
How Well Can We Know A MIMO Channel?

1 Introduction

Wireless channels are notorious for their spatiotemporal variation – so much so, that the usual
recourse is to assume stochastic models [1–3] and devise signaling methods which work well
under uncertainty [4–6]. This state of affairs is especially frustrating for multiple input multi-
ple output (MIMO) channels because of the large potential gains possible were only the chan-
nel well known [4, 7–11]. Furthermore, MIMO channels can be exploited for better inter-user
isolation in multi-user systems [7, 12, 13] and even, potentially, perfect wireless secrecy [6]
– a seeming oxymoron.. Precise channel knowledge is essential for such applications. It is
these tantalizing benefits which prompt us to ask the basic question: how well can we know a
MIMO channel?

The underlying physics of wireless channel composition is what makes these sorts of ques-
tions so interesting – stochastic variation of wireless channels is caused by the stochastic
movement of scatterers and transceivers. Scatterers could be vehicles, buildings, lampposts,
trees, animals, people, sometimes even the atmosphere – anything that interacts with radio
waves and moves. And it is exactly this dependence of the channel on the motion of macro-
scopic objects which suggests that knowing the wireless channel and tracking its changes
might not be the seeming fool’s errand which has historically caused wireless theorists to
collectively throw up our hands and invoke probability theory.

Specifically, the motion of the macroscopic objects which cause scattering is constrained
by the energy available to move them. In particular, we can show that unpredictable motion
is limited owing to the energy necessary to change the momentum of an object. Thus, a
skyscraper may sway, a vehicle may speed and a person may shift position, but all will do
so in a relatively predictable manner – which implies that the information rate necessary to
specify their positions could be relatively small.

The information and information rates which are necessary to specify relevant constituent
parts of the channel constitute exactly an upper bound on the amount of information that must
be extracted from measurements to specify the channel. Thus, by first deriving bounds on the
information necessary to specify and track relevant channel constituents and then comparing
them to the amount of information that can be extracted from channel interrogation, we can
determine precisely whether knowing a fading MIMO channel well is possible or impossible.
We suspect that because constituents of most scattering environments are relatively massive
objects and energy to move them stochastically is limited, the information rates necessary to
track changes and disseminate them appropriately could be manageable. Establishing exactly
when the channel can be known with an eye toward the benefits which can accrue from such
knowledge is our aim.

To do so, we must first quantify the effects of inaccurate channel knowledge and establish
just how well the channel must be known in order to realize the full benefits of MIMO systems.
We will explore these issues somewhat anecdotally in this proposal to obtain a feel for the
necessary precision, but our ultimate goal is to determine how we may specify the channel
state in bits – essentially a quantization problem.

We must then consider the modeling of scattering channels at a physical level as an assort-
ment of spatially distributed scattering objects (perhaps grouped into “scattering centers” [14])
whose ensemble properties and evolution we wish to track. We will argue that energy consid-
erations constrain the stochastic motion of scattering center constituents as well as transceivers
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to allow more directed estimation of channel parameters from available probe measurements.
Or more simply put, we will argue that our approach, driven by energy constraints on objects
in motion, can bound the channel tracking search space and thus help with more efficient
channel state evolution prediction.

Overall we seek to:
• Quantify the necessary channel state information (CSI) for accuracy levels which enable

benefits such as increased rate, mutual interference mitigation and perfect secrecy in
MIMO systems.

• Understand channel variation as a function of energy bounds on the physical mobility
of constituent scattering objects and transceivers, thereby providing an upper bound on
the entropy rate of CSI.

• Determine when and how such models might be acquired blindly (and/or under pre-
existing generic classifications of scatterer types) from channel probes including poten-
tial augmentation with dedicated sensor measurements.

• When channel state prediction is possible, demonstrate its feasibility through analysis
and simulation.

2 Communication Channel Model

We will use the generic signal space vector-channel model

r = Gu + w (1)

where received vector r and noise vector w are N -dimensional, and transmit vector u is M -
dimensional. The gain matrix G is thus of dimension N × M . The assumption with any
such model is that all transmitters and receiver waveforms lie in some common signal space
defined by some common set of orthonormal basis functions. Usually, owing to an assumption
of channel linearity, time-invariance and synchronization, these basis functions are sinusoids.
However, the signal space description could also be time-based with different dimensions
corresponding to different time samples or whatever convenient basis set is available.

