
A Fundamental Framework for Molecular
Communication Channels: timing & payload

Christopher Rose Fellow, IEEE and I. Saira Mian

Abstract—As system sizes shrink, the usual macroscopic meth-
ods of communication using electromagnetic and acoustic waves
become increasingly less efficient owing to mismatches between
realizable antenna sizes and the propagation characteristics of the
medium. Thus, at the scale of microns and below, communication
methods which utilize molecular messengers become attractive,
a notion supported by the ubiquity of molecular signaling in
biological systems, sometimes using identical molecules (tokens)
and sometimes using tokens with embedded payloads such as, for
instance, m-RNA. Here we consider a wide range of molecular
signaling techniques used by biological systems, and by applying
simple information-theoretic concepts seek to develop an outer-
bound model which distills the plethora of channel details to (1)
timing, and (2) molecular “packet” payloads as the information-
bearing agents. We find that both bits/joule and bits/sec/joule
efficiencies are greatly increased by using tokens with only 1-bit
payloads and that overall information carriage efficiency (and
consequently, bit rate) is best served by using tokens with large
payloads.

Index Terms—Diffusion channel capacity, molecular signaling,
timing channel capacity

I. INTRODUCTION

Biological systems are networks of intercommunicat-
ing elements at whatever level one cares to consider –
(macro)molecules, cells, tissues, organisms, populations, mi-
crobiomes, ecosystems, and so on. It is therefore no wonder
that communication theorists have plied their trade heavily in
this scientific domain (for a recent review, see [1]). Biological
systems offer a dizzying array of processes and phenomena
through which the same and different tasks, communication or
otherwise, might be accomplished (see, for example, [2]–[8]).
Identifying the underlying mechanisms (signaling modality,
signaling agent, signal transport, and so on) as well as the
molecules and structures implementing the mechanisms is no
small undertaking. Consequently, experimental biologists use a
combination of prior knowledge and what can only be called
instinct to choose those systems on which to expend effort.
Guidance may be sought from evolutionary developmental
biology – a field that compares the developmental processes
of different organisms to determine their ancestral relationship
and to discover how developmental processes evolved. Insights
may be gained by using statistical machine learning techniques
to analyze heterogeneous data such as the biomedical literature
and the output of so-called “omics” technologies – genomics
(genes, regulatory, and non-coding sequences), transcriptomics
(RNA and gene expression), proteomics (protein expression),
metabolomics (metabolites and metabolic networks), pharma-
cogenomics (how genetics affects hosts’ responses to drugs),
and physiomics (physiological dynamics and functions of
whole organisms).

Typically, the application of communication theory to biol-
ogy starts by selecting a candidate system whose components
and operations have been already elucidated to varying de-
grees using methods in the experimental and/or computational
biology toolbox [9], [10] and then applying communication

theoretic methods [1], [7], [11]–[13]. However, we believe
that communication theory in general and information theory
in particular are not merely system analysis tools for biology.
That is, given energy constraints and some general physics of
the problem, an information-theoretic treatment can be used to
provide outer bounds on information transfer in a mechanism-
blind manner. Thus, rather than simply elucidating and quan-
tifying known biology, communication theory can winnow the
plethora of possibilities (or even suggest new ones) amenable
to experimental and computational pursuit. Likewise, general
application of communication-theoretic principles to biology
affords a new set of application areas for communication
theorists. Some aspects of the potential for communication
theory as a new lens on biological systems are explored in
[14].

In this light, here we seek to devise an abstraction
that encompasses the myriad biological processes and phe-
nomena, utilize it to devise a simpler model suitable for
communication-theoretic investigations, and analyze the resul-
tant model. Specifically, numerous scenarios in biology that
involve the transmission of information can be synthesized
and summarized as “inscribed matter” [15] is sent by an
emitter, moves through a medium, and arrives eventually
at its destination receptor where it is interpreted. Scenarios
illustrating the complexity and diversity that our abstraction
attempts to capture include the following:

• Messenger RNA molecules (mRNAs) that are transcribed
from the genome migrate from the nucleus to the cy-
toplasm where they are translated by the ribosome into
proteins.

