Molecular Communication Using Timing & Payload

Christopher Rose¹ I. Saira Mian²

¹Rutgers University, WINLAB ² University College London

> ITA'15 San Diego February 3, 2015

Overview

What Is A ...

1

Overview

What Is A ...

Signaling Molecule

Overview

A REALLY Simple Signaling Molecule (Token)

Naked (and clothed) Ca++

A Simple Signaling Molecule (Token)

Quorum sensing signal

Overview

A More Complex Signaling Molecule (Token)

Nerve Growth Factor (protein)

What Is A ...

Overview

What Is A ...

Signal Receptor

Receptor Specificity Cartoon

Ligand (token) docks with receptor (protein)

Overview

A More Detailed Receptor Specificity Cartoon

Ligands (tokens) dock with receptor (protein)

What Are Some ...

Overview

What Are Some ...

Communication Examples

Rutgers WINLAB

ITA 2015

Reception and Transduction Cartoon

$\textbf{Ligand} \rightarrow \textbf{Receptor} \rightarrow \textbf{Gene Tickling}$

Identical Tokens: bacteria

Identical Tokens: neurons

ACh release \rightarrow postsynaptic uptake

Tokens with Payloads: transcription

$\textbf{Nuclear DNA} \rightarrow \textbf{mRNA} \rightarrow \textbf{Ribosome} \rightarrow \textbf{Protein}$

Active Transport

Bacterial Microtubules

Inner Life of a Cell

TRES cool movie

http://naturedocumentaries.org/3964/inner-life-cell/

Today's Talk

Today's Talk

PURPOSEFUL MYOPIA

Transport (passive) Receptor Kinetics (ignore)

Transport (passive) Receptor Kinetics (ignore)

$\textbf{Coding} \rightarrow \textbf{Emission} \rightarrow \textbf{Transport} \rightarrow \textbf{Capture} \rightarrow \textbf{Decoding}$

Rutgers WINLAB

Could Even Add Some Drift

$\textbf{Coding} \rightarrow \textbf{Emission} \rightarrow \textbf{Transport} \rightarrow \textbf{Capture} \rightarrow \textbf{Decoding}$

Rutgers WINLAB

C. Rose

Mutual Information: $I(\mathbf{S}; \mathbf{T})$ M tokens on an interval $\tau(M)$

Max h(S), Done!

Max h(S), Done! Easy, Right!?!

Max h(S), Done! Easy, Right!?! $I(\vec{S}; T) = h(\vec{S}) - h(\vec{S}|T) = ?$

Hypersymmetry Buys You
$$h(ec{\mathbf{S}}) = h(\mathbf{S}) - \log M!$$

$$h(\vec{\mathrm{S}}) = h(\mathrm{S}) - \log M!$$

 $\{\vec{\mathbf{S}},\Omega\}\leftrightarrow \mathbf{S}$

$$h(ec{ ext{S}}) = h(ext{S}) - \log M!$$

$$\{\vec{\mathbf{S}}, \Omega\} \leftrightarrow \mathbf{S}$$

 $h(\vec{\mathbf{S}}|\mathbf{T}) = H(\Omega|\vec{\mathbf{S}}, \mathbf{T}) - h(\mathbf{S}|\mathbf{T})$

$$h(ec{\mathbf{S}}) = h(\mathbf{S}) - \log M!$$

$$\{\vec{\mathbf{S}}, \Omega\}_{\Downarrow} \leftrightarrow \mathbf{S}$$

 $h(\vec{\mathbf{S}}|\mathbf{T}) = H(\Omega|\vec{\mathbf{S}}, \mathbf{T}) - h(\mathbf{S}|\mathbf{T})$

$$I(\vec{\mathbf{S}};\mathbf{T}) = \underbrace{h(\mathbf{S}) + H(\Omega|\vec{\mathbf{S}},\mathbf{T})}_{\text{The Money!}} - \underbrace{(\log M! + h(\mathbf{D}))}_{\text{constant}}$$

Omitting the Details

Omitting the Details

Set:
$$ho \equiv rac{M}{ au(M)}$$
 Define: $\chi \equiv rac{\mu \ (\text{first passage rate})}{
ho \ (\text{token launch rate})}$
Require: $E[D] < \infty$ $C_m(M) = \max_{\substack{\text{hypersymm } f_{\mathrm{T}}()}} \left(I(\vec{\mathrm{S}};\mathrm{T})M \right)$
 $C_m = \lim_{M \to \infty} C_m(M)$
 $C_t =
ho C_m$

(it's kinda the timing channel's "Gaussian")

(it's kinda the timing channel's "Gaussian")

 $h(S|T) = h(D) = 1 - \log \mu$

(it's kinda the timing channel's "Gaussian")

 $h(S|T) = h(D) = 1 - \log \mu$

$$\max h(S) = \log\left(\frac{e + \mu M/\rho}{\mu}\right)$$

(it's kinda the timing channel's "Gaussian")

 $h(S|T) = h(D) = 1 - \log \mu$

$$\max h(S) = \log \left(\frac{e + \mu M/\rho}{\mu}\right)$$
$$\max I(S;T) = \max h(S) - h(S|T) = \log \left(1 + \frac{\chi M}{e}\right)$$