Here we will always assume w is Gaussian, though not necessarily white, and that the gain
matrix G is random in a way reflected by the physics of the particular channel and constant
over the signaling interval. That is, G is a specific “channel instance” during each signaling
interval for which equation (1) applies. The sequence of channel instances is assumed to be
some ergodic though not necessarily stationary stochastic process. For a known channel G

and Gaussian noise w with covariance W, the channel capacity is given by [4, 8–11]

C(G) = max
Ru,Trace[Ru]≤P

1

2

(

log
∣

∣GRuG
H + W

∣

∣− log |W|
)

(2)

where Ru = E[uuH ], P is the power available for signaling and the ui which comprise u

are zero mean and jointly Gaussian. The optimal Ru is the usual water-filling solution in the
right-eigenspace of W−1/2G, waterfilled over the inverse of it magnitude-squared non-zero
singular values. The total capacity is then C(G) [4] averaged over all channel instances

C = EG [C(G)] . (3)
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One of our overall goals will be to establish a mapping from scattering center characteris-
tics to explicit channel gains, or where a deterministic mapping is too difficult, more refined
probability distributions on channel gains than those which are generally assumed without
detailed knowledge of the underlying channel physics. The details of our channel modeling
approach are considered in section 4 along with an illustrative example. However, we must
first consider the issue of performance in the face of channel uncertainty.

3 CSI and MIMO

Most current work on channel state information for MIMO systems asks questions about the
rates achievable, outage probabilities and other performance metrics when channel state is
known to the transmitter, to the receiver, both – or if neither, what performance is possible
when the channel state distribution is known (see [4] for a recent survey). Such studies provide
powerful outer bounds, but do not quite address on of the questions we hope to pose – how
does one usefully quantify channel state. This problem is a bit difficult in that the usual
measures of accuracy – such as variance bounds on the entries gij of a gain matrix G – may
not be as useful as in single input single output (SISO) cases.

For instance, knowing the precise value of a nearly zero gain in a MIMO system is simply
not that important when channels with much stronger gains are available. More critical in
this case would be telling the difference between good and bad signaling dimensions quickly.
Furthermore, although the specific gains are important in a MIMO system, so is the structure of
the vector space they express. Finding ways to usefully measure and quantify CSI is therefore
part of this proposed work, although the usual approach is to find minimum mean square error
estimates of channel matrices [15–21].

That notwithstanding, we will start our explorations with the usual model typically used
for MIMO capacity with estimation error problems [20, 21]

Ĝ =
√

1 − σ2
eG + Q (4)

where Q is a zero mean matrix with independent identically distributed random entries of
some “error variance” σ2

e . G is renormalized so that Ĝ also has unit variance entries. This
type of assumption is reasonable for many channel interrogation methods.

3.1 A Direct Approach to Channel Gain Matrix Quantization

One might first approach the channel state quantization problem by simply using equation (2)
in conjunction with equation (4) to compute the average variation between C(G) and C(Ĝ)
for various values of σ2

e . Of course, this approach completely ignores the assumption that
the channel state information is limited in some fundamental way, but is reasonable from
the analytic standpoint of determining neighborhoods around gain matrices. To this end, we
provide a plot of the variance of

∆G =
C(G) − C(Ĝ)

C(G)
(5)

derived from Monte Carlo simulations wherein G was chosen to have unit variance, zero
mean circularly Gaussian entries and Ĝ was derived from G as in equation (4). The results
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are provided in FIGURE 1 for white noise (W = I) and different power levels P = 1, 10 and
100. Using the typical two standard deviation measure of certainty, a value of σ2

e ≈ 0.05 for
P = 1 and σ2

e ≈ 0.1 for P = 10 and P = 100 might seem reasonable to define a 10% capacity
neighborhood about a given gain matrix. In contrast, a 1% ∆G neighborhood would require a
much more stringent σ2

e ≈ 0.001 for P = 1, 10 and 100.

10
-3

10
-2

10
-1

10
0

σ2 
 Channel Corruption Variance

10-3

10-2

10-1

100

∆G
 S

ta
nd

ar
d 

D
ev

ia
tio

nP=1
P=10
P=100

Figure 1: Standard Deviation of ∆G vs. σ2
e for a 4 × 4 System. Power Budgets P = 1, 10 and 100

shown.