• Molecules of the neurotransmitter acetylcholine (Ach)
that are released by the presynaptic neuron terminal
diffuse through the synaptic cleft and bind to nicotinic
Ach receptors on the motor end plate.

• Ions, molecules, organelles, bacteria and viruses that are
present in one cell are shipped through a thin membrane
channel (tunneling nanotube) to the connected cell where
they elicit a physiological response.

• Membrane-bound vesicles that contain a variety of mate-
rials and substances translocate through the cytoplasm to
the cell membrane where release their contents into the
extracellular environment.

• Malignant cells that have escaped the confines of a tissue
circulate through the bloodstream to other sites where
they re-penetrate the vessel walls and can seed a new
tumor.

• Chemicals factors that are secreted or excreted by an
individual travel outside the body where they are sensed
by a member of the same species triggering a social or
behavioral response.

We argue that the key common physical features of all these
examples from an information transfer perspective are:



• Molecule emission and reception times – inscribed matter
(token) timing information

• Variable molecule structure/composition – token informa-
tion payload

Now, although the abstraction accommodates a wide range
of spatiotemporal scale and types of emitters, inscribed matter,
and receptors, we recognize that it also neglects many biolog-
ically important features. For example, the suite of signaling
quanta – molecules, macromolecular complexes, organelles,
cells, and so on – that are released is not necessarily the same
as that which reaches the target because some may be changed
(eukaryotic mRNAs are modified post-transcriptionally), some
may be removed (Ach can be degraded by the enzyme Ach-
esterase), some never arrives (the random path produced by
diffusion may result in a trajectory that leads away from the
target), and some may be detected (bound) multiple times at a
receptor surface. In addition, the movement of inscribed matter
may be passive or active, may or may not require energy and
so on.

However, despite these real complications, the idea of
token timing information and token information payloads
still pertains as illustrated in FIGURE 1. That is, tokens
are released at the transmitter and captured by a receiver
after transport through some medium. The information flow
between emitter and receiver is bounded from above by the
information content of each token (payload) and the first-
passage time of tokens from emitter to the arbitrarily close
dashed receiver boundary. Tokens may be distinguishable,
partially distinguishable, indistinguishable or any combination.
However, we will assume that transport is i.i.d. for all tokens
of a given type – a specific signaling protein, ionic species or
the like. However, once tokens are constructed (or harvested)
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Fig. 1. Point-to-Point Molecular Signaling Channel Abstraction: An
emitted token with payload Bk emitted at time Tk is “processed” by the
channel to produce a token which pierces the dashed reception boundary at
corresponding time Sk (not shown) with (possibly modified) payload B̃k (not
shown). Also shown is the arrival of another token launched at time Tj and
arriving at time Sj with correspondingly corrupted payload B̃j .

and emitted by the transmitter, the channel between the sender
and receiver (which may include the receptor structure – hence
the inclusion of the dashed boundary around the receiver in
FIGURE 1) cannot increase the information carried no matter
how the tokens are “processed” either by the medium or by
the capture mechanism and receiver [16]. Thus, by considering
only timing and payload, we can derive upper bounds for point
to point molecular communication.

Furthermore, it should also be noted that this “finest grain”
timing/payload abstraction encompasses the more usual signal
concentration abstraction favored in most biological communi-
cation (i.e., [7]) as well as communication-theoretic work (i.e.,

[17]–[23]). That is, if time resolution is sufficiently coarsened,
the detailed timing structure is lost and we are left with tokens
received per unit time – or time-varying concentration.

Thus, we argue that token timing and payload are the
most basic information carriers for molecular communication
systems. Therefore, the mutual information between token
release and capture as well as the mutual information between
emitted payload and captured payload provide inviolable upper
bounds for information carriage rates between senders and
receivers of molecular messages.

