastness of interstellar or intergalactic space.

Though such a conclusion may seem directly at odds with previous work by Cocconi and

Morrison [25] which proposed millimeter wave interstellar communications, it is exactly the as-

sumption of loose delay constraints which tips the balance strongly in favor of inscribed mass

transport. So, perhaps in addition to scouring the heavens for radio communications from other

worlds, we might also wish to more closely examine the seeming detritus which is passing, falling,

or has already fallen to earth.

1Rolf Landauer mentioned the possibility of inscription and physical transport [22], but specifically in the context
of reversible communication and did not calculate the transport energies.
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2 Preliminaries

2.1 Definitions and Problem Statement
�  : mass information density for inscribed information in bits per kilogram.

��� : bandwidth available for radiated communication in Hertz.

��� : effective receiver aperture radius in meters.

��� !��	� � : effective receiver aperture in square meters.

��
 : distance to target in meters.

��� : speed of light in meters per second.

���� : background noise energy in Watts per Hertz (Joules).

��� : message size in bits.

��� : time allowed, in excess of light-speed propagation delay, for the message to arrive.

We compare the energy required to transport � bits over distance 
 under delay constraint �

using electromagnetic radiation with bandwidth � , receiver aperture area � and receiver noise ��

to that required using inscribed mass with information density  

2.2 Empirical Values for Mass Information Density

Detailed consideration of the practicalities of rendering information as inscribed mass and hard-

ening it for transport is provided in separate work [26]. However, it is still useful to examine a

few different possible methods of storage to get an empirical feel for “practical” values of mass

information density,  , based on current technology.

At present, RNA base pair storage seems to be the most compact method for which we have an

existence proof with a mass information density as stated in the introduction of

 ������ ! ��� " � � � ��� bits/kg (2)

In comparison, as of this writing a scanning tunneling microscope (STM) can place an equivalent

of about
� � �	� bits per square inch using individual Xenon atoms on a nickel substrate [20]. The

per bit dimension is then
"
Å on a side. By somewhat arbitrarily assuming a

� ��� Å nickel buffer

between layers we obtain a bit density of
��� ���'� � ���  bits per cm � . The density of nickel (

"�� 
 g per

cm � ) will predominate owing to the relatively thick layering so that we have

 
stm

! ��� ��� � � � �	� bits/g ! ��� ��� � � � � � bits/kg (3)
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or about two orders of magnitude smaller than RNA storage.

E-beam lithography can achieve feature sizes of � nm which implies a bit density of ��� � � � �
bits per cm � . Assuming

� ��� ˚� substrate layers we then have ��� � � �	� bits per cm � . Given silicon

density of
$�� � g % cm � we have a mass information density of

 �� !�� � � � � �	� bits % cm ��� % � $�� � g % cm ��� ! ��� ��� � � � � � bits % kg (4)

– about three orders of magnitude smaller than RNA.

Current optical lithographic techniques routinely achieve � � ����� feature sizes. Assuming a

substrate thickness of
� ��� Å, this corresponds to a density of 10000 bits per � � m � � or

� � � � bits % mm � .
The silicon density of 2.6g/cm � [19] results in

 
lith

!�� � ������� �
	 % cm � � % � $ � ����% cm � � ! � �#" ��� � � �	� bits % kg (5)

or approximately six orders of magnitude smaller than RNA.

Magnetic storage density is on the order of
� �� 	 % cm � so that again, each bit is about � � � ���

on a side. Assuming a film thickness of
� ����� Å and a density similar to FeO � (about 5 times that of

water [19]) we have

 
mag

!�� � ����� ��	 % cm ��� % � ����% cm ��� ! $ ��� �
	 %�� ! $ � � � ��� bits % kg (6)

which is about seven orders of magnitude smaller than RNA

Finally, we note that volume holographic storage techniques [27] are limited to a volumetric

bit density of one bit per � � where � is the wavelength . Thus, a hologram using � ! � ����� � blue

light could in principle hold
" � � � � � bits per cubic centimeter and the mass information density,

assuming a quartz-like storage medium would be about � � � � �	� bits/kg, about nine orders of

magnitude smaller than biological. For holography using shorter wavelengths, say in the ultraviolet

range of ����� � , the density would scale by a factor of
� ����� and in the far ultraviolet ( ��� � ) by a

factor of
� ��� which is about twice the information mass density of E-beam lithography and three

orders of magnitude smaller than RNA.

Regardless, clear limits on the maximum possible density of storage using inscribed mass are

unknown. Bounds using simple quantum mechanical arguments are provided in [26].

3 From Here to There: Minimizing Particle Transport Energy

Under Delay Bounds

Here we derive lower bounds on the amount of energy necessary to drive a mass
�

from point � to

point � under some deadline � . We first assume a free particle, untroubled by external forces from
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potential fields (i.e., gravity). Though the results are well known, for continuity we re-derive them

here. Also, in keeping with a communication theory flavor, we use only standard communications

methods such as basic probability theory and Jensen’s inequality. We then consider particle motion

through potential fields and derive similar energy bounds using variational calculus.

3.1 Jensen’s Inequality

Let � � � be a non-negative real-valued function of a single variable and let � be a bounded real

random variable with mean ������� !	�
 . We also assume that ����� � � � � exists. We first note that

����� � ��
 ��� ����� � � � � (7)

and that when � is deterministic ����� � ��
 � ! ����� � � � � (8)

Next we note that for � � � convex we have via Jensen’s inequality [28, 29]

����� � � � � � � ���
 � (9)

We now use these relations to derive lower bounds on the amount of energy necessary to move

particles under delay constraints.

3.2 Free Particles

We wish to move a mass
�

over a distance 
 within time � where the only external force acting

on the particle is what we apply. We will assume an inertial frame for source and destination, an

initial mass velocity of zero and that we need not bring the mass to rest at the destination. That is,

the mass is “caught” by the destination and the only problem is for the source to deliver it on time

with minimum applied energy.

Let the particle position be � ��� � and its velocity 
 ��� � !���� �"!$#��! ! %� . Let the intrinsic energy of

the particle at velocity 
 be described by a nondecreasing convex function � ��
 � . In order for the

particle to be delivered by time � when moved through distance 
 , the average velocity must be

 %�� . Specifically,

��� 
 ��� � � !
�
�
&('
 
 ��� �*) � !+�
�! 


� (10)

Equation (10) is equivalent to an expectation of 
 ��� � over a random variable � , uniform on � ��� � � .
We seek to minimize the maximum total energy imparted to the particle under the arrival delay

constraint. So we seek a trajectory 
 ��� � such that

�-, !.0/21� �3#
����! � ��
 ��� � � (11)
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while requiring ��� 
 ��� � � !�� ' . We then note that

0/21� � #
����! � ��
 ��� � ��� 0/21� � # ����� ��
 ��� � � � (12)

and that by Jensen’s inequality

����� ��
 ��� � � � � � � �
 � (13)

with equality iff 
 ��� � is constant. Since � � � and �
 are given, ����� ��
 ��� � � � has a lower bound indepen-

dent of the specific trajectory 
 ��� � . Therefore we can absolutely minimize ����� ��
 ��� � � � by requiring

that the particle move at constant velocity. However, this choice of 
 ��� � also causes equation (12)

to be satisfied with equality. This leads to the well known result that minimum energy is expended

when the particle is launched from its origin with constant velocity 
 ��� � ! 
 %�� , ��� � ��� � � .
For particles approaching light speed we have

� total
��
 � !