3.2 An Information Theoretic Approach to Gain Matrix Quantization

The previous section compared the capacities obtainable with different gain matrices whose
elements differed from one another by some mean square amount. The capacity calculations
assumed the gain matrices were known exactly at the transmitter and receiver – which is
unsatisfying since the issue is that channel state information is fundamentally limited. Thus,
we need another measure of performance penalty – one derived specifically for imperfect
channel knowledge. Recently it has been shown [21] that the lower bound on capacity C̃ of
an estimated channel is given by

C̃ = E

[

max
R̂u,Trace[R̂u]≤P
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∣

∣

)

]

(6)

where the noise covariance W is assumed white (W = I). The upper bound is slightly more
complex, but was shown to be reasonably tight for Gaussian signaling [21], so we will use
equation (6) as our measure of performance under channel uncertainty.

With a comparison method using equation (2) vs. equation (6) and an implicit gain matrix
“closeness measure” based on equation (4) we can once again roughly quantize channel states.
First we quantize capacity into discrete ranges. Then we evaluate how large σ2

e must be to
cause C̃ to differ by at least one quantization level from C.

For example, under the channel model of equation (1), consider a channel gain matrix G

with zero mean, unit variance and circularly symmetric complex Gaussian entries. Assume w

is a zero mean white Gaussian noise vector, each entry with unit variance. The capacity of this
channel following equation (2) is

C(G) = max
Ru,Trace[Ru]≤P

1

2
log
∣

∣GRuG
H + I

∣

∣ . (7)
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For each random G we assume corruption as in equation (4) where Q has zero mean
circularly symmetric independent Gaussian entries like G, but with variance σ2

e . We then
calculate C̃ as in equation (6) using Monte Carlo methods. The result is FIGURE 2 where we
plot estimation error fraction

∆C =
C − C̃

C
(8)

for a 4 × 4 system as a function of error variance σ2
e using power budgets P = 1, 10 and

100. Setting our capacity “quantum” to 10%, we see that the channel estimation accuracy
necessary to maintain C̃ within the margin for P = 100 is about σ2

e = 0.005 while for P = 1,
the necessary accuracy drops to σ2

e = 0.2. Were a 1% quantum desired, then the error tolerance
levels drop significantly.
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Figure 2: Fractional Capacity Difference ∆C vs. σ2
e for a 4 × 4 System. Power levels as shown.

3.3 MIMO Channels and Secrecy

The very thing which makes wireless systems so attractive – tetherless access to information
– is what makes them seem so unavoidably insecure. Once radiated, wireless transmissions
might be detectable by anyone with a suitable receiver. This perceived vulnerability is obvious
and the most common practical response is to provide some level of encryption over the wire-
less link [22, 23]. Other responses include attempts to make the path between transmitter and
receiver difficult to identify, as in meteor shower channels [24] or keeping an eavesdropper
from receiving any useful signal energy as with narrow beam communication using directive
antennas.

Encryption is the only option when transmission of information must be done in the open
and is accessible to everyone, however, its unavoidable weakness lies in the necessity of keep-
ing the key(s) secret. In contrast, information theory tells us that perfect secrecy is attainable
if we can (essentially) ensure that the channel between desired users is “less noisy” than that
to an eavesdropper [6, 25, 26]. Thus, the common-sense approach to wireless security would
seem to be encryption since guaranteeing that the eavesdropper’s channel is inferior to that
of the intended receiver in scattering terrestrial wireless channels seems an almost impossible
task.

Or is it?
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This question has recently been asked for MIMO channels [6]. In scattering environments,
there exist many paths between a given transmitter and receiver, and these paths could be very
different depending on the geographic placement of transceivers. Thus, given communicators
Alice and Bob and a potential eavesdropper Eve, there could be signal paths (eigenmodes of
the channel) between A and B which are are poorly received by E. Good reception by B and
poor reception by E can be shown to provide a nonzero perfectly secret capacity between A
and B [25, 27], and efficient codes exist to exploit this capacity [26].

Previous work [6] approaches this topic by assuming various degrees of channel knowl-
edge available to A and B while poor channel knowledge is available to E. For complete
channel knowledge between A and B and poor channel knowledge between A and E, the se-
cret capacity between A and B is clearly maximum. However, the fundamental premise of [6]
– E’s lack of channel knowledge – is in some sense antithetical to the usual ethos of security.
That is, information not specifically blocked by various (cryptographic or physical) barriers is
assumed universally known.