Of course, the existence of two fundamental communication
modalities raises an obvious question: What is the interplay
between payload and timing information for molecular chan-
nels? To understand this interplay, we must first consider
timing channels with identical tokens [20], [24]–[29]. We
will then show how the identical token model extends to
a model with distinguishable tokens carrying information
payloads [20]. We will then consider the energetics of token
construction and examine the effects of timing and payload in
the carriage of information over molecular channels.

II. PAPER ORGANIZATION

We begin with a problem overview and description taken
from our previous work [26]–[30] which (re)introduces the
necessary mathematical machinery (sections III and IV). Since
the ideas associated with identical token channels are not
yet mainstream, we feel this background must be included
here for our arguments to be at all comprehensible. For
this we apologize in advance. That said, for clarity we omit
proofs of previous results. We then describe the energetics/cost
of molecular channels (section VI) and show how previous
identical-token channel results can be used to derive the
capacities per unit cost (section VIII) on systems with token
playloads. We conclude with a discussion of channel use
regimes for which timing, payload and/or both mechanisms
are energetically favorable.

III. PROBLEM OVERVIEW & NOTATION

Let us begin by assuming that M indistinguishable tokens
are emitted at times {Tm}, m = 1, 2, ...,M and each is
captured by the receiver at times {Sm}. Note that under this
assumption, the tokens themselves can carry no information
payload since if they did, they would be, almost by definition,
distinguishable in some way. The duration of token m’s
passage between source and destination is a random variable
Dm. For a given species of token, these Dm are assumed
i.i.d. with fDm(d) = g(d) = G′(d) where g() is some
causal probability density with mean 1

µ and CDF (cumulative
distribution function) G(). We also assume that g() contains
no singularities.

Thus, the first portion of the channel is modeled as a sum
of random M -vectors

S = T + D (1)

for which we have

fS(s) =

∫ s

0

fT(t)g(s− t)dt (2)

where g(s − t) =
∏M
m=1 g(sm − tm) and we impose an

emission deadline, Tm ≤ τ(M), ∀m ∈ {1, 2, ...,M}.
At this point it is tempting make a direct analogy to Bits

Through Queues [31]. However, since the tokens are identical



we cannot necessarily determine which arrival corresponds to
which emission time. Thus, the final output of the channel is
a reordering of the {Sm} to obtain a set {~Sm} where ~Sm ≤
~Sm+1, m = 1, 2, ...,M − 1. We write this relationship as

~S = PΩ(S) (3)

where Pk(), k = 1, 2, · · · ,M !, is a permutation operator and
Ω is a permutation index which produces an arrival-time-
ordered ~S from the argument S. That is, S is sorted by arrival
time to produce ~S. The associated emission time ensemble
probability density fT(t) is assumed causal, but otherwise
arbitrary. We define the launch and capture of M tokens
as a “channel use” and if we assume multiple independent
channel uses, then the usual coding theorems apply [16] and
the channel’s figure of merit is the mutual information between
T and ~S, I(~S;T).

We note that the event Si = Sj (i 6= j) is of zero measure
owing to the no-singularity assumption on g(), Thus, for
analytic convenience we will assume that fS(s) = 0 whenever
two or more of the sm are equal. This assumption also assures
that the Ω which produces ~S in equation (3) is unique.

Thus, the density f~S(~s) can be found by “folding” the den-
sity fS(s) about the hyperplanes described by one or more of
the sm equal until the resulting probability density is nonzero
only on the region where sm < sm+1, m = 1, 2, ...,M − 1.
Analytically we have

f~S(~s) =


M !∑
n=1

fS(Pn(~s)) ~s1 < ~s2 < · · · < ~sm

0 otherwise

(4)

We can likewise describe f~S|T(s|t) as

f~S|T(~s|t) =


M !∑
n=1

fS|T(Pn(s)|t) ~s1 < ~s2 < · · · < ~sm

0 otherwise
(5)

which to emphasize the assumed causality of g() we rewrite
as

f~S|T(s|t) =


M !∑
n=1

g(Pn(s)− t)u(Pn(s)− t) ordered si

0 o.w.
(6)

where u(Pn(s) − t) =
∏M
m=1 u([Pn(s)]m − tm) and u() is

the usual unit step function. (Note that [Pn(s)]m is the mth
component of the vector Pn(s).)

