Molecular Communication Using Timing & Payload

Christopher Rose¹ I. Saira Mian²

¹Rutgers University, WINLAB ² University College London

WINLAB IAB December 12, 2014 1

Bio-Inspired Wireless

Overview

Biology-Inspired Molecular Communication

• Eu/Prokaryotic systems intercommunicate

- Eu/Prokaryotic systems intercommunicate
 - Emission/reception of special molecules (tokens)

• Eu/Prokaryotic systems intercommunicate

- Emission/reception of special molecules (tokens)
- Identical tokens (ACh, glutamate, epinephrine, Ca⁺⁺ ...)

Eu/Prokaryotic systems intercommunicate

- Emission/reception of special molecules (tokens)
- Identical tokens (ACh, glutamate, epinephrine, Ca⁺⁺ ...)
- "Inscribed" tokens (DNA, mRNA, glycans, proteins ...)

Eu/Prokaryotic systems intercommunicate

- Emission/reception of special molecules (tokens)
- Identical tokens (ACh, glutamate, epinephrine, Ca⁺⁺ ...)
- "Inscribed" tokens (DNA, mRNA, glycans, proteins ...)

Nanosystems will intercommunicate

Eu/Prokaryotic systems intercommunicate

- Emission/reception of special molecules (tokens)
- Identical tokens (ACh, glutamate, epinephrine, Ca⁺⁺ ...)
- "Inscribed" tokens (DNA, mRNA, glycans, proteins ...)

Nanosystems will intercommunicate

- RF/Optical/Acoustic – often antenna mismatch/power issues

Eu/Prokaryotic systems intercommunicate

- Emission/reception of special molecules (tokens)
- Identical tokens (ACh, glutamate, epinephrine, Ca⁺⁺ ...)
- "Inscribed" tokens (DNA, mRNA, glycans, proteins ...)

Nanosystems will intercommunicate

- RF/Optical/Acoustic often antenna mismatch/power issues
- Token exchange might be more efficient

Eu/Prokaryotic systems intercommunicate

- Emission/reception of special molecules (tokens)
- Identical tokens (ACh, glutamate, epinephrine, Ca⁺⁺ ...)
- "Inscribed" tokens (DNA, mRNA, glycans, proteins ...)

Nanosystems will intercommunicate

- RF/Optical/Acoustic often antenna mismatch/power issues
- Token exchange might be more efficient
- Maybe macrosystems too

Eu/Prokaryotic systems intercommunicate

- Emission/reception of special molecules (tokens)
- Identical tokens (ACh, glutamate, epinephrine, Ca⁺⁺ ...)
- "Inscribed" tokens (DNA, mRNA, glycans, proteins ...)

Nanosystems will intercommunicate

- RF/Optical/Acoustic often antenna mismatch/power issues
- Token exchange might be more efficient
- Maybe macrosystems too

Intriguing Science & Engineering

It's a Snake!

It's a Snake! It's a Tree!

It's a Snake! It's a Tree! It's a Wall!

It's a Snake! It's a Tree! It's a Wall! It's a Spear!

It's a Snake! It's a Tree! It's a Wall! It's a Spear! It's a Rope!

Chris Is Getting Old (and cranky?)

Overview

Chris Is Getting Old (and cranky?)

Is there a

Overview

Chris Is Getting Old (and cranky?)

Is there a

Unifying Elephant?

Chris Is Getting Old (and cranky?)

Is there a

Unifying Elephant?

Framework + Fundamental Limits Applications

4

A (stab at a) Unified Framework

Energy Use Is Fundamental

Energy Use Is Fundamental

Token construction + Transport

Energy Use Is Fundamental

Token construction + Transport

Inscribed Matter Is Fundamental

Energy Use Is Fundamental

Token construction + Transport

Inscribed Matter Is Fundamental

 $\text{m-RNA} \rightarrow 3.6 \times 10^{24} \frac{\text{bits}}{\text{kg}}$

Energy Use Is Fundamental

Token construction + Transport

Inscribed Matter Is Fundamental

 $\text{m-RNA} \rightarrow 3.6 \times 10^{24} \frac{\text{bits}}{\text{kg}}$

Timing Is Fundamental

Energy Use Is Fundamental

Token construction + Transport

Inscribed Matter Is Fundamental

 $m-RNA \rightarrow 3.6 \times 10^{24} \frac{bits}{kg}$

Timing Is Fundamental

Mean first passage time is key

Information-Theoretic Modeling

(for Roy, Narayan, Predrag, Waheed and Anand 🙂)