We note that if Eve has access to all the radiated energy in the environment, nothing can be
kept perfectly secret and cryptography – as opposed to information theoretic perfect secrecy –
seems the only recourse. However, if Eve’s resources for interrogation of the environment are
limited, a number of questions are raised: Assuming all channels are known, but Eve does not
have access to all radiated energy, what is the likelihood that there exist signal dimensions in
Alice and Bob’s channel which can support secret communication which excludes Eve? What
can Eve know about the channel between Alice and Bob? How does channel uncertainty affect
secret communication rates between Alice and Bob?

These sorts of fundamental questions, which are at heart channel characteristic and channel
measurement questions, are squarely within the purview of our proposed research. However,
without underlying physical channel models, to which we turn next, at least two of these
questions – those dealing with channel sensing – are moot.

4 Can the Channel State Be Known?

In previous sections we have argued that knowing the channel can provide various perfor-
mance boosts for MIMO systems and potentially enable applications like perfect wireless
secrecy [6] which are difficult if not impossible without good channel information. These
potential benefits prompt us to ask just how difficult channel identification and tracking is at
a fundamental information theoretic level. To answer such questions requires some sort of
channel model.

In a typical depiction, a MIMO channel is shown as a cloud in which something called
“scattering” occurs. This scattering is usually summarized by a stochastic sequence of chan-
nel matrices Gi. A large amount of work has been devoted to characterizing this stochastic
process in a variety of situations with the most prevalent being complex circularly symmetric
zero mean Gaussian channel gains with or without correlation between entries [4]. Owing to
the previously discussed strong improvements possible when channel state is known, a large
amount of work has also been devoted to estimating MIMO channel matrices ( [15,17–19,28,
29] and references therein). In work roughly similar to the approach we will take, a “paramet-
ric” method of modeling and estimation was used with specified number of rays along with
separate delay and phase estimates since delay profiles vary much more slowly than phase for
exactly the reasons we posit here – macroscopic objects move slowly [30].

However, we are aware of no work which compares the channel state information rate
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available from interrogation to the underlying information and information rates which are
characterized by the channel physics. Thus, our goal is to more carefully model the inner
workings of the channel in the hope that somewhat more detailed knowledge will lead to
practical methods of learning the channel and its evolution.

It seems reasonable early on to avoid overly complex models since these may not provide
useful analytic insight. To this end, consider FIGURE 3 which though still a cartoon of a
scattering channel, is slightly more detailed in that it depicts an assortment of scattering objects
in motion. The objects could have different scattering characteristics, but for now we will
assume identical characteristics for simplicity. The channel gain between a set of antennas
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Figure 3: Detail of MIMO Scattering Channel With Mobile Components.

over the channel is expressible as a superposition of scatterer effects and depends solely on
transceiver and scatterer positions. Scatterer orientation could also be used as a state variable,
but for our purposes now, position will suffice.

Scatterer movement results in channel gain matrix variation and thereby performance vari-
ation. Following the ideas introduced in section 3, we can determine a useful quantization of
channel gain matrices which through the channel model implies a useful quantization of scat-
terer position. In this way we can begin to specify the amount of information necessary to
“know a channel instance.” In addition, we can also obtain some feel for channel coherence
times – the time a given channel instance is in force – as a function of mean scatterer veloci-
ties, and this can be vetted against measurements of real channels as a check on the validity of
the modeling.

With channels and scatterer positions quantized, we can then ask how much information is
conveyed about the channel by interrogation over a coherence time. Thus armed, it is simple
in principle to compare the channel interrogation information rate to the ratio of channel state
information to coherence time. An insufficiently large channel interrogation information rate
implies the channel state instance is unknowable on average, and some means of increasing
the rate at which channel information can be learned is necessary – perhaps through dedi-
cated channel sensing infrastructure enhancements. Conversely, if the interrogation rate is
sufficiently large, then the channel is theoretically knowable.

The next step is to consider stochastic motion of scatterers. Through the channel model
this leads to a stochastic sequence of channel instances. However, since scatterer positions
map deterministically to channel gains, the information processing theorem [31] restricts the
entropy rate of the channel gain matrix process to be less than or equal to the entropy rate of
the scatterer mobility process. This channel entropy rate can in principle be derived from the
mobility entropy rate. As before, the channel entropy rate can be compared to the rate at which
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channel information can be extracted from interrogation. If the interrogation information rate
is larger than the channel entropy rate, then the channel can be known. If not, then the channel
is unknowable without providing an additional means of channel sensing.