� � �� ��� ���	 � (14)

However, this total energy includes the rest mass energy
� � � . The excess energy owing to velocity

is

� ��
 � ! � � ��
� �� �� � �	 � � ����
(15)

and is convex in 
 , so that the minimum applied energy is

� , ! � � ��
� �� �������� 	�� � � ����
(16)

For particles traveling much slower than light speed ( �
�� � ) we have � ��
 � ) ��
� 
 � so that

� , )
�
$ � �
 � (17)

3.3 Particles in a Potential Field

Here we introduce a field which applies force to the particle as a function of position under New-

tonian conditions. We will assume conservative (potential) fields such as gravity so that the total

energy of the particle is given by �
��� � ! � ��
 ��� � ����� � � ��� � � (18)
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where � � � � is the potential energy of the particle at position � . We seek the min max energy

�
��� �

profile which satisfies the particle arrival deadline.

As before, we form an optimization and bound it from below

�-, ! 0/21
� �3#

����!

�
��� ��� �/ 1

� � #
�
�
& '


�
��� � ) � (19)

We will then minimize the rightmost expression in equation (19) using the calculus of variations

[30]. Euler’s equation is )
) �����

�
� 
��

� �
�
� � ! � (20)

and application of the definition of

�
��� � yields�� ��� � � %� � � � � � � � ! � (21)

where %� ! ) � % ) � !.
 and
�� ! %
 .

For low speed motion, � ��
 � ! � 
 � % $ so that equation (21) becomes

� �� ! � � � � � (22)

which implies “free fall” in a potential field since � � � � � is the force on the particle at position � .

In turn, free fall implies constant energy over the particle trajectory which leads to equation (19)

being satisfied with equality. Thus, the particle should be imparted with enough initial velocity 
 
such that it reaches the destination at time � .

3.3.1 The Artillery Problem

The value of 
� depends upon the form of the potential field. For a uniform field where constant

force
�
	

is applied in an inertial frame we have

�� ! ��	
� (23)

If
	 ! ��

, then we have a standard (frictionless) artillery problem as depicted in FIGURE 1

Specifically, let � ��� � be the vertical position of the particle and � ��� � its horizontal range from

launch. Let the initial particle velocity be 
  and its angle of launch be � . We then have

� ��� � !.
  ������� � (24)

With target range 
 and deadline � we have � � � � ! � , � � � � ! � , � � � � ! � and � � � � ! 
 .

Therefore by inspection we obtain 

�
! 
 ������ � (25)
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v0

v0 cos θ

v0

0 D

t=0 t=Tt=T/2

θ
r

x(T/2)

θ

Figure 1: The Artillery Problem: a particle is fired from ��� � at ��� � with initial velocity �  and angle�
to land at position ���	� at time �
��� .

Symmetry also requires that the particle arrive as a mirror image to its launch so

$ 
 �� / 1 � ! � � (26)

where � is the gravitational acceleration. We then can write


 � !���
 ������ � � � � ��
��� / 1 � � � ! � 
 � � � �  � �$�� � ! �
 � � � � 
$ �
 � � (27)

so that the energy required is

� ! �
$ � � �
 � � � � 
$ �
 � ��� (28)

to reach a target at range 
 by deadline � . We note that one can define a “natural deadline” with

minimum transport energy by minimizing equation (28) in �
) �
) �

! �
$ � � � $ 
 �� � � $ �  � $�� � � ! � (29)

which results in

� , !
$ 

� (30)

and

� , !
�
$ � � 
 (31)

We then rewrite equation (28) as

� ! �
$ � � 


�

 �

� �
 � � � � 
$ �
 � � � (32)
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and note that �

 �

� �
 � � � � 
$ �
 � ��� !�� 

� � � � � � �

� 
�� � �
(33)

for � ��� � .

3.3.2 Escape from a Potential Field

For direct escape from a gravitational field we have� � � � � ! � � � �	� � � � � (34)

where � is the initial distance from the gravitating point mass � and  is the gravitational con-

stant. We then have �� ! � � �
� � � � � (35)

which is not amenable to closed form solution. However, once again the particle is in free fall and
�
��� � is constant. Thus, all we require is the initial amount of energy necessary (and therefore an

initial velocity 
� ) such that the particle reaches the target at the deadline.

The initial particle energy is ��
� 
 � . The potential energy of the particle at position � is

� � � � ! & �


�  ��
� ����� � )� ! �  � � �� � �� � � � (36)

so the kinetic energy of the particle at position � is

�
$ � 
 � !

�
$ � 
 � � �  � � �� � �� � � � (37)

or


�! ) �
) � ! 
 � � $ �  � �� � �� � � � (38)

Variable separability leads to

& �


�� 
 � � $ �  � �� � ���� � � ) � ! &('
 ) � ! � (39)

which we rewrite as & �


�� 
 � � ������ ���� � � � )�� !
�
�
 (40)

The integral in equation (40) can be evaluated [31] but the expression is complicated. We will later

plot � ! ��
� 
 � as a function of �
 for comparison to potential-free particles.
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4 Energy Bounds on Information Delivery

4.1 Inscribed Mass

Assuming nothing can exceed the speed of light, we define the message receipt deadline, � , as the

time allowed in excess of the propagation delay with time referenced to the common frames of our

two fixed points between which information is sent. The total delay allowed for mass transport is

therefore � ! � � 	 � � � .
Assuming some value for mass information density  , the number of bits transported is � !

�  . The energy necessary to transport mass
�

with deadline � ! � 	 � � in free space is then via

equation (16)

��� ! �
 � � 
� �� � ��� �� 	�� � � � ��

(41)

where �
�! 
� 	 � � (42)

For �
 � � we have

��� )
�
$ �  �
 � (43)

In a simple potential field at non-relativistic speeds (the artillery problem) we have via equa-

tion (28)

��� ! �
$ �  �

�
�
 � � � � 
$ �
 � ��� (44)

and if � is chosen to be the “natural deadline” of equation (30) we have

��� ! �
$ �  � � 
 (45)

As mentioned before, the more complex potential escape problem requires numerical calculation

of the transport energy. We summarize these results in TABLE 1.