Information-Theoretic Modeling

(for Roy, Narayan, Predrag, Waheed and Anand 🙂)

Energy

Information-Theoretic Modeling

(for Roy, Narayan, Predrag, Waheed and Anand 🙂)

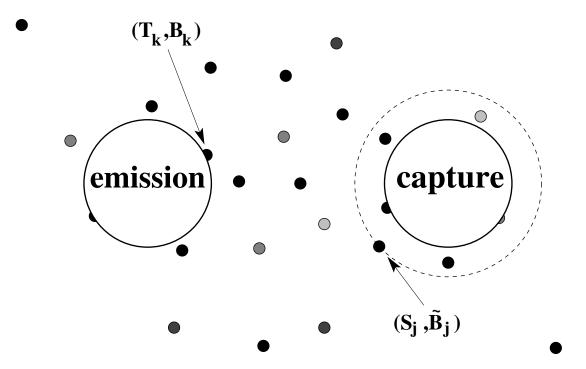
Energy Bounds

Information-Theoretic Modeling

(for Roy, Narayan, Predrag, Waheed and Anand 🙂)

Energy Bounds Ball Park Calculations

Diffusion Cartoon



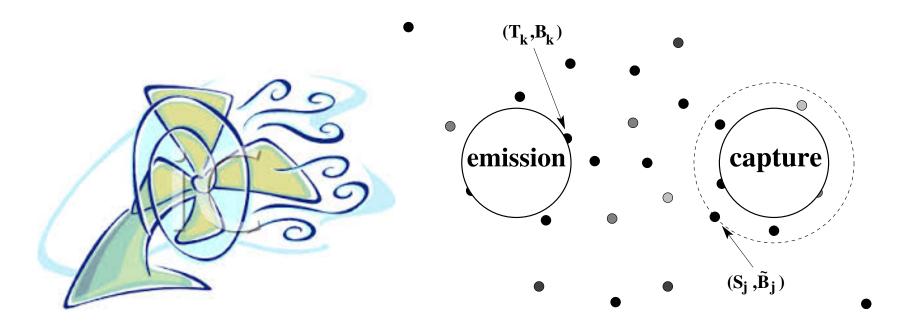
 $\textbf{Coding} \rightarrow \textbf{Emission} \rightarrow \textbf{Transport} \rightarrow \textbf{Capture} \rightarrow \textbf{Decoding}$