With these preliminaries done, we can now begin to examine
the mutual information between T, S and ~S.

IV. MUTUAL INFORMATION BETWEEN T AND ~S

The mutual information between T and S is

I(S;T) = h(S)− h(S|T) (7)

where h() is differential entropy. Since the Si given the Ti
are mutually independent, h(S|T) does not depend on fT(t).
Thus, maximization of equation (7) is simply a maximization
of the marginal h(S) over the marginal fT (t), a problem
explicitly considered and solved for a mean Tm constraint in
[31] and under a deadline constraint with exponential i.i.d.
{Dm} in [26].

The corresponding expression for the mutual information
between T and ~S is

I(~S;T) = h(~S)− h(~S|T) (8)

Unfortunately, h(~S|T) now does depend on the input distribu-
tion and the optimal form of h(~S) is non-obvious. So, rather
than attempting a brute force optimization of equation (8) by
deriving order distributions [20], [25], we invoke simplifying
symmetries as in [28], [29]. First, we may assume [28], [29]
that

fT(t) = fT(Pn(t)) ∀n (9)

so that
fS(s) = fS(Pn(s)) ∀n (10)

That is, fT() and fS() are “hypersymmetric”. Coupled to the
assumption that the first-passage density is continuous we have
the following theorem, taken from [28], [29]:

Theorem 1:
If fT() is a hypersymmetric probability density function on

emission times {Tm}, m = 1, 2, ..,M , and the first-passage
density is non-singular, then the entropy of the size-ordered
outputs ~S is

h(~S) = h(S)− logM !

and the conditional entropy of the size-ordered outputs is

h(~S|T) = h(S|T)−H(Ω|~S,T)

where H(Ω|~S,T) is the uncertainty about which index Ω
produces PΩ(S) = ~S given both T and ~S.

We note that 0 ≤ H(Ω|~S,T) ≤ logM ! with equality on
the right for any density where all the Tm are equal. Thus, for
fT() hypersymmetric and nonsingular first-passage densities
we can write the ordered mutual information as [28], [29]:

Theorem 2:

I(~S;T) = I(S;T)−
(

logM !−H(Ω|~S,T)
)

(11)

That is, an information degradation of size logM ! −
H(Ω|~S,T) ≥ 0 is introduced by the sorting operation. It is
also important to note that H(Ω|~S,T) represents the minimum
average amount of information per channel use necessary to
establish the correct one-to-one mapping between the elements
of T and ~S.

V. MAXIMIZING I(~S;T) FOR THE TIMING CHANNEL

Since h(S|T) is a constant with respect to fT(t), maximiza-
tion of equation (11) requires we maximize h(S)+H(Ω|~S,T).
Mutual information is convex in fT(t) and the space FT of
feasible hypersymmetric fT(t) is clearly convex. Thus, we
can in principle apply variational [32] techniques to find that
hypersymmetric fT() which attains the unique maximum of
equation (8). However in practice, direct application of this
method can lead to grossly infeasible fT(), implying that the
optimizing fT() lies along some “edge” or in some “corner”
of the convex search space.

After considering important technical details [29] which
establish appropriate definitions of channel use and which re-



quire finite-mean first-passage distributions G()1 we can then
(with some effort [29], [30]) obtain the following key theorem
about channel capacity Cm, the maximum information transfer
rate in nats/token:

Theorem 3: If the first-passage density fD() is exponential
with parameter µ and ρ is the constant average rate at which
tokens are released (ρ ≡ limM→∞

M
τ(M) ) then the capacity

[29] per token, Cm, obeys

Cm ≥ logχ+ e−
1
χ

∞∑
k=1

(
1

χ

)k
(kχ− 1)

log k!

k!
(12)

where χ ≡ µ
ρ .