4.2 Electromagnetic Transmission

If a transmitter radiates power � , a receiver at some distance 
 will capture some fraction of

the radiated power ��� !
	�� 
 � � where 	 � 
 � is defined as the energy capture coefficient of the
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Scenario Mass Transport Energy

Free space � � � � � ��
� � ����� � � � � �

Free space w/ �
 � � �� � � �
 �
Artillery �� � �

�  �
 � � ��� �� �� � � �
Artillery (min) �� � � � 


Table 1: Minimum energy necessary to deliver 	 bits in mass to a target at distance � by deadline � �� 	�
� . �� � � ' .

receiver. Assuming square law isotropic propagation loss2 we have

	�� 
 � ! �
� � 
 � (46)

where � is the effective aperture of the receiver. Assuming additive Gaussian receiver noise, the

Shannon capacity [29] in bits per second between the transmitter and receiver is

� ! ��� ��� � � � �
� � 
 � �  � � � � (47)

where �  is the background noise spectral intensity and � is the bandwidth of the transmission.

If we assume a transmission interval long enough that the usual information theoretic results for

long codes can be applied, the number of bits delivered for a transmission of duration � is

� !�� � ! � ��� ��� � � � �
� � 
 � �  � � � � (48)

We note that the time required for arrival of the complete message is � � � 	 – identical to the

inscribed mass deadline as illustrated in FIGURE 2.

Since ��� ! � � we then have

��� ! � � �  � � 
 ��
 $����� � � � (49)

Long codes imply many channel uses. That is, each bit is coded over multiple “channel uses”

where the total number of channel uses is
$ � � [29]. Thus, we might expect � � � � . But even

if not we can provide a lower bound for equation (49) based on such an asymptotic assumption.

2For higher loss exponents such as those seen in terrestrial systems, we can multiply the result by the appropriate
power of � .
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τ =D/c+T

T

radiated message

D/c

Time

0

Mass Transport

Radiation

mass delivered

Figure 2: Temporal comparison of message delivery using radiation and mass transport. � : range to target,
� : speed of light, � : radiated message duration, � : message delivery deadline.

First we rewrite equation (49) as

��� ! � �� � � 
 ��
� �
�

 $ ���� � � � (50)

and then since � �
�

 $�� � � � � � �2/ � �� ���
� �
�

 $��� � � � � ! � 1 $ (51)

we must have

��� � � �  � � 
 �� �21 $ (52)

It is important to note that although � is often interpreted simply as bandwidth, it is actually a

much more general parameter which can be defined to include any number of degrees of freedom

one might like – such as polarization, spatial diversity [32] and any others [29, 33, 34]. Thus, in

deriving a lower bound on radiated energy based on
���

� � � �
we have essentially allowed infinite

(or very large) degrees of freedom by invoking the well known limit

� /2
� ���

��� ��� � �
�� � � � � ! �

�  (53)

That is, the minimum radiated energy issue boils down to two parameters: 1) how much radiated

power is delivered to the receiver, and 2) the receiver noise temperature.
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4.3 The Radiation to Transport Energy Ratio

We define
�

, the radiation to transport energy ratio, as

� ! ���
��� (54)

and since � !��	� � where � is the receiver aperture radius, we find that for free particle relativistic

motion we have,

��� � � � � � 1 $ �  ��� � 
 � � � � �
� � 
�

� �� � �� 	�� �
�� � �� � �� 	 � � �� (55)

For �
 � � we then have ��� � � " �21 $ �  �� �
 � � 
 � � � (56)

For the artillery problem in general we have

��� �  �� �� " �21 $ � � 
 � � � �
�
 � � � � �� �� � � (57)

and for the “natural deadline” � , we have

� ,� �  ��  " � 1 $
�



� � (58)

Finally, we note once again that the radiation to transport energy ratio for the gravity escape prob-

lem, defined here as
� � , must be calculated numerically. However, we will later plot transport

energy as a function of �
 for comparison.

We summarize the results in TABLE 2.

Point to Point Links
Scenario Energy Ratio, �

Free space ( �
�� � )  ��  � " � 1 $ � � � � � � ��� �
Artillery  �� �� " �21 $ � � � � � � ��� � �� � ��� �� �� � � �

Artillery min  ��  � " �21 $ � �� �� �
Table 2: Energy ratio � to deliver 	 bits to a target at distance � by deadline � with ��
	 �

� so long as
���� � .
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4.4 Network Issues

One benefit (or liability) of electromagnetic transmission is that it can disperse through space to

multiple targets. In contrast, inscribed mass transport is intrinsically a point to point method.

Whether one is more energetically efficient than the other depends on the density of receivers.

Specifically, at range 
 the radiation to transport energy ratio
�

is the largest number of receivers

before radiation becomes more efficient than mass transport. However, there are network informa-

tion theory issues which require some care.

4.4.1 One Message, Many Receivers

If we want to send the same (shared) message to all receivers, then information theory for broad-

cast channels suggests we code the message to be received by the most distant receiver since

those closer to the transmitter will always receive a stronger signal [29]. So, the amount of en-

ergy necessary to disperse the shared message to all receivers with aperture � within a radius �
electromagnetically is

��� � � �� � � � �� �21 $ (59)

To evaluate the energy required for mass transport, we could hold the deadline � constant –

this would favor mass transport since destinations closer to the source could travel more slowly.

However, the reduction in energy for variable mass transport velocity is only about ����� , and such

velocity variation will complicate evaluation of scenarios where the initial velocity must be larger

than some value (i.e., escape velocity). So we opt to use the slightly less optimal fixed particle

speed assumption here and thus variable arrival times.

Therefore, the amount of energy necessary to deliver the shared message of � bits to all re-

ceivers in a volume of radius � using inscribed mass is the sum of the individual energies necessary

for each receiver. The expected energy assuming a Poisson density � of receivers, using the result

in TABLE 1, is ���� ! ��� � � � � � � � � � � � ! $ � � �  � �� �
 � (60)

where we have assumed the same velocity �
�� �
� for each particle. If we then define

��� � � � as

the radiation to mass energy ratio for a spherical volume of radius � and again define the aperture

area as � ! � � � we have �	� � � � � � �21 $
�

 �� 
�

�
� � �

�
�
 � (61)

For the artillery problem the receivers are distributed in a disc of radius � with Poisson density

� � . Here we assume that particle velocity can vary with range to target since, unlike the free space
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problem, it affords no complications later. We therefore have

���� ! �
$ � � �  & ���

 ) � & �


� � �
� � � � � �$ � � � � ) � !�� � � �  � � � �� � �� � � �

$ � � �$ � � � (62)

so that after defining �
 ! �
� as the maximum average forward particle velocity (associated with

particles at radius � ) we have

��� � � � � � � �21 $
� �  �� � � � �

� �
�

�
 � � ��
� � ��� � � (63)

4.4.2 Different Messages, Different Receivers

Now suppose that a different message must be sent to each receiver and that each of these messages

is the same size. Let the distance to receiver
�

be ��� and assume that ���	� �
� � � � ! � � $ � � � � � . The

transmitter has power budget � which must be split � ways. Let ��� be the fraction of power

allocated for receiver
�

so that  � ��� ! �
. Applying information theory for the Gaussian broadcast

channel [29] provides that the rate ��� seen by user
�

satisfies

����� ��� ��� �
� ��� � 	�� 
 � � ���� � � � � � � 	�� 
 � ��� � �  � � � ! ��� ��� �

� ��� � ���� � � � � � � � � � � � �
(64)

where � � ! � ���� � ��� # and we note that � � increases in
�
.