These ideas which form the basis of our approach are worth expanding upon with more
technical detail and with reference to the picture provided in FIGURE 4. First we define

Channel
PhysicsX G

Mobility Process Gain Matrix Process

r = Gp + n

response
probe

noise

Figure 4: Representation of Scatterer Mobility Information Flow

a quantized scatterer mobility process X which has some entropy H(X) and entropy rate
H(X). This process serves as input to the channel physics which produces a corresponding
gain matrix G. By the information processing theorem, H(X) ≥ H(G) and H(X) ≥ H(G).
So all we need to know about the channel can be specified using at most H(X) bits and the
channel variation can be tracked using at most H(X) bits per unit time.

As previously mentioned there is a large literature on channel estimation, but we will at
first opt for the simplest case where we assume blind channel interrogation of the form

r = Gp + n (9)

where r is the received vector, p is the probe vector with some power |p|2, and n is the
measurement noise which we will assume is zero mean circularly symmetric white noise with
variance 1. We will also assume no feedback between successive “sounding” epochs. Since
the number of parameters to be specified in G is generally larger than the dimension of the
probe vector, we can assume multiple “soundings” and represent the measurement set as a
matrix R, whose columns are the individual soundings. The probes are assumed known at
the receiver. The matrix G is assumed random with some distribution so that the amount of
information R gives us about G is simply

I(G;R) = H(R) − H(R|G) (10)

which we define as the interrogation rate for channel G

R(G) ≡ I(G;R) (11)

R(G) is an upper bound on the amount of information we can learn about the channel G per
interrogation. Our approach will be to make comparisons between the interrogation rate and
the underlying entropies H(G) and H(X) to determine whether the channel can possibly be
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known or not. This approach is roughly summarized by equation (12)

R(G)

can learn
>
<

cannot

1

NI
H(G) (12)

where NI is the number of interrogations (static channel) and equation (13)

R(G)

can track
>
<

cannot
H(G) (13)

4.1 Calculating Channel Gains

We will take the simplest possible approach to calculating channel gains from the model of
FIGURE 3 to avoid obscuring our main points. Each sphere will be treated as a point which
scatters energy from the transmitting antennas. We will not consider secondary scattering
(scatter on one sphere induced by the scatter impinging from another sphere). We will also
assume there exists no direct path between the transmitting and receiving antennas.

The position of the kth sphere is xk, and the position of the nth antenna is yn. The propa-
gation paths between transmit antenna m and receive antenna n are composed of two “legs” –
one from antenna m to a scatterer k and then from scatterer k to antenna n. We will not worry
about angle of arrival – which determines the effective scattering (radar) cross section from
the perspective of the receiving antenna – but will assume isotropic scatter from each sphere
whose intensity is solely dependent on the path length between the (isotropic) transmitting
and antenna and the scattering sphere. We will also assume that phase shifts depend strictly
on path length as opposed to the detailed characteristics of the scatterers. Again, this is not
a terrible assumption given our identical scatterer model. Finally we assume scatterers and
antennas are in each other’s far field.

Under these assumptions, we can readily calculate the gains gmn between antennas. First
we calculate the first leg length dm(k) = |xk − ym| and then the second leg length dn(k) =
|xk − yn|. Antenna aperture and radar cross section of scatterers add constants to our simple
model which we can ignore here as fixed owing to the uniformity of the scattering environment
and isotropic scattering and antennas. Thus, we can calculate the the gain of the path between
antennas m and n using scatterer k as

gmn(k) = ejφnm(k)rmn(k) (14)

where
rmn(k) = |gmn(k)| =

A

dm(k)

α

dn(k)
(15)

and
φmn(k) = 2π(dm(k) + dn(k))/λ (16)

where λ is the wavelength and A and α are proportionality constants related to antenna gains
and object scattering cross section. Since the antennas are all assumed identical as are the
scatterers, we will set A and α to one with no loss of generality. The total complex gain gmn
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between antenna m and n is then given by

gmn =
∑

k

rmn(k) cos φnm(k) − j
∑

k

rmn(k) sin φnm(k) (17)

Given scatterer positions and antenna positions we can now calculate the complex gains for
our toy MIMO channel. We can then perturb the scatterer positions and see how the channel
gains are affected and via the discussion in section 3, the capacity.