Rutgers WINLAB

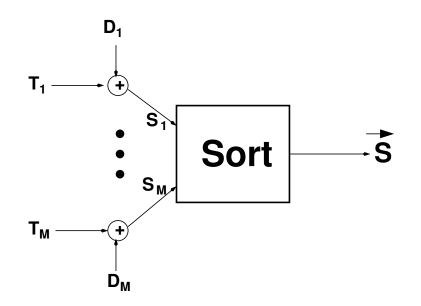
IAB Fall 2014

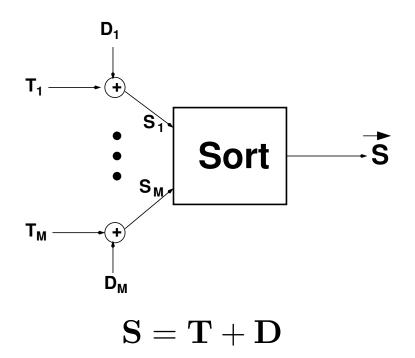
C. Rose

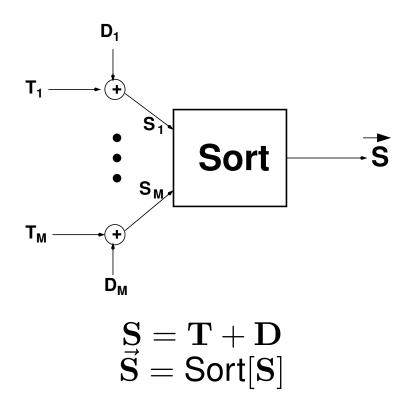
Diffusion with Drift Cartoon



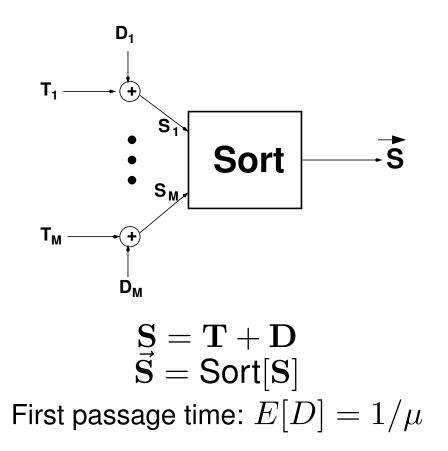
$\textbf{Coding} \rightarrow \textbf{Emission} \rightarrow \textbf{Transport} \rightarrow \textbf{Capture} \rightarrow \textbf{Decoding}$







8



Mutual Information M tokens on an interval $\tau(M)$

Mutual Information

$M \text{ tokens on an interval } \tau(M)$ $I(\mathbf{S}; \mathbf{T}) = h(\mathbf{S}) - h(\mathbf{S}|\mathbf{T})$ $= h(\mathbf{S}) - h(\mathbf{D})$ $\leq M (h(S) - h(D)), \quad \text{(i.i.d. D)}$

Mutual Information

$M \text{ tokens on an interval } \tau(M)$ $I(\mathbf{S}; \mathbf{T}) = h(\mathbf{S}) - h(\mathbf{S}|\mathbf{T})$ $= h(\mathbf{S}) - h(\mathbf{D})$ $\leq M(h(S) - h(D)), \quad \text{(i.i.d. D)}$

Easy, Right?

Mutual Information

$M \text{ tokens on an interval } \tau(M)$ $I(\mathbf{S}; \mathbf{T}) = h(\mathbf{S}) - h(\mathbf{S}|\mathbf{T})$ $= h(\mathbf{S}) - h(\mathbf{D})$ $\leq M (h(S) - h(D)), \quad \text{(i.i.d. D)}$

Easy, Right? $I(\vec{\mathbf{S}}; \mathbf{T}) = h(\vec{\mathbf{S}}) - h(\vec{\mathbf{S}}|\mathbf{T}) = ?$

 $\exists M! \mathbf{T} \stackrel{\Omega}{\to} \vec{\mathbf{T}}$

(permutation operator $P_{\Omega}()$, index Ω)

 $\exists M! \mathbf{T} \xrightarrow{\Omega} \vec{\mathbf{T}}$

(permutation operator $P_{\Omega}()$, index Ω)

 ${\bf T}$ and $\mathit{P}_{\Omega}({\bf T})$ are indistinguishable at output

 $\exists M! \mathbf{T} \xrightarrow{\Omega} \vec{\mathbf{T}}$ (permutation operator $P_{\Omega}()$, index Ω)

 ${\bf T}$ and $\mathit{P}_{\Omega}({\bf T})$ are indistinguishable at output

We can balance any given I()-maximizing $f_{\mathbf{T}}()$ so that:

$$f_{\mathbf{T}}(\mathbf{T}) = f_{\mathbf{T}}(P_{\Omega}(\mathbf{T})) \quad \forall \Omega$$

 $\exists M! \mathbf{T} \xrightarrow{\Omega} \vec{\mathbf{T}}$ (permutation operator $P_{\Omega}()$, index Ω)

 ${\bf T}$ and $\mathit{P}_{\Omega}({\bf T})$ are indistinguishable at output

We can balance any given I()-maximizing $f_{\mathbf{T}}()$ so that:

$f_{\mathbf{T}}(\mathbf{T}) = f_{\mathbf{T}}(P_{\Omega}(\mathbf{T})) \quad \forall \Omega$ Consider Only Hypersymmetric \mathbf{T} $\max_{f_{\mathbf{T}}} I(\vec{\mathbf{S}}, \mathbf{T})$

 $f_{\mathbf{T}}()$ hypersymmetry $\rightarrow f_{\mathbf{S}}()$ hypersymmetry

 $f_{\mathbf{T}}()$ hypersymmetry $\rightarrow f_{\mathbf{S}}()$ hypersymmetry $f_D()$ non-singular $\rightarrow f_{\mathbf{S}}()$ continuous