To understand rate bounds we can set � � ! � � and solve for appropriate ���
� ! � ��� ��� �

� ��� � ���� � � � � � � � � � � � �
(65)

which we rewrite as
� �� ! �� ��� � ����� � � � � � (66)

where
� � $ �� � � �

. We can then rewrite equation (66) in matrix form as

�
��� !

 !!!!!!!
"

� % � � � #�#�# #�#�# � �
� � % � � � ...
...

. . . . . . . . .
...

...
. . .

� % � � �
� #�#�#$#�#�# � � % �

%'&&&&&&&
(
) (67)
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where ��� ! � � � �
#�#�# � � � � and )

�
! � � � � #�#�# � � � � . We then have

) ! � ��

 !!!!!!!!!!
"

� % � � � � � � � #�#�# � � � � � � ��� � � � � � � ���
� . . . . . . . . . � � � � � � ���
...

. . . . . . . . . . . .
...

...
. . . . . . . . . � � � � �

...
. . . . . .

�
� #�#�# #�#�# #�#�# � � % �

%'&&&&&&&&&&
(
� (68)

Since
�

and all the � � are non-negative, all the ��� will also be non-negative. Since we seek the

energy ��� necessary to broadcast � bits independently to each location, we must have

��� ! � � !����
� � ) � � ! � � � � ��

 !!!!!!!!!!
"

� % � � � � � � � #�#�# � � � � � � ��� � � � � � � ���
� . . . . . . . . . � � � � � � ���
...

. . . . . . . . . . . .
...

...
. . . . . . . . . � � � � �

...
. . . . . .

�
� #�#�# #�#�# #�#�# � � % �

% &&&&&&&&&&
(
�
(69)

where � �� is an � -dimensional vector all of whose entries are
�
. The reader may wish to verify

that equation (69) is equivalent to equation (50) when � ! �
.

We can rewrite equation (69) as

��� ! � �  � � � �� �
��

 !!!!!!!!!!
"

� % � � � � � � � #�#�# � � � � � � ��� � � � � � � ���
� . . . . . . . . . � � � � � � ���
...

. . . . . . . . . . . .
...

...
. . . . . . . . . � � � � �

...
. . . . . .

�
� #�#�# #�#�# #�#�# � � % �

%'&&&&&&&&&&
(

 !!
"

�� � ��� #
...

�� � ��� #
%'&&
( (70)

From equation (51) we know that

� � �
� !�� $ ���� � � � � �� � �21 $ (71)
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So, we can lower bound � � by taking �� ��� � and hence
� � � to obtain

��� � � �� �21 $ � ��
 !!!!
"
� � #�#�# �
� . . .

...
...

. . .
...

� #�#�# � �

% &&&&
(
 !!
"

�� � � � #
...

�� � � � #
%'&&
( ! � � 1 $ �  �� � � �

�	�� 
 � � (72)

Equation (72) implies indirectly that � � is minimum when each receiver has its own channel,

independent of (orthogonal to) the others – essentially a collection of � independent point to point

channels. This allows us to calculate the expected minimum energy required for multipoint distinct

message radiation as

���� � $ � � � 1 $ � 
& � � �


& ���


& �

� � � �
� � � ) � ) ��� � ��� ) � ! � � � �21 $ � �� � � �� � � (73)

We can compare this directly to the inherently multipoint mass transport energy of equation (60)

to obtain �	� �  ����� $ �� � 1
$ �

�
�
 �
� �
� � (74)

For the artillery problem, we integrate over the disc of radius � and have

���� � � � � �21 $ �  & ���


& �

� � � �
� � ) � ) � ! � � " �21 $ � � � � �� � �� � � (75)

so that using equation (62) we get

��� �  �� �� " �21 $ � � ���� � �
�
 �

�
� � ��

� � ��� � � � (76)

We summarize the results in TABLE 3.

Multiple Messages
Sphere Disc

Shared Message
 � ���
� � � �	��
 �� � �� � � ��� �  � ���

�� � � � ����
 �� � �� � ��� � �� � �� ��� ��� � � �
Distinct Messages  �� �� ����

�21 $ � � � � � � ��� �  �� �� " �21 $ � � � � � � ��� � �� � �� ��� ��� � � �
Table 3: Radiation to transport energy ratio for delivery of 	 bits to each of multiple targets in a sphere/disc
of radius � . We define �� ����� � � � .
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4.5 Directed Radiation

We have so far ignored the fact that electromagnetic radiation can be directed toward targets

through means of a properly constructed antenna. Here we discuss simple physical limits on such

directivity. For continuity, the development is included in APPENDIX A and can be found in any

elementary text on electromagnetic propagation such as [35].

So, consider a transmit aperture of radius � , a receive aperture of radius � and a distance

between them of 
 . Further, assume that the radiation has wavelength � . The fraction of energy

captured is given by

 ! �
� � � �


 � � � (77)

where we restrict  � �
since the captured power cannot exceed the transmitted power.

We can now ask how the isotropic radiation results compare to directed radiation. For simplic-

ity will only consider point to point links. First, we remove the isotropic energy capture factor of� �
� � � from the results of TABLE 1 and add the gain factor  from equation (77) to obtain TABLE 4

for point to point links.

Directed Radiation
Scenario Energy Ratio, �

Free space ( �
�� � )
�� �� � $ �21 $ � ��� �Artillery

�� � �� $ �21 $ � ����� �� � � � �� �� � � �
Artillery min

�� �  � $ � 1 $ � �� ��
Table 4: Energy ratio � to deliver 	 bits to a target at distance � by deadline � assuming fraction �
(equation (77)) of all radiated energy is captured by the receiver. ���	 �

� so long as �� � � .

5 Results

5.1 Gravitational Escape

First we consider particles which must overcome a potential field to reach the target. Since cal-

culating the minimum energy under a given deadline is difficult (see equation (40)) we instead

calculate �
 as a function 
 � and then plot particle energy ��
� 
 � as a function of �
 . This allows

comparison with similar plots for potential-free particles. Furthermore, the differences in energy

will allow us to calculate energy ratios (
�

) by direct rescaling of previous results for potential-free

particles.

Thus, in FIGURE 3 we plot energy per gigabit versus �
 for a particle launched from the earth’s

surface toward a distant target and also for a particle launched from earth orbital distance from
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the sun, but not on the earth’s surface. For comparison, we also plot energy per gigabit for a

potential free particle on the same graph. We see that the potential and potential-free curves differ
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Figure 3: Energy per Gigabit in joules versus �� for particles which must overcome earth surface gravitation,
sun gravitation (from earth orbital distance) and a potential-free particle. Mass information density � ��������	�
� � ������ ��������� .

significantly only when �
 is near or below the relevant escape velocity – ) ����� � %�� from the earth

and ) � $�� � %�� for the sun from earth orbital distance. Thus, an initial velocity above
� � � � � will

result in roughly the same values of energy ratio
�

as for free particles. For initial velocities of

��� � � � � � and above, free and gravitationally bound particles will have virtually indistinguishable�
.