We can rewrite equation (12) more compactly by noting that
∞∑
k=1

(
1
χ

)k
(kχ− 1) log k!

k! =

∞∑
`=1

log `

∞∑
k=`

(
1
χ

)k
(kχ−1)
k!

Then
∞∑
k=`

(
1

χ

)k
1

k!
= e

1
χ −

`−1∑
k=0

(
1

χ

)k
1

k!

and ∞∑
k=`

kχ

(
1

χ

)k
1

k!
=

∞∑
k=`−1

(
1

χ

)k
1

k!

can be used to obtain
∞∑
k=`

(
1

χ

)k
(kχ− 1)

k!
=

1

(`− 1)!

(
1

χ

)`−1

= `

(
1

χ

)`
χ

`!

We can then define the probability mass function p` =

e−
1
χ

(
1
χ

)`
1
`! , ` = 0, 1, · · · ,∞ to obtain the more compact

∞∑
k=1

(
1

χ

)k
(kχ− 1)

log k!

k!
= E` [χ(` log `)] (13)

so that equation (12) becomes

Cm ≥ logχ+ E` [χ(` log `)] (14)

VI. TOKEN CONSTRUCTION COST

From a real-world perspective, channel capacity is a mean-
ingless concept without the notion of a limited resource which
must be expended for communication. All such considerations
arguably boil down to energy constraints. Thus, we will as-
sume a biologically-inspired – but generally plausible for any
engineered system – cost structure associated with signaling
tokens and examine the capacity per joule of molecular com-
munication channels that use timing and/or payload carriage
for information transfer.

First-consider tokens without information payloads. In bi-
ological systems, small molecules and single ionic species
are often used as messengers which do not themselves carry
information payloads. Larger more complex molecules such
as specific proteins, glycans and the like can also serve as
such messengers. In the case of ionic species, the cost of a
message might include collection, sequestration or even con-
struction/extraction of the relevant molecule/ion from chemical

1Free-space diffusion processes do not have finite mean first-passage times.
However, for any real system, finite extent dictates that a finite mean first-
passage time must exist.

precursors. For more complex molecules similar consider-
ations apply, but the idea is that for a given species, the
construction cost is fixed. We will here denote the cost of
construction for the jth species without payload as c0(j) in
joules.

Now consider tokens with information payloads. Oligomers
are molecules that can be constructed by concatenation of
standard elements called monomers chosen from some “al-
phabet.” Proteins are composed from an amino acid alpha-
bet, m-RNA is composed from a nucleotide alphabet and
glycans are a branched and re-entrant complex composed of
a monosaccharide (sugar) alphabet. For proteins, the cost of
adding an amino acid to an existing chain is roughly 4 ATP
(32 × 10−20 joules) [33] and similar energy costs can be
derived for other oligomers both biological and not. To model
the cost of signaling oligomer construction we posit a base cost
c1(j) for the “superstructure” (allowing the possibility that
c1(j) = 0) and an incremental cost ∆c1(j) which represents
cost of adding a monomer to the chain. Both quantities in in
joules. For simplicity but with no loss of generality we will
assume binary alphabets so that monomer addition adds one
bit of information to the structure. That said, we will here
completely ignore the more complex structural information
issue associated with branched/re-entrant “colored graphs”
such as glycans.

Thus, a token without payload “costs” c0(j). Of course,
we note that we may have c0(j) = c1(j) + L∆c1(j) where
L is the number of monomers used to form each identical
token. So, a cost of c0(j) is a sufficient description. Similarly,
payload-carrying tokens cost c1(j)+B∆c1(j) where B is the
number of bits in the token “information payload.” A more
details accounting of energy can be found in [34].