 $f_{\mathbf{T}}()$ hypersymmetry $\rightarrow f_{\mathbf{S}}()$ hypersymmetry

 $f_D()$ non-singular $\rightarrow f_{\mathbf{S}}()$ continuous

:: "Edges and Corners" of $f_{\mathbf{S}}()$ have **zero measure**

 $f_{\mathbf{T}}()$ hypersymmetry $\rightarrow f_{\mathbf{S}}()$ hypersymmetry

 $f_D()$ non-singular $\rightarrow f_{\mathbf{S}}()$ continuous

:: "Edges and Corners" of $f_{\mathbf{S}}()$ have **zero measure**

M! identical (permuted) patches of $f_{\mathbf{S}}()$

 $f_{\mathbf{T}}()$ hypersymmetry $\rightarrow f_{\mathbf{S}}()$ hypersymmetry

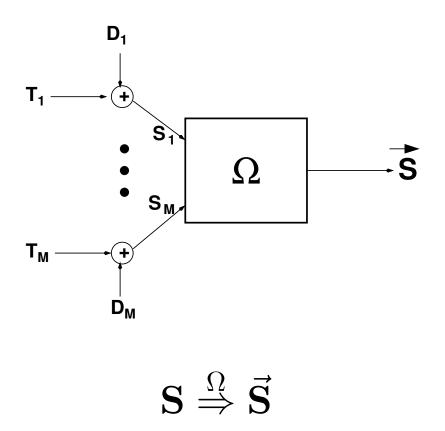
 $f_D()$ non-singular $\rightarrow f_{\mathbf{S}}()$ continuous

 \therefore "Edges and Corners" of $f_{\mathbf{S}}()$ have **zero measure**

M! identical (permuted) patches of $f_{\mathbf{S}}()$

$$h(ec{\mathrm{S}}) = h(\mathrm{S}) - \log M!$$

Channel Redux



 $\{\vec{\mathbf{S}},\Omega\}\leftrightarrow \mathbf{S}$

Rutgers WINLAB

 $\{\vec{\mathbf{S}}, \Omega\} \leftrightarrow \mathbf{S}$ $h(\mathbf{S}|\mathbf{T}) = h(\vec{\mathbf{S}}, \Omega|\mathbf{T}))$ $= h(\vec{\mathbf{S}}|\mathbf{T}) + H(\Omega|\vec{\mathbf{S}}, \mathbf{T})$

 $\{\vec{\mathbf{S}}, \Omega\} \leftrightarrow \mathbf{S}$ $h(\mathbf{S}|\mathbf{T}) = h(\vec{\mathbf{S}}, \Omega|\mathbf{T}))$ $= h(\vec{\mathbf{S}}|\mathbf{T}) + H(\Omega|\vec{\mathbf{S}}, \mathbf{T})$

$$I(\vec{\mathbf{S}};\mathbf{T}) = I(\mathbf{S};\mathbf{T}) - \left(\log M! - H(\Omega|\vec{\mathbf{S}},\mathbf{T})\right)$$

$$\{ \vec{\mathbf{S}}, \Omega \} \leftrightarrow \mathbf{S}$$

$$h(\mathbf{S}|\mathbf{T}) = h(\vec{\mathbf{S}}, \Omega | \mathbf{T}))$$

$$= h(\vec{\mathbf{S}}|\mathbf{T}) + H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$$

$$I(\vec{\mathbf{S}};\mathbf{T}) = I(\mathbf{S};\mathbf{T}) - \left(\log M! - H(\Omega|\vec{\mathbf{S}},\mathbf{T})\right)$$

$$I(\vec{\mathbf{S}};\mathbf{T}) = \underbrace{h(\mathbf{S}) + H(\Omega|\vec{\mathbf{S}},\mathbf{T})}_{\text{The Money!}} - \underbrace{(\log M! + h(\mathbf{D}))}_{\text{constant}}$$

TENSION!

Entropy maximized by independent ${\bf T}$

 $h(\mathbf{S}) \le \sum h(S_m)$

m

TENSION!