5.2 Point-to-Point Link Comparisons

Here we plot the energy ratio
�

for point to point links first assuming free space propagation over

large distances (interstellar) and then terrestrial conditions. The primary differences between these

two scenarios are the receiver temperatures and the ratio of target range 
 to aperture radius � .

For terrestrial systems we assume a temperature of ������� K and range to aperture ratios between� ��� and
� � � corresponding to a receiver aperture on the order of � ! � � � m and ranges up to 10

kilometers. For interstellar conditions we use a receiver temperature of ��� K and range to aperture

ratios above
��� � " � � � � , corresponding to a receiver with aperture cross section as large as the earth

at one lightyear. For an aperture the size of the Arecibo radio telescope dish ( ) � ��� � radius), the

range to aperture ratio corresponding to one lightyear is � � � � � � � � .
In all cases, inscribed mass channels are many orders of magnitude more efficient than radiative

channels. For example, using earth-sized apertures, we see in FIGURE 4 that for a mean speed

of �
 ! � ����� � , inscribed mass requires
� � �  less energy than electromagnetic radiation at a range

of one lightyear. At ten thousand lightyears, this gain is
� ���	� . For an Arecibo-sized aperture, the
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energy gain of mass over radiation is a factor of about
� � �	� at one lightyear and

� ��� � at ten thousand

lightyears as may be seen in FIGURE 5. These gains are, for lack of a better word, astronomical.

For terrestrial systems, the gains are not astronomical, but still impressive. In FIGURE 6 we

have gains of approximately � � � ��� at range ten meters, and at ten kilometers, � � � � � . The

delivery delays associated with these distances are
��� � and � � seconds, respectively. We also note

that if more typical propagation loss characteristics ( 
 � ) were used [35], the gains of inscribed

mass over radiation would be much higher. For example, instead of � � � � � at ten kilometers we

would have � � � ����� , and at ten meters, we would gain a factor of one hundred in
�

.

Thus, for reasonable receiver aperture sizes and dense but empirically possible mass informa-

tion density, inscribed mass transport is much more efficient than isotropic radiation over point to

point links when some delay can be tolerated.
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Figure 4: Energy ratio for free space particles versus mean particle speed using equation (55). The receiver
is assumed to have an earth-sized aperture so that the range to aperture radius ratio at one lightyear is��� � � � � � � . The bit per mass density is � � ����� � � � ��� bit/kg and the receiver temperature

� � K. Notice that
relativistic effects do not emerge until �� is very close to � .
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Figure 5: Energy ratio for free space particles versus mean particle speed using equation (55). The re-
ceiver is assumed to have an Arecibo-sized aperture (

��� ���
) so that the range to aperture radius ratio at one

lightyear is � � � � � � � � . The bit per mass density is � � ����� � � � ��� bit/kg and the receiver temperature
� � K.

Notice that relativistic effects do not emerge until �� is very close to � .
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Figure 6: Energy ratio for artillery problem with a receiver aperture of � � ��� � m and distance � in meters
versus mean particle speed using equation (57). Mass bit density � � ����� � � � ��� bit/kg, receiver temperature

� � � � K. � � propagation loss assumed. Multiply results by � � for terrestrial propagation over a ground
plane [35].
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5.3 Multiple Destinations: Shared and Distinct Message Comparisons

Here we consider the energy ratio
�

when the same message is to be delivered everywhere (shared)

and when different messages are intended for different destinations (distinct). We consider in-

terstellar distances with two aperture sizes (Earth-sized and Arecibo-sized) as well as terrestrial

distances with an aperture of � ! � � � � .

As can be seen by comparing FIGURES 4 and 5 with FIGURES 7 and 8, radiation does confer

some benefit for broadcast, but is still insufficient to completely overcome the inscribed mass

advantage. Even at very large distances such as ten thousand lightyears where there are many
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Figure 7: Energy ratio for shared message problem in free space for an earth-sized aperture radius � and
interstellar distances � using equation (61). One lightyear corresponds to �� � ��� ��� � � � � . The bits per
mass density is � � ����� � � � ��� bit/kg, the receiver temperature is

� � K and the stellar density is assumed to
be that of the Milky Way, � � � � � �
� � ��� � LY � .
potential destinations to be contacted, for �
 ! � ����� � and earth-sized apertures, inscribed mass is

about � � � ��� times more efficient than isotropic radiation as compared to a factor of
� � �	� for point

to point communication. Likewise, for smaller apertures at the same distance, we have ��� � � �	�
versus

� ��� � . Regardless, these are still very large numbers.

For terrestrial systems we see similar behavior in FIGURE 9 which essentially reverses the

maximum gain profile as a function of coverage distance seen in FIGURE 6. However, even at ten

kilometers, the advantage of inscribed mass over isotropic radiation is still � � � � � � � , an advantage

which would still hold even if the receiver density were one per square meter instead of
��� ��� � � � ���

per square meter. As with point to point communications, we note that if the typical radiative loss

of 
 � for terrestrial systems were used, the inscribed mass gains would be even higher.

In FIGURE 10 we plot energy ratios for distinct messages and as one might expect, the benefit

conferred by radiation when the same message is sent to all receivers all but vanishes. At one

lightyear and �
�! � ����� � , inscribed mass is about
� � �  times more efficient than isotropic radiation
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Figure 8: Energy ratio for shared message problem in free space for an Arecibo-sized aperture radius �
and interstellar distances � using equation (61). One lightyear corresponds to � � � � � � � � � � � . The bits per
mass density is � � ����� � � � ��� bit/kg, the receiver temperature is

� � K and the stellar density is assumed to
be that of the Milky Way, � � � � � �
� � ��� � LY � .
and at ten thousand lightyears, the advantage is about

� � �	� – both almost identical to the point

to point advantage seen in FIGURE 4. Similar behavior is seen by comparing FIGURE 11 and

FIGURE 5 and also for terrestrial systems by comparing FIGURE 6 and FIGURE 12. We note

again that mass would confer even more advantage had more typical 
 � propagation loss been

assumed over the radiative channel.
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Figure 9: Energy ratio for shared message artillery problem with a receiver aperture of � � ��� �
m and

coverage distance � in meters versus mean particle speed using equation (63). The bits per mass density is
� � ����� � � � ��� bit/kg, the receiver temperature

� � � � K, and the receiver density was taken as
��� � � � � � ��� � m � ,

or one user every � � ����� � . � � propagation loss assumed. Multiply results by � � for terrestrial propagation
over a ground plane [35].
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Figure 10: Energy ratio for distinct message problem in free space for an earth-sized aperture radius � and
interstellar distances � using equation (74). One lightyear corresponds to �� � ��� ��� � � � � . The bits per
mass density is � � ����� � � � ��� bit/kg, the receiver temperature is