VII. PAYLOAD-LADEN TOKEN ORDERING OVERHEAD

Human-engineered packet networks require a sequence of
tokens carrying information payloads to be “strung together”
in some way to recover the original message. To be placed in
sequence, each token must be identifiable. In packet networks,
a sequence number is used for this purpose and we could
in principle adopt a similar construction here by appending
logM bits to each token in a given signaling interval. Al-
ternatively, one could theoretically avoid overhead completely
by sending token-strings of lengths 1, 2, · · · ,K where M =
K(K+ 1)/2, but from a practical perspective, the string sizes
could become cumbersome under such a discipline with large
M . Nonetheless, there are perhaps other ways to send along
structural “side information” but we do not consider those
here. Regardless, logM is a rather pessimistic imposition of
overhead if it is unlikely that tokens will arrive out of order
– as might be the case for rapid first-passage compared to
low average token launch rate (i.e., χ � 1). So, we must
ask what is the minimum amount of information necessary to
establish token order. H(Ω|~S,T) provides a way to determine
this minimum overhead.

Remember that H(Ω|~S, t) is a measure of the reordering-
entropy given the arrivals ~S and the known departures, t.
Under the assumption of hypersymmetric fT(), t is not
known at the receiver, even after decoding because any of M !
by-design equiprobable (and indistinguishable once launched
into the channel) t could have been sent. Thus, H(Ω|~S,T)
seems of little use in determining bounds on the “sequencing



information” necessary to ensure proper reconstruction of the
message.

However, consider the timing-only channel for a moment.
From [28], [29] we see that for every hypersymmetric distri-
bution which maximizes the mutual information I(~S;T) there
exists an equivalent “folded” distribution where the {tm},
m = 1, 2, · · · ,M are strictly ordered and which also max-
imizes I(~S;T). This ordered distribution could theoretically
be employed to construct codebooks (i.e., using jointly typical
coding [16]) which asymptotically achieve capacity – and
for which decoding of received ~s sequences would reveal
the proper codeword t. And since given t the uncertainty
about which ~sj corresponds to which ti is quantified by
H(Ω|~S, t), we have 1

MH(Ω|~S, t) as the absolute minimum
average information which must be sent along with each
token to ensure proper reording at the receiver, a result we
summarize as a theorem:

Theorem 4: To ensure correct message reconstruction using
payload-laden tokens at the receiver, departure times must be
ordered t1 ≤ t2 ≤ t3 ≤ · · · ≤ tM . Then, the minimum amount
of information which must be appended to each payload-
carrying token to ensure correct sequencing at the receiver
is 1

MH(Ω|~S,T).
In the next section we provide expressions for capacity-

per-joule with identical tokens and payload-laden tokens. For
simplicity we assume no payload corruption, but note that such
potential corruption would simply produce additional coding
overhead and consequently a marginally larger payload.

VIII. PAYLOAD + TIMING ENERGY EFFICIENCY

The arguments of the previous section lead to the following
theorems.

Theorem 5: If information is conveyed only through timing
of identical tokens, then the capacity in bits per joule, CT ,
obeys

CT ≥
1

c0
(logχ+ E` [χ(` log `)]) (15)

Theorem (5) results from direct application of Theorem (3)
and the cost structure.

If information is conveyed using both timing and payload,
then for a B-bit payload, the timing+payload capacity is given
by the following theorem:

Theorem 6:

CP+T (M) = max
fT()

I(~S;T) +MB

M
(
c1 + ∆c1

(
B + 1

MH(Ω|~S,T)
))

(16)
Theorem (6) follows directly from Theorem (4) and the cost

structure. However, the optimization of equation (16) seems at
least as difficult as maximizing I(~S;T) for identical tokens.
But since we have assumed exponential first-passage, we can
apply equation (12) to obtain:

Theorem 7: Let f∗T() =
∏
m f
∗
Tm

() be the token launch
density that maximizes the timing channel I(S;T ) for expo-
nential first passage as derived in [26]. Then for M → ∞,
application of f∗T() produces rate

RP+T =
logχ+ E` [χ(` log `)] +B

c1 + ∆c1 (B + E` [χ(` log `)])
(17)

where RP+T ≤ CP+T .