Entropy maximized by independent ${\bf T}$

$$h(\mathbf{S}) \le \sum_m h(S_m)$$

 $H(\Omega|\vec{\mathbf{S}},\mathbf{T})$ maximized by correlated \mathbf{T}

$$H(\Omega | \vec{\mathbf{S}}, \mathbf{T}) = \log M!$$

identical launch times $T_1 = T_2 = \cdots = T_M$

IAB Fall 2014

My Past Personal Struggles

 \bigcirc \exists closed form results/bounds for $H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$

My Past Personal Struggles

 \bigcirc \exists closed form results/bounds for $H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$

$$igcup_{f_{\mathbf{T}}()} \max h(\mathbf{S}) + H(\Omega|ec{\mathbf{S}},\mathbf{T}) \geq \mathbf{?}$$
 (ISIT'13)

My Past Personal Struggles

 \bigcirc \exists closed form results/bounds for $H(\Omega | \vec{\mathbf{S}}, \mathbf{T})$

$$igcup_{f_{\mathbf{T}}()} \max h(\mathbf{S}) + H(\Omega|ec{\mathbf{S}},\mathbf{T}) \geq \mathbf{?}$$
 (ISIT'13)

$$\stackrel{\scriptstyle \bullet \bullet}{=} \max_{f_{\mathbf{T}}(\mathbf{0})} h(\mathbf{S}) + H(\Omega | \vec{\mathbf{S}}, \mathbf{T}) \leq \mathbf{?} \text{ (ISIT'14)}$$

Timing Channel Details

Channel Use Formalities Handwaving

Timing Channel Details

Channel Use Formalities Handwaving

PUNCHLINE

$ho \equiv rac{M}{ ext{launch epoch}}$ all ok if mean first passage time $E[D] < \infty$

Rutgers WINLAB

IAB Fall 2014

Capacity Per Token

Define:

$$C_m(M) = \frac{1}{M} \max_{f_{\mathbf{T}}(I)} I(\vec{\mathbf{S}}; \mathbf{T})$$

Capacity Per Token

Define:

$$C_m(M) = \frac{1}{M} \max_{f_{\mathbf{T}}()} I(\vec{\mathbf{S}}; \mathbf{T})$$

Then:

$$C_m = \lim_{M \to \infty} C_m(M)$$

Capacity Per Token

Define:

$$C_m(M) = \frac{1}{M} \max_{f_{\mathbf{T}}(I)} I(\vec{\mathbf{S}}; \mathbf{T})$$

Then:

$$C_m = \lim_{M \to \infty} C_m(M)$$

And:

$$C_t = \rho C_m$$

Construction Energy

Identical Tokens: *c*₀ joules per token

Identical Tokens: *c*₀ joules per token

Inscribed Tokens:

Identical Tokens: *c*₀ joules per token

Inscribed Tokens:

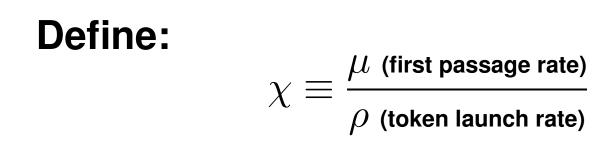
substrate: c_1 joules per tokenpayload B bits: $B\Delta c_1$ joules per tokensequence# K bits: $K\Delta c_1$ joules per token, where

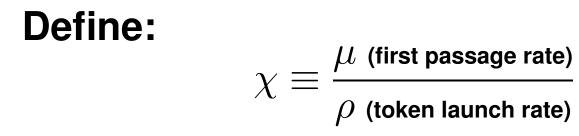
Identical Tokens: *c*₀ joules per token

Inscribed Tokens:

substrate: c_1 joules per tokenpayload B bits: $B\Delta c_1$ joules per tokensequence# K bits: $K\Delta c_1$ joules per token, where

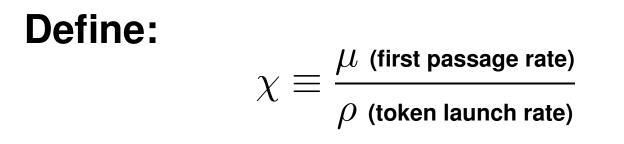
 $\frac{1}{M}H(\Omega|\vec{\mathbf{S}},\mathbf{T}) \le K \le \frac{1}{M}\log M!$





Min Max Lower Bound Parade

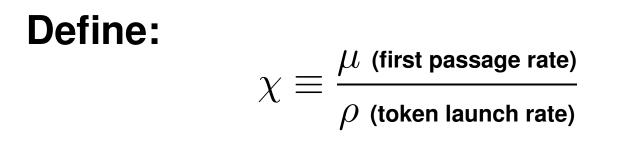
And Now ...



Min Max Lower Bound Parade

exponential first passage

And Now ...