� � K and the stellar density is assumed to
be that of the Milky Way, � � � � � �
� � ��� � LY � .
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Figure 11: Energy ratio for distinct message problem in free space for an Arecibo-sized aperture radius �
and interstellar distances � using equation (74). One lightyear corresponds to � � � � � � � � � � � . The bits per
mass density is � � ����� � � � ��� bit/kg, the receiver temperature is

� � K and the stellar density is assumed to
be that of the Milky Way, � � � � � �
� � ��� � LY � .
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Figure 12: Energy ratio for the distinct message artillery problem with a receiver aperture of � � ��� � m and
coverage distance � in meters versus mean particle speed using equation (76). The bits per mass density is
� � ����� � � � ��� bit/kg, the receiver temperature

� � � � K, and the receiver density was taken as
��� � � � � � ��� � m � ,

or one user every � � ����� � . � � propagation loss assumed. Multiply results by � � for terrestrial propagation
over a ground plane [35].
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5.4 Directed Radiation and the Critical �
Suppose all the radiated energy is captured by the receiver so that  ! �

in equation (77). We

can then ask what value of mass information density  makes mass transport more efficient – the

critical value of  such that
� � �

. We note that the result will be a max min bound for  since

it may not be possible to achieve  ! �
for given wavelengths, aperture sizes and distances.

As before, for the terrestrial system we will assume a receiver temperature of ������� K and for the

interstellar receiver, � � K. We then have

 
terr

write��
radiate

��� � � � � � � � 
 (78)

and

 
stel

write��
radiate

��� ��� � � � � � �
 � (79)

For 
 ! �
m,  � ��� � � � ��� � will suffice to make mass more efficient. For 
 ! � ��� m we

have  � ��� � � � � � � bits/kg. Both these figures lie within our empirical “existence proofs” for mass

information densities. Thus, for 
 � � ��� m we can say that terrestrial inscribed mass channels are

always more efficient than radiative channels for empirically observed mass information densities,

and that this advantage grows inversely with the distance between source and destination. The

delay to be tolerated is � $ 
 %�� ! � � � ��� 
 which seems not too onerous for most terrestrial

distances.

In contrast, for interstellar transmission at reasonable speeds ( �
 � � ��� � � ), we must have  ���� ����� � ��� � bits/kg which is about seven orders of magnitude larger than our largest empirical  .

So, if the radiated energy can be perfectly focused at the intended destination, radiative channels

are much more efficient than inscribed mass channels even using the most dense storage medium

we know.

However, it may not always be possible to focus all radiated energy on the destination receiver.

So let us refine these  bounds by considering what is possible given receiver and transmitter

apertures. We multiply equation (78) and equation (79) by  from equation (77) (assuming  � �
)

to obtain

 
terr

write��
radiate

� � $ ��� � � �  � � � �

 � � (80)
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and

 
stel

write��
radiate

� � ����� � � � � �
 � � � � �

 � � � (81)

For the terrestrial system we will assume receive and transmit apertures of radius � � � m (hand-

held devices) and
�
m (typical of base station transmitters) and a wavelength of � � ��� cm correspond-

ing to a transmission frequency of � � � GHz (middle U-NII band [36]). For interstellar systems we

will consider Arecibo-sized (150m radius) and Earth-sized ( � � � " � � � � m radius) apertures at the

receiver and transmitter and a somewhat arbitrary wavelength of � ! � �
m in the infrared range.

Corresponding critical  values are given in TABLE 5.

We see that terrestrial inscribed mass channels can be readily made more efficient than radiative

channels for all values of 
 assuming reasonable apertures and mass information densities greater

than
��� ��� � � ��� � bits % kg. Likewise we see that for large (earth-sized) apertures it would be difficult

to make inscribed mass channels more efficient than radiative ones up to 
 ! � � � LY since mass

escape from the solar system requires average speeds on the order of �
�! � ����� � . However, for less

heroic apertures (Arecibo-sized), inscribed mass channels can readily be made more efficient than

radiative channels.

Critical � Values� � ��� m
� � ������� m��� �	� � m

��� � m
��� �	� � m

�
� � m��� �	� � m
��� ����� � � �	� ��� ��� � � ���  ��� ����� � � �	� ��� ��� � � � ����� � m
��� ����� � � �  ��� ��� � � � � � ��� ����� � � ��� ��� ��� � � � �	�� � � LY

� � ����� LY��� ����� m
�
��� ������� ����� m ��� ����� m

����� ������� ����� m�� ����� m
$ � ����� � � �  �
 � � � ��� � � � �	� �
 � $ ��� �
 � � � ��� � � � � � �
 ������ ������� ����� m � � ����� � � �	� �
 � ��� ��� � � ��� � �
 � � � ����� � � � � �
 � "�� ��� � � ���  �
 �

Table 5: TOP: Critical � for  � � � � � cm (
� � �

GHz U-NII band) and receiver/transmitter apertures of!#" � � ��� � � " � �
. BOTTOM: Critical � for � � �

LY
" � � � LY,  � � � � � � and receiver/transmitter

apertures of
!#" � � ��� ��� " � � � �	� � � � � . Source to destination distance � as shown.

6 Discussion and Conclusion

In the previous sections we have seen that inscribed mass channels can be many many orders of

magnitude more efficient than channels which use electromagnetic radiation – even when assump-

tions are made which favor the radiative channel such as large bandwidth (
� �

�
� �

) as well as
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best case 
 � propagation loss in terrestrial systems. The only situation where it might be difficult

to make inscribed mass transport more efficient are for what seem heroically large (earth-sized)

receive and transmit apertures. Furthermore, from a theoretical perspective, the energy cost of

transferring local information to inscribed mass can be made as small as necessary so that no en-

ergy penalty need be paid for the inscription process [22–24]. So, in what follows, we will simply

assume that inscribed mass is the more efficient method of information transport when delay can

be tolerated, and pursue some ramifications of that assumption.

6.1 Size Limits for Radiated Messages Under Bandwidth Constraints

Following equation (51), let us define a radiative energy penalty

� ! ��21 $
 $ �� � � � (82)

which is plotted in FIGURE 13. We see immediately that in order for the bound of equation (51)

10
-2

10
-1

10
0

10
1

TW/B
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

χ

Figure 13: Energy penalty � plotted as a function of � � � �

� . � ��� � � �
.

to be tight, we must have
� �

� � �
.

For terrestrial transport with delays associated with minimum energy mass transport ( � !
� $ 
 %���) � � � ��� 
 ) we must therefore require that

� � � � � � � � 
 (83)

For � ! � ��� MHz, the width of each U-NII [36] band in the � GHz range and distances of one

and ten thousand meters, we have � � � � Mbit and � ��� � � Gbit respectively. Radiated messages

much larger than this will incur an exponentially large energy penalty as seen in FIGURE 13. For

instance, with
� �

�
! � � � and � � � � , the radiated energy penalties are � ! � � � � � and � ! ���#" � � � � � �

respectively.
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For interstellar and intergalactic systems, even for small bandwidths � , the associated delays

make it difficult to imagine that
� �

� will not be greater than 1. However, following through on the

analysis, we see that for a delay of 100M years ( � � � � � � � �	� seconds) and a bandwidth of
� ��� MHz,

radiated messages much larger than � � � ��� � ��� � bits would incur an energy penalty.