Proof: Theorem (7) Application of any specific density fT()
cannot produce a rate which exceeds capacity. Via Theorem (3)
and equation (13) we have

max
fT()

1

M
I(~S;T) = Cm ≥ logχ+ E` [χ(` log `)] .

From [29] and equation (13) we know application of f∗T()
produces limM→∞

1
MH(Ω|~S,T) = E` [χ(` log `)] which

completes the proof. •
For information carried via payload only (and exponential

first passage), we have the following theorem:
Theorem 8:

CP =
B

c1 + ∆c1

(
B + mint

1
MH(Ω|~S, t)

) (18)

whose proof follows directly from direct application of Theo-
rem (3) and the cost structure. For payload-only, no decoding
of the fixed (mint

1
MH(Ω|~S, t) minimizing) launch times t

is required. But since minimization of H(Ω|~S, t) in t is non-
trivial, the following lemma is useful:

Lemma 1:

CP ≥
B

c1 + ∆c1 (B + E` [χ(` log `)])
(19)

whose proof follows directly from Theorem (7), equation (13)
and that H(Ω|~S,T) ≥ mintH(Ω|~S, t).

IX. DISCUSSION

Human-engineered packet networks generally require the
payload B to be much larger than the maximum sequencing
overhead 1

M logM ! of an M -packet message. By analogy,
equation (18) reduces to ≈ 1

∆c1
if we also assume c1 �

B∆c1. It is also worth noting that care should be taken with
payload sequence overhead. If the sequence overhead is chosen
simply as 1

M logM !, both timing+payload and payload-only
capacities approach 0 as M →∞.

In FIGURES 2 and 3 we compare equation (15), equation
(17) and equation (19) by assuming c1, the “substrate” cost
for payload-carrying tokens, is negligible relative the term in
∆c1. We also set both c0 and ∆c1 to 1 since adjustment of
c0 relative ∆c1 will simply scale the CT curve. We see in

Fig. 2. Nats per unit energy vs. 1/χ: c1 “substrate cost” assumed negligible
and c0 = ∆c1 = 1.

FIGURE 2 that information per unit energy increases as the
rate at which tokens are launched into the system increases
(increasing 1/χ). Also, the relative efficiency of payload-
only and timing+payload channels approach each other. Of
particular note, the relative efficiency of adding a single bit
of payload outstrips the timing-only channel efficiency at low



Fig. 3. Nats per passage per unit energy vs. 1/χ: c1 “substrate cost”
assumed negligible and c0 = ∆c1 = 1.

token launch rates. Likewise, timing-only becomes the least
efficient for larger 1/χ. We see similar behavior in FIGURE 3
where bits/passage-time per unit energy is plotted against 1/χ
The timing-only channel becomes the least efficient for larger
1/χ, approaching 0.5 nats/passage/unit energy as 1/χ→∞.

X. CONCLUSION

Alhough molecular transport and first-passage results con-
stitute only the first link the a molecular communication chain,
the results do provide some guidance by setting bounds on
rates assuming perfect information transfer through subsequent
processing steps such as signal molecule capture and transduc-
tion. Overall, timing-only or B = 1 (i.e., two species of token)
timing+payload channels may offer the most energy-efficient
delivery of bits at low token launch rates while payload and
payload+timing channels may offer more efficient bit rate
delivery at higher token intensities. From a biological (or
nano-engineering) perspective, if energy is limited, the results
may suggest that low bit rate traffic might be most efficiently
carried via simple tokens and timing only (which includes
signaling through temporal variation in signal concentration
such as endocrine systems). Where higher rates are required
(as with, say, genetic material replication or protein synthesis),
traffic carriage via timing + tokens with payloads (such as
m-RNA) might be the more energy-efficient choice. And of
particular note, if (as we suspect) the timing-only lower bound
is close to the corresponding upper bound, launching copious
tokens into the system (increasing 1/χ or “concentration”)
confers no increase in bit rate efficiency (or bit rate) past
approximately 1.3 times the first passage rate.
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