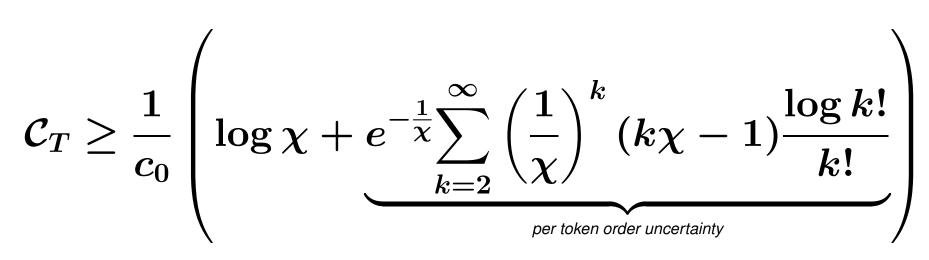
Min Max Lower Bound Parade

exponential first passage

(it's kinda the timing channel's "Gaussian")

Timing-Only Bits/Joule

Timing-Only Bits/Joule



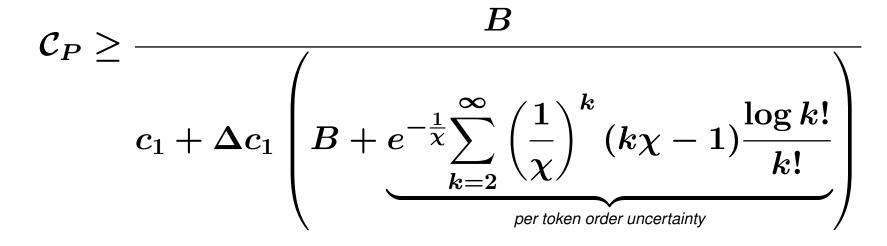
Payload-Only Bits/Joule

Theorem 2.

21

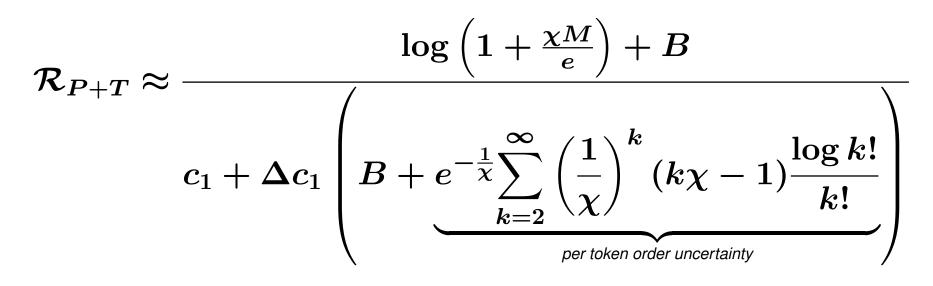
$$C_P = \frac{B}{c_1 + \Delta c_1 \left(B + \min_{\mathbf{t}} \frac{1}{M} H(\Omega | \vec{\mathbf{S}}, \mathbf{t}) \right)}$$

Lemma 3.



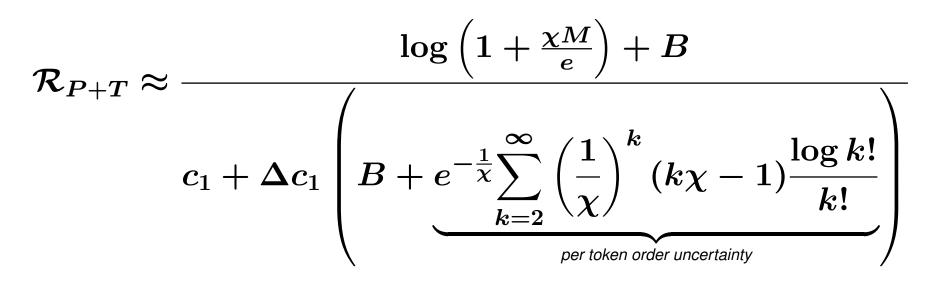
Payload + Timing Bits/Joule Lower Bound

22



where $\mathcal{R}_{P+T} \leq \mathcal{C}_{P+T}$.