Measuring all distances in units of wavelength, we place our two transmit antennas at
(−D

2
, 1

2
) and (−D

2
,−1

2
) so that they are one wavelength apart. The two receiver antennas are

placed at (D
2
, 1

2
) and (D

2
,−1

2
) where D � 1. The scatterers are placed randomly in within

a square with corners (−L,−L) and (L, L). For D = 1000 and L = 300 and each random
placement of 8 spheres, we calculate the 2 × 2 gain matrix G and summarize the results
in FIGURE 5 – a scatterplot where g11 is plotted as a point in polar coordinates as shown.
Evaluation of gain histograms over many trials reveals that gains gij approximately follow the
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Figure 5: Channel Gain Scatterplot for An 8-Sphere Channel. 1000 trials.

circularly symmetric Gaussian distribution typical of Rayleigh fading – as should be expected
in a highly scattering environment [1, 32].

We now choose particular random arrangements of spheres and then repeatedly “jiggle”
their coordinates using i.i.d Gaussians of variance σ2

x. In this way we can build up a statistical
picture of how mean scatterer location uncertainty maps to mean gain matrix uncertainty. Us-
ing Monte Carlo simulation, a typical plot of mean square difference (per element) between
the original and position-perturbed gain matrices (normalized by the gain variance of the chan-
nel) as a function of mean square position uncertainty σ2

x is shown in FIGURE 6. In section 3
we found that a gain variances in the range of 0.001 to 0.1 would admit performance penalties
in the range of 1% to 10%. The corresponding position uncertainties seen in FIGURE 6 are
in the range of an order of magnitude smaller. Maintaining a gain variance of 0.001 would re-
quire a scatterer position variance of 0.0001 in our wavelength-normalized units. For a 3GHz
signal, the implied position accuracy is 0.01λ = 1mm, a seemingly unrealizable accuracy
when considering macroscopic objects over distances of tens or hundreds of meters.

Upon closer examination, however, we see that for our channel a scatterer could reside
anywhere in a square region of 36 × 104λ2. A 0.01λ accuracy implies a total of 36 × 108

possible positions. So, assuming uniformly random placement of each scatterer, about 32
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bits of information would be required for localization per scatterer. Assuming completely
stationary scatterers, how does this compare to the capacity of the interrogation channel given
in equation (9)? Let us assume a simplistic sequence of probe vectors p(t) = et where ei is the
cannonical unit vector. This decomposes the problem into a set of independent interrogation
channels of the form

ri(t) = gti + ni(t) (18)
one for each element of G. Remembering that each element of the gain matrix is a zero mean
Gaussian with unit variance, as is each ni(t), the mutual information between ri(t) and gti is
exactly 0.5 bits (at the signal to noise ratio of 0dB implied by equation (18)), which implies
a not unreasonable number of channel interrogations. So what at first seemed impossible –
specifying scatterer position to high accuracy, does not now seem far-fetched even under the
simplistic assumption that mean square gain matrix uncertainty is the proper figure of merit
when speaking of MIMO channel capacity.

To elaborate on this last point, there is underlying structure of gain matrices with small
variations in scatterer positions that was not accounted for in our broad brushstroke compare-
the-variances approach. For example, from FIGURE 6 we see that positional variance of 0.001
implies a relatively large gain matrix entry variance of 0.01. However, in FIGURE 7 we plot 3
sets of gain points associated with this level of spatial perturbation along with the unperturbed
set of gain points. It is apparent that the variation in the individual gain points is as large
as given in FIGURE 6, however, there also seems to be significant structure relating the gain
points of each channel instance. This structure is a result of the fact that small position changes
do not strongly affect the dj(k) terms in the denominator of equation (15), while in contrast
significant phase rotation can be introduced by small position variation [30].

These properties, imposed by the channel physics, could perhaps be used to further reduce
the channel interrogation burden, but even when completely ignoring them, we have found that
channel interrogation may not be that onerous from an information theoretic perspective. Of
course, we have not yet taken into account the fact that scatterers move, often rapidly as mea-
sured in wavelengths. We address this concern by developing bounds on position uncertainty
in the next section.
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4.2 Position Uncertainty

Fading channels are, by definition, time-varying and this time variation stems from physical
movement of scatterers in the channel. In the previous section we argued that the data bur-
den associated with specifying position sufficiently well is not too onerous. However, when
scatterers are in high speed motion, the situation would seem to change.