6.2 Inscribed Mass and Wireless Ad Hoc Networks

As mentioned in the introduction, this study of inscribed mass channels was stimulated by recent

work on wireless mobile ad hoc networks where nodes communicate only when near one an-

other [11] and therefore wait until good channels arise [12]. Similarly, Gupta and Kumar [37] have

shown that in fixed wireless ad hoc networks, the connection graph should be planar – which also

implies nearest neighbor communication. Regardless, for all such networks, mobile and fixed, the

nearest neighbor rule is a good balance between the strong interference but reduced multihop de-

lay produced by long range transmission, and the lower interference but increased multihop delay

produced by short range transmissions. That is, wireless ad hoc networks are generally interfer-

ence limited structures and since interference limits throughput, short range isotropic radiation is

favored.

Now harkening back to the introduction, suppose nodes simply exchanged messages inscribed

on some medium when they were in proximity to one another. We have already seen that such

transport, surprisingly enough, can be much more energy efficient than radiated messages. But in

addition, owing to the compactness of inscribed mass, one could also argue that such communica-

tions could be essentially interference-free with at most moderate particle launch scheduling. So,

following this line of thought, let us obtain operating characteristics for such a network as a func-

tion of the number of nodes � , the message size � and the delay � . We define � as the throughput

per node and � as the mean message delay.

In regular planar networks under uniform load, the throughput varies inversely with � � , where
� is the number of nodes since the mean number of hops (mean internodal distance) a message

must take between source and destination goes as � � [38]. So, for simplicity let us assume a

uniform network such as a square or hexagonal grid.

Now, ignoring all the practical concerns associated with mass transport such as the process by

which mass packets are read and written, the requirement for ballistic paths between nodes and the

fact that minimum energies were calculated for particles in vacuum, suppose nodes are separated

by some typical distance 
 such that the minimum energy mass transport delay for inscribed mass

is � . Assuming incoming mass packets could be read/written by nodes in a small fraction of � , the

mean delay would be ��� � � � . The throughput seen by each node would then be ��� �'�� � .

Now suppose, as is typical in ad hoc network problems, we want to hold throughput fixed as
� increases. We see that � need only increase as � � . And since � �  �� � where � is the typical

dimension of the inscribed mass packet, we see that � � �
�	 so mass packet sizes would grow very

slowly with network size.
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As a specific example, consider a network with � ! � ��� nodes arranged in a cartesian grid as

shown in FIGURE 14 with a
�
km separation between adjacent nodes. For maximum

�
transport,

Figure 14: Manhattan street network with � � � � �
nodes. Mean internodal distance (graph theoretic

sense) is �� � � � � hops.

the delay between nodes would be
� � � � sec and the energy efficiency would be

� ) � � � � � for 
 �
propagation and � � � � � � for more typical 
 � propagation. The mean number of hops between

nodes is
�� ! � � � so that the average message delay is about 
 � sec. With a

�
mm � mass packet

at a density of one bit per nm � , the per user throughput would be
� � �	� bits % � � � � � sec � � � � � !

��� ��� � � � � � bits/sec. This rate is about
� ��� times the theoretical capacity of optical fiber [18].

If we increased � by a factor of
� ��� to � ! � ��� by increasing the density of nodes, the nodes

would be
� ��� m apart, the internodal delivery delay between nearest neighbors would be � � � $ sec

and the efficiency
� ) � � � ��� (or � � � ��� � with 
 � propagation). The mean number of hops

between nodes is
�� ! ��� � � so that the average message delay is about ����� sec and the per user

throughput
� � �	� bits % � � � � $ sec � ��� � � � ! � � � � � � �	� bits/sec – ��� times the capacity of fiber.

We note that in both cases, substantial mean delay improvements could be had by simply

increasing the particle speed, albeit at some loss in energy efficiency relative radiation. However,

particle speeds well in excess of typical rifle muzzle velocities (
� � � m/s) still provide many orders

of magnitude energy savings over radiation for the distance range considered, so increasing average

particle speed by a factor of
� � would be not be unthinkable.

In addition, planar networks are well known to have poor multihop performance as compared

to networks which allow longer range links or even random networks [38–40]. For example, the

mean number of hops in our network of � ! � � � nodes decreases from
�� ! ��� � � to

�� ! � � � if

links between nodes are made randomly. One can also randomly augment regular planar graphs
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with “tunnels” [40]. Adding a randomly directed link to each node with a probability of � � ���
yields

�� ) � � for a grid network of
� ��� . The per user throughput would thus go up by a factor

of about � and were link transit times held constant by increasing the speed of particles on longer

distance links (at some tolerable penalty in
�

), the mean delay would decrease by a factor of �
as well, or to ��� sec for the

� � � node network. The effect of such random networks and tunnels is

more prominent in larger networks since randomly directed links rapidly push the mean internodal

distance down toward the Moore bound [41]

�� �
��
� �  ��� �

��
� �  � � !

� � �
� � � � � �

��
� �  ��� � (84)

where
�

is the average number of links per node and the number of nodes is � !��	�	
 � � �� � � .

For example, in a ����� ������� grid network, without random links
�� ! $ � � while with � �

random links
�� ! $ � . For a

� ����� � � ����� grid
�� goes from ����� to ��� with a similar addition of

random links. The comparable completely random networks of
� ��������� and

� � � nodes have
�� ) 


(Moore bound � � � ��� ) and
�� ) � � (Moore bound � "�� ��� ) respectively. 3

We again note that a number of critical technical issues have clearly been ignored, including

rapid message insertion/extraction for mass packets, ballistic line of site between transceivers and

transport frictional losses. However, the large energy efficiencies over radiation suggest that com-

pensating for frictional losses and possible provision for alternate (non-ballistic) transport would

not change the answers very much. Likewise, the potential to achieve throughputs per user which

far exceed the theoretical capacity of optical fiber – through the exchange of what amounts to

grains of sand (or sugar cubes for less dense media) – might merit a more thorough and practical

investigation of rapid mass incription and readout.

6.3 Transport Delays for Terrestrial, Interstellar and Intergalactic Mass

Transport

For terrestrial systems, the optimum delay using inscribed mass transport is given by equation (30):

� , ) � � � � � 
 . For 
 ranging from one meter to ten kilometers we have a range of ����� msec to

� � sec which seem reasonable if delay can be tolerated.

For interstellar mass delivery even at high speed, transport delays can easily be geological

in scale. Thus, in FIGURE 15 we provide a plot of message transport delay versus distance in

lightyears for different fractions of light speed and place it explicitly in a geological context. We

note that the solar system is on the order of four billion years old and the visible universe is on the

order of thirteen billion years old. So, limiting delivery delays to some fraction of the earth’s age

3The use of such long range random links is only possible owing to the assumption of non-interference between
particles in transit and that the transport energy increases only linearly in � . Where possible, such addition of random
long range links would be equally useful in raising the throughput of RF ad hoc networks.
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Figure 15: Message transport delay versus distance for different transport velocities. Approximate ages of
human civilization, earth and the visible universe shown for reference.