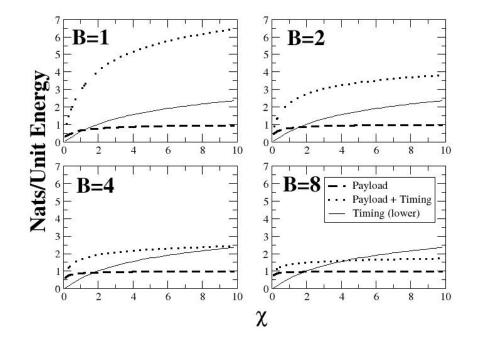
Payload + Timing Bits/Joule Lower Bound



where $\mathcal{R}_{P+T} \leq \mathcal{C}_{P+T}$.

ASIDE: dumb header $(\frac{1}{M} \log M!)$: $\mathcal{C}_{P+T} \to 0$ in M

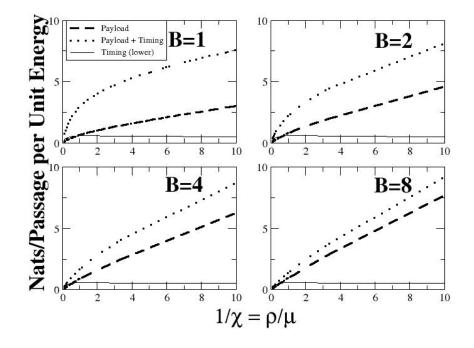
Info per Unit Energy



 $\chi \leftrightarrow$ passage rate per launch rate $c_0 = 1, c_1 = 0, \Delta c_1 = 1$

Rutgers WINLAB

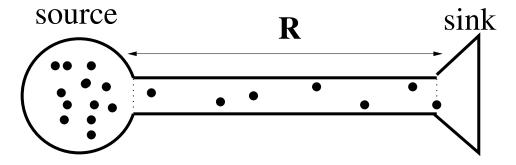
Info per Passage per Unit Energy

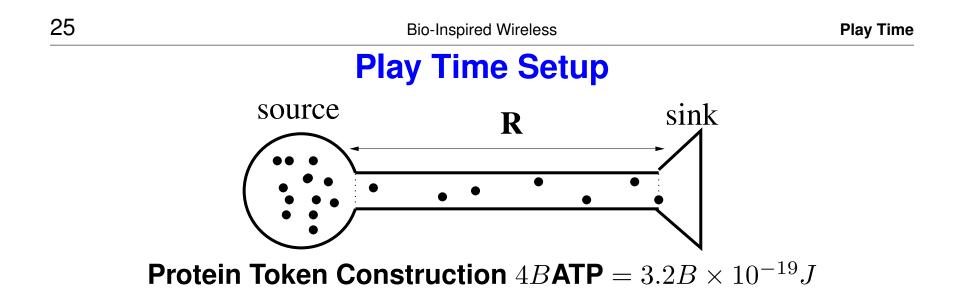


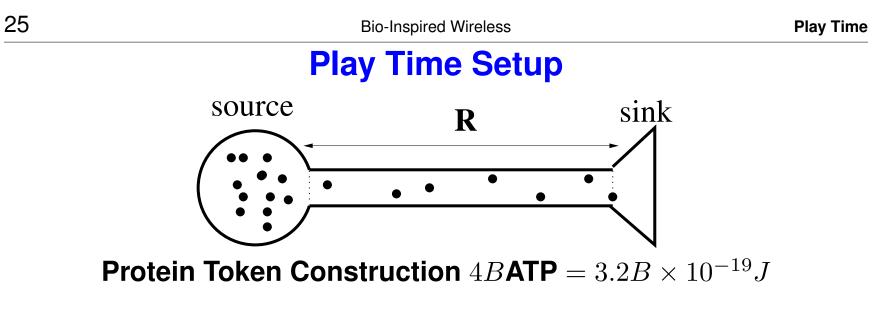
$\frac{1}{\chi} \leftrightarrow$ launch rate per passage rate $c_0 = 1, c_1 = 0, \Delta c_1 = 1$

Play Time Setup

Play Time Setup



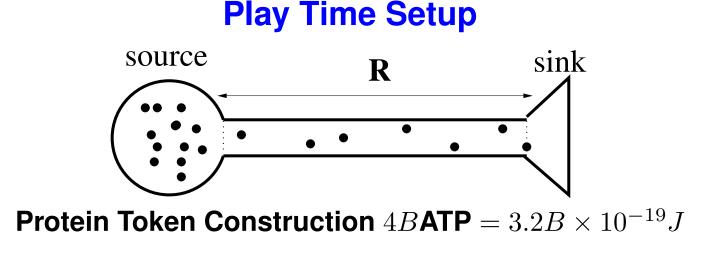




Diffusion Coefficient, \mathcal{D} :

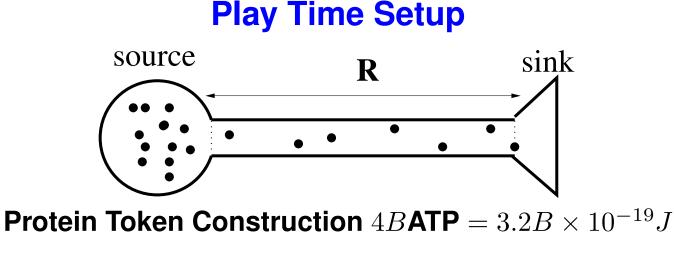
 $pprox 10^{-5} m^2/s$ in air $pprox 10^{-5} cm^2/s$ in water

25



Diffusion Coefficient, \mathcal{D} : $\approx 10^{-5}m^2/s$ in air $\approx 10^{-5}cm^2/s$ in water

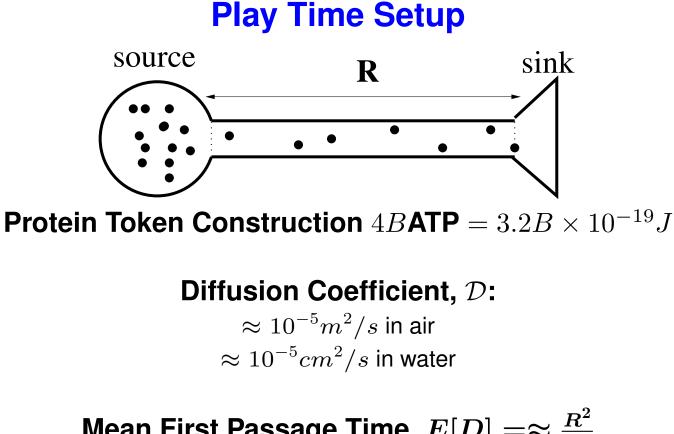
Mean First Passage Time, $E[D] = \approx \frac{R^2}{2D}$



Diffusion Coefficient, \mathcal{D} : $\approx 10^{-5}m^2/s$ in air $\approx 10^{-5}cm^2/s$ in water

Mean First Passage Time, $E[D] = \approx \frac{R^2}{2D}$

Across a table (1*m*): $E[D] \approx 14hrs$ (need fan \bigcirc)



Mean First Passage Time, $E[D] = \approx \frac{R^2}{2D}$ Across a table (1m): $E[D] \approx 14hrs$ (need fan \bigcirc) Across a synapse (20nm): $E[D] = 0.2\mu s$

Rutgers WINLAB

$$rac{1}{\chi}=rac{
ho}{\mu}=1=B$$

$$\frac{1}{\chi} = \frac{\rho}{\mu} = 1 = B$$

Across a table: \approx bits/day/attojoule

$$\frac{1}{\chi} = \frac{\rho}{\mu} = 1 = B$$

Across a table: \approx bits/day/attojoule Across a synapse: \approx Mb/s/attojoule

$$\frac{1}{\chi} = \frac{\rho}{\mu} = 1 = B$$

Across a table: \approx bits/day/attojoule Across a synapse: \approx Mb/s/attojoule

$$\frac{1}{\chi} = \frac{\rho}{\mu} = 1000 = B$$
:

$$\frac{1}{\chi} = \frac{\rho}{\mu} = 1 = B$$

Across a table: \approx bits/day/attojoule Across a synapse: \approx Mb/s/attojoule

$rac{1}{\chi}=rac{ ho}{\mu}=1000=B$: Across a table: pprox Kb/day/femtojoule

$$\frac{1}{\chi} = \frac{\rho}{\mu} = 1 = B$$

Across a table: \approx bits/day/attojoule Across a synapse: \approx Mb/s/attojoule

$\frac{1}{\chi} = \frac{\rho}{\mu} = 1000 = B$:

Across a table: \approx Kb/day/femtojoule Across a synapse: \approx Gb/s/femtojoule

Tantalizing

27

Tantalizing

Suppose token construction energy cost \ll fan energy cost