Consider the 0.01λ quantization introduced in the previous section for a 3GHz system
in an environment where scatterers moved at speeds of a meter per second (typical in an
office environment). Our position quantization is one millimeter so one could expect 1000
significantly different channel instances per second. Multiplied by the 32 bits per scatterer in
the previous example, the necessary implicit channel interrogation data rate would be a rather
hefty 256kb/s. Of course, there would be correlations between successive channel states, so
we might better use a rule of thumb estimate for channel coherence times of 0.4λ/v [1, 32].
In that case, we would observe an independent channel state once every 40ms for a necessary
rate of ≥ 6.4kbps. In a setting with vehicles moving at tens of meters per second, the implicit
rates would of course be commensurately higher.

However, this is precisely where the notion of positional entropy rate and the information
processing theorem applied to FIGURE 4 becomes important. Although the channel gain
matrix would appear to be highly volatile owing to scatterers in high speed motion, there is a
chance that the channel could be tracked if the entropy rates associated with the moving parts
are small enough so that R(G) > H(X). As an example, if the scatterer were following a
trajectory which could be completely known given it’s initial position, then H(G) = H(X) =
0 and we are left, essentially, with our original problem of estimating scatterer position though
channel soundings at the relatively modest levels of the previous section.

However, if X is not completely predictable, given a quantization level ∆x for spatial
position, we can readily provide an upper bound H(X) using energy constraints. If we assume
initial and final rest of an object, the minimum amount of energy to move a mass m a distance
D by time τ is proportional to m

(

D
τ

)2 [33–35]. So, suppose the position of an object is known
at time t = 0 and we wait a time T before wishing to know its new position. We can ask, “what
distribution p∗k on its position k∆x maximizes the position uncertainty?”
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With an energy budget E we have the following optimization problem which we state in
one spatial dimension, but which is easily extensible to three dimensions.

{p∗k} = arg max
pk,

∑

k pkm
(

k∆x
T

)2
≤ E

∑

k

pk log
1

pk

(19)

whose solution is, not surprisingly, a discrete Gaussian-like distribution

p∗k =
1

∑

`

e−β`2
e−βk2 (20)

where β > 0 is chosen to satisfy

1
∑

`

e−β`2

∑

k

k2e−βk2

=
E

m

(

T

∆x

)2

(21)

The entropy of this distribution is then

H(p∗k) = log

(

∑

`

e−β`2

)

+ β
E

m

(

T

∆x

)2

(22)

Returning to our original concern, we consider scatterers (people with, say, 100kg mass)
moving at a meter per second who move significantly (∆x = 10−3m) every millisecond (T =
10−3s). We then ask what uncertainty could we “inject” into this process under an energy
constraint of 1J – which with our time step of 1ms is a significant power budget of 1kW! For
this case, we have E

m

(

T
∆x

)2
= 0.01 and we find β = 5.28 numerically. We can then evaluate

the entropy as approximately 0.09 bits which translates into a 90bps entropy rate per scatterer
for a total of H(G) ≤ 720bps with our assumed 8 scatterers.

This constitutes a more than ×30 reduction over per channel instance information rates,
and about a ×10 improvement over per-channel-coherence-time rates calculated previously.

5 Summary

With the previous exposition, we hope to have excited some interest in the possibility that
using energy constraints on moving scattering elements could serve as a useful principle in
the study of channel estimation in MIMO systems. For our simple examples, we have shown
how modest constraints on the energy available to move an object in a stochastic fashion result
in bounds on the channel matrix process. We have also argued that the fundamental problem
of channel estimation is really about the comparison between this channel matrix process
entropy rate with respect to an attainable channel interrogation rate. Elaborating on this view
of MIMO channels is the heart of the proposed work.

Certainly there are many complaints that could be raised — details of the channel mod-
eling, the anecdotal nature of the examples, details about channel interrogation and the like.
However, the outlined approach to MIMO channel estimation seems potentially useful enough
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and also theoretically rich enough to provide a wealth of problems for study beyond those we
have already raised in describing the approach.

For instance, supposing the details about channel entropy rates can be worked out in rela-
tion to channel interrogation rates. For cases where the interrogation rate is sufficiently high,
the next obvious step is finding ways to form implicit channel models from channel interroga-
tion. Simple (and not so simple) a priori channel models with known parametrizations may
often be useful and will be studied, but acquiring the channel generation model blindly from
channel soundings is an area worthy of exploration and falls in the general area of system
identification [36].