(it's kinda the timing channel's "Gaussian")

 $h(S|T) = h(D) = 1 - \log \mu$

$$\max h(S) = \log \left(\frac{e + \mu M/\rho}{\mu}\right)$$
$$\max I(S;T) = \max h(S) - h(S|T) = \log \left(1 + \frac{\chi M}{e}\right)$$

$$\lim_{M \to \infty} \frac{1}{M} H(\Omega | \vec{\mathbf{S}}, \mathbf{T}) = e^{-\frac{1}{\chi}} \sum_{k=2}^{\infty} \left(\frac{1}{\chi}\right)^k (k\chi - 1) \frac{\log k!}{k!}$$

Rutgers WINLAB

ITA 2015

C. Rose

Identical tokens \rightarrow timing info only

Identical tokens \rightarrow timing info only

Payloads \rightarrow **chop message into** *M B***-bit pieces**

Identical tokens \rightarrow timing info only

Payloads \rightarrow **chop message into** *M B***-bit pieces**

Payloads can arrive out of order

Identical tokens \rightarrow timing info only

Payloads \rightarrow **chop message into** *M B***-bit pieces**

Payloads can arrive out of order

Minimum average reordering info $H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$

Identical tokens \rightarrow timing info only

Payloads \rightarrow **chop message into** *M B***-bit pieces**

Payloads can arrive out of order

Minimum average reordering info $H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$

Add $H(\Omega | \vec{\mathbf{S}}, \mathbf{T}) / M$ bits per token

Identical tokens \rightarrow timing info only

Payloads \rightarrow **chop** message into *M B*-bit pieces

Payloads can arrive out of order

Minimum average reordering info $H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$

Add $H(\Omega|\vec{\mathbf{S}},\mathbf{T})/M$ bits per token

Timing Channel Workup \rightarrow Sequence# Size

Hypersymmetric input ${\rm T}$

Hypersymmetric input TBut CAN use *ordered* T at input

Hypersymmetric input T But CAN use *ordered* T at input Decoding identifies sent t

Hypersymmetric input T But CAN use *ordered* T at input Decoding identifies sent t Remaining disorder: $H(\Omega | \vec{S}, t)$

Hypersymmetric input T But CAN use *ordered* T at input Decoding identifies sent t Remaining disorder: $H(\Omega | \vec{S}, t)$ Average disorder: $H(\Omega | \vec{S}, T)$

Identical Tokens: *c*₀ joules per token

Identical Tokens: *c*₀ joules per token

Inscribed Tokens:

Identical Tokens: *c*₀ joules per token

Inscribed Tokens:

substrate: c_1 joules per tokenpayload B bits: $B\Delta c_1$ joules per tokensequence# K bits: $K\Delta c_1$ joules per token, where

Identical Tokens: *c*₀ joules per token

Inscribed Tokens:

substrate: c_1 joules per tokenpayload B bits: $B\Delta c_1$ joules per tokensequence# K bits: $K\Delta c_1$ joules per token, where

 $H(\Omega | \vec{\mathbf{S}}, \mathbf{T}) \le MK \le \log M!$

Timing-Only Bits/Joule

Timing-Only Bits/Joule

Theorem 1.

Payload-Only Bits/Joule

Theorem 2.

$$C_P = \frac{B}{c_1 + \Delta c_1 \left(B + \min_{\mathbf{t}} \frac{1}{M} H(\Omega | \vec{\mathbf{S}}, \mathbf{t}) \right)}$$

Payload + Timing Bits/Joule Lower Bound

where $\mathcal{R}_{P+T} \leq \mathcal{C}_{P+T}$.

Info per Unit Energy

$\chi \leftrightarrow$ passage rate per launch rate $c_0 = 1, c_1 = 0, \Delta c_1 = 1$

Info per Passage per Unit Energy

$\frac{1}{\chi}$ \leftrightarrow launch rate per passage rate $c_0 = 1, c_1 = 0, \Delta c_1 = 1$
And Now

And Now

Numerical Play Time

Play Time Setup

Play Time Setup

Play Time Setup

Protein Token Construction $4BATP = 3.2B \times 10^{-19} J$

Protein Token Construction $4BATP = 3.2B \times 10^{-19} J$

Diffusion Coefficient, D **in air:** $\approx 10^{-5}m^2/s$ **Mean First Passage Time,** $E[D] \approx \frac{R^2}{2D}$

Protein Token Construction $4BATP = 3.2B \times 10^{-19} J$

Diffusion Coefficient, D in air: $\approx 10^{-5}m^2/s$ Mean First Passage Time, $E[D] \approx \frac{R^2}{2D}$

Across a table (1m): $E[D] \approx 14hrs$ (need fan \bigcirc)

Protein Token Construction $4BATP = 3.2B \times 10^{-19}J$

Diffusion Coefficient, D **in air:** $\approx 10^{-5}m^2/s$ **Mean First Passage Time,** $E[D] \approx \frac{R^2}{2D}$

Across a table (1m): $E[D] \approx 14hrs$ (need fan \bigcirc)