(say 1 billion years) seems reasonable. For distances within the Milky Way (
� ����� LY diameter) a

transport speed of �
 ! � ����� � allows delivery within 100M years. Local extra-galactic messaging

( ) � � � LY) at �
 ! � ����� � would result in delays comparable to the age of the visible universe, so

perhaps we would have to assume �
 ! � � � � � . We note that although increased velocity reduces the

efficiency of inscribed mass transport, the greatly increased distance more than makes up for this

loss. Specifically, by equation (81), increasing 
 by a factor of
� ����� while increasing �
 by a factor

of
� � results in an overall gain for inscribed mass efficiency by � � ��� .

6.4 An Epiphany Revisited

It is interesting (or at least amusing) to revisit the “media in a truck” scenario mentioned in the

introduction to see where intuition breaks down. Burning a gallon of gasoline liberates about��� $ � � ��� Joules [42, pp.317]. A not terribly fuel efficient automobile gets
$ � miles to the gallon, so

the hypothetical N.Y.C.–Boston trip would consume about
� � gallons or

��� $ � � � � Joules. Isotropic

radiation of information over the
$ ��� mile ! � $ � km distance consumes at least �  � � � �� �21 $ by

��� � � �  � �	
 �� �21 $ �
(85)

which assuming a
�
m � aperture and a ����� � K receiver temperature is � � � � � � � � Joules/bit. Allowing

for a more realistic 
 � propagation loss, the energy necessary per bit is ��� " Joules. Thus, with an

energy budget of
��� $ � � � � joules, either � � $ � � � � ��� bits or � � � � Mbits could be delivered via

radiation depending on the propagation constant in force. The critical payload in kilograms for

inscribed mass transport to equal that possible with radiation would then be � � $ � � � � ��� %�� kg or

� � � � � � � � %�� kg. Thus, for any of the empirical mass information densities described in section 2.2,
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driving inscribed mass between New York City and Boston is indeed much more energy efficient

for a variety of storage media.

As specific examples, for 
 � propagation with the most dense storage media, we would need

only � � $ � � � � ��� % ���#" � � � ����� ! � ��� � grams to equal the energy efficiency of radiation. However,

the same amount of information using media such as CD’s, diskpacks, tapes and the like would

be far too massive to transport. With 
 � propagation, very crude media could be used such as

20-pound paper with a 1000 dot per inch black and white laser printer. Specifically, a 500 sheet

ream of 20-pound paper has dimensions
"�� � � � � ��� � � � $ � � and mass of roughly

$�� � $ kg. One sheet

therefore weighs about � � ��� � � ����� kg. A single sheet can hold � � ��� � � � � dots (bits) for a mass

information density of

� paper ) $ � � � � � �  bits % kg (86)

Thus, only
��� ��
�� � � � � kg – a small fraction of a sheet – would need to be transported to be more

efficient than radiation. Repeating the same calculations for a distance
� ��� times closer (

$
miles)

we have � � $ �(� � � �	� % � kg or � � � � � � � � � % � kg. To be as efficient as 
 � propagation radiation would

require very dense storage media, and with 
 � tapes or disk packs as opposed to paper would be

necessary.

Thus, for 
 � propagation, the epiphany is real – driving a truck across town is more efficient

than electromagnetic broadcast. However, for 
 � or guided wave communications, physical trans-

port using typical storage media such as disks and tape is much less efficient than radiation.

6.5 Open Issues for Interstellar Channels

We have completely ignored the channel characteristics for inscribed mass by essentially assuming

that what is sent arrives intact. For terrestrial systems, this is probably not a bad assumption.

However, for interstellar transport, a mass packet would be subject to a variety of high energy

insults for a long period of time. This issue is important and the subject of ongoing work [26].

However, we note that the relative efficiency of inscribed mass can be at times so enormous, that

incredibly high error rates could be tolerated using simple redundancy codes, by sending large

numbers of separate messages, or even by encasing the message in a hardened transport carrier.

Nonetheless, the effect of insults to the information integrity of mass packets needs investigating.

We have also skirted the issue of what sort of messages one might want to send, how they might

be detected or where they might be sent [43–46]. The large delays associated with interstellar travel

and the seeming fragility of species to cosmic insults suggests that messages should be constructed

“for posterity” as opposed to for initiating a chat. One might also think of “colonization” as a goal

as well [47]. In both regards, one ostensible virtue of inscribed mass channels is that once the

message arrives, it is persistent as compared to electromagnetic radiation which is transient and

thus must be sent repeatedly in order to assure the message is received. Of course, constructing

mass packets to be hearty, easily detected and/or self replicative seems well outside our current
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engineering ken, but does offer interesting questions for SETI-like lines of inquiry.



Rose: Write or Radiate 35

A Antenna Directivity

Consider a transmit aperture of size � as in FIGURE 16. Let the field intensity and phase in the

aperture be given by the complex quantity � � � � and assume a frequency of
$ � � 	 . Modeling each

point in space as a point source we can obtain the field distant from the aperture as approximately

the fourier transform of the aperture field.

xL/2
target

θ

−L/2

D

E(x)

Figure 16: Calculation of far field from aperture of size
!

.

The distance from point � in the aperture to the far field target is � � 
 � ��� � � � � � � � 
 � /21 � � � � � � � .
Assuming a wavelength � ! � % � 	 we then have

� � � � ! & � � �
� � � �

� � � �
� � 
 � ��� � � � � � � � 
 � /21 � � � � � � � � � ���� � � �����
	�� # � � �"� � �	�� 
 � # � � ��� � ) � (87)

We have

� � 
 � ��� � � � � � � � 
 � /21 � � ��� � � � ! 
 � � � $ �

 � /21 � �  �


 � � � � � � ) 
�� � � $ �

 � /21 ��� � � � (88)

since we assume � � � . We then have

� � � � ) & � � �
� � � �

� � � �

 � �� $ �� � /21 � � � � � � � ��� �� � � ��� �� 	�� 
 � � ��� � ) � )

�

 � � ��� �� & � � �

� � � �
� � � � � � � ���� � 	�� 
 � ) �

(89)

which is the Fourier transform of � � � � evaluated at 	�� 
 �� .

Now let us consider the far field resolution by setting � � � � ! �
in the aperture (plane wave).

We then have

� � � � ! �

 � � ��� �� �

� / 1 � � 	�� 
 ��� � 	�� 
 �� (90)

A rough measure of the resolution is the distance between the first zero crossings of � � � � where


���� of the beam energy is concentrated. So first we set

�
�
� /21 � ! �

(91)
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to obtain � /21 � ! �
�

(92)

The beam width at the target is then � ! $ 
 � / 1 � ! $ 
 �
�

(93)

We can now compute the fraction of power captured by a receive aperture of radius � at dis-

tance 
 as

 ! � � �
� � � � �� � �

! �
� � � �


 � � � (94)

and note that we must restrict  � �
.
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