Conversely, if the interrogation rate cannot support perfect channel knowledge, then we
must ask how well we can estimate the channel – a sort of rate-distortion problem [31, 37] in
this context. This particular issue touches on wireless secrecy. We might hope to know under
what circumstances an evesdropper Eve can acquire sufficient information about the channel
to enable decoding of messages sent between Alice and Bob. Some of the details will be in the
specific channel models used, the resources available to Eve and the information above Eve’s
properties available to Alice and Bob, but the first metric applied should be interrogation rate
vs. channel entropy rate. And obviously, this sort of problem can be recast in a setting where
Eve, Alice and Bob are not adversaries, but rather, wish to avoid each other’s transmissions –
a mutual interference reduction problem.

As another example of potential research, consider that establishing an entropy rate for
a system is in some sense a predictor. For channels which are erogodic in their underly-
ing models – perhaps randomly arriving/departing scatterers with known characteristics, we
might even attempt to apply various forms of empirical sequence prediction [38] using channel
soundings as input, reminiscent of an approach which has been successfully applied in mobil-
ity tracking problems [39, 40]. We can even turn the problem completely around and seek to
determine how one might artificially construct scattering environments which are completely
untrackable or devise means which interfere optimally with channel tracking attempts by oth-
ers under channel interrogration power constraints.

Hopefully, the above assortment of topics along with the exposition will be sufficient to
convince even a highly skeptical reader of the intellectual interest and potential practical im-
portance of the proposed work.

6 Project Management

6.1 Management

C. Rose will supervise graduate students, pursue publication in the relevant journals and con-
ferences, as well as seek additional funding, possibly from other sources, to support an exper-
imental complement to the proposed work. Below, the research topics discussed previously
are arranged in (a tentative) sequence:

• Formulate simple analytically manageable scatter models of varying levels of detail and
exercise them from the perspective of channel gain sensitivity to scatterer and channel
interrogation sensor placement.

• Determine the amount of position/velocity information necessary to specify the channel
to some (suitably defined) accuracy using some (suitably defined) metrics.

14



• Formulate an entropy rate of the underlying time-varying model for a variety of typi-
cal scatterer stochastic motion processes and upper bounds subject to mobility energy
constraints.

• Compare the fundamental model entropy rate to the implicit information rates associated
with standard channel interrogation methods

• Couch the channel estimation problem in terms of the underlying mobility energy con-
straints on the simple spherical scatterer model and determine what questions (probes)
should be asked to most efficiently extract underlying model information.

• Consider the potential need for incorporating other more realistic physical scattering
scenarios from the perspective of scattering center characterization, mapping and track-
ing.

• Provide answers to the question of when and how CSI can be efficiently extracted from
interrogation of time-varying channels.

Throughout, special attention will be paid to the performance gains provided by good CSI.
And as with all research, it is difficult to place things on a time line, so there could be consid-
erable reordering, additions and deletions depending upon how the research evolves.

6.2 Impact

WINLAB’s mission is the training of undergraduate and graduate students for the growing
wireless industry, invention of new technology, adding to the archival wireless research liter-
ature and through WINLAB sponsors, technology transfer. Support for this proposed work
will be used to further this mission. However, probably most important, knowing whether a
MIMO channel can be tracked has an obvious and profound impact on wireless network pro-
visioning and service offerings as wireless networks move to higher and higher capacities and
densities in an increasingly wireless world. Furthermore, implicit in the ability to track MIMO
channels is the ability to rapidly characterize such channels. If this research is successful, then
the detailed knowledge of real MIMO channels which might be enabled by the proposed work
cannot help but stimulate fundamentally new ways of thinking about wireless networks.

7 Results from Prior NSF Support

Christopher Rose: has served as PI and co-PI on a number of previous NSF grants; (PI) NCR-
9206148 [41], CCR-98-14104 [42] and CCR-99-73012 [43]; (co-PI) NCR-9506505 [44],
NCR-97-29863 [45], ITR/CCR-00-85986 [46], ITR/CCR 02-05362 [47], NeTS-0434854 [48]
and NeTS-0435370 [49]. The work completed on these grants has addressed a broad range of
problems associated with optimizing the use of radio resources in wireless communications
systems. Call admission for wireless systems was studied in [50–53]. Fundamental algo-
rithms for paging and registration of mobile nodes were established in [54–66]. Recent work
has been focused on understanding the U-NII [42,67,68], opportunistic transmission methods
and associated delivery protocols [69–71], and developing interference avoidance methods
for a variety of communications problems [72–102] as well as non-standard communications
models [33–35,103,104]. The work described in [35] is featured on the NSF Discoveries web
page.
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