Across a 0.1mm gap: E[D] = 0.5ms

$$\frac{1}{\chi} = \frac{
ho}{\mu} = 1 = B$$

$$\frac{1}{\chi} = \frac{\rho}{\mu} = 1 = B$$

Across a table: \approx bits/day/attojoule

$$\frac{1}{\chi} = \frac{\rho}{\mu} = 1 = B$$

Across a table: \approx bits/day/attojoule Across a 0.1mm gap: \approx 10kb/s/attojoule

$$\frac{1}{\chi} = \frac{\rho}{\mu} = 1 = B$$

Across a table: \approx bits/day/attojoule Across a 0.1mm gap: \approx 10kb/s/attojoule

$$\frac{1}{\chi} = \frac{\rho}{\mu} = 1000 = B$$
:

$$\frac{1}{\chi} = \frac{\rho}{\mu} = 1 = B$$

Across a table: \approx bits/day/attojoule Across a 0.1mm gap: \approx 10kb/s/attojoule

$rac{1}{\chi}=rac{ ho}{\mu}=1000=B$: Across a table: pprox Kb/day/femtojoule

$$\frac{1}{\chi} = \frac{\rho}{\mu} = 1 = B$$

Across a table: \approx bits/day/attojoule Across a 0.1mm gap: \approx 10kb/s/attojoule

$\frac{1}{\chi} = \frac{\rho}{\mu} = 1000 = B$:

Across a table: \approx Kb/day/femtojoule Across a 0.1mm gap: \approx 10Mb/s/femtojoule

Traipsing Over To The Payload Wild Side

Traipsing Over To The Payload Wild Side

- 20 lb paper @ 1000dpi: 2×10^{10} bits/kg
- DVD: 3×10^{12} bits/kg
- Magnetic Storage with FeO₂: 2×10^{17} bits/kg
- Optical Lithography with SiO₂: 3.85×10^{18} bits/kg
- E-beam Lithography with SiO_2: 1.54×10^{21} bits/kg
- STM with Xe on Ni: 1.74×10^{22} bits/kg
- RNA: 3.6×10^{24} bits/kg
- Li + Be: 7.5×10^{25} bits/kg

Dreamin'

Traipsing Over To The Payload Wild Side

- 20 lb paper @ 1000dpi: 2×10^{10} bits/kg
- DVD: 3×10^{12} bits/kg
- Magnetic Storage with FeO₂: 2×10^{17} bits/kg
- Optical Lithography with SiO₂: 3.85×10^{18} bits/kg
- E-beam Lithography with SiO_2: 1.54×10^{21} bits/kg
- STM with Xe on Ni: 1.74×10^{22} bits/kg
- **RNA**: 3.6×10^{24} bits/kg
- Li + Be: 7.5×10^{25} bits/kg

BLACK HOLE: $r = 1 \mu m \rightarrow 1.5 \times 10^{39}$ bits/kg

Netflix House of Cards Delivery

Disk Farm Fantasy

Suppose token construction energy cost \ll fan energy cost

Disk Farm Fantasy

Suppose token construction energy cost \ll fan energy cost

$1\mu g \text{ RNA per second} \Rightarrow 3.6 imes 10^{15} \text{ bits/sec}$

Appropriately Awed Response

Timing + Payload Framework

Timing + Payload Framework Lower Bounds

Timing + Payload Framework Lower Bounds Need Bit Efficiency?

Timing + Payload Framework

Lower Bounds Need Bit Efficiency?

Slow release with timing &/or small payload

Timing + Payload Framework

Lower Bounds

Need Bit Efficiency?

Slow release with timing &/or small payload

Need Rate Efficiency?

Timing + Payload Framework

Lower Bounds

Need Bit Efficiency?

Slow release with timing &/or small payload

Need Rate Efficiency?

Fast release with payload + timing or large payload

Timing + Payload Framework

Lower Bounds

Need Bit Efficiency?

Slow release with timing &/or small payload

Need Rate Efficiency?

Fast release with payload + timing or large payload

Scary Efficiencies and Rates

Timing + Payload Framework

Lower Bounds

Need Bit Efficiency?

Slow release with timing &/or small payload

Need Rate Efficiency?

Fast release with payload + timing or large payload

Scary Efficiencies and Rates

(beware transport latency)

A truck filled with storage media, driven across town, is a very reliable high bit rate channel.

-Comm. Theory Collective Subconscious

BUT ...

A truck filled with storage media, driven across town, is a very reliable high bit rate channel.

-Comm. Theory Collective Subconscious

BUT ...

A swarm of timed gnats

A truck filled with storage media, driven across town, is a very reliable high bit rate channel.

-Comm. Theory Collective Subconscious

BUT ...

A swarm of timed gnats with backpacks

A truck filled with storage media, driven across town, is a very reliable high bit rate channel.

-Comm. Theory Collective Subconscious

BUT ...

A swarm of timed gnats with backpacks in a breeze

A truck filled with storage media, driven across town, is a very reliable high bit rate channel.

-Comm. Theory Collective Subconscious

BUT ...

A swarm of timed gnats with backpacks in a breeze could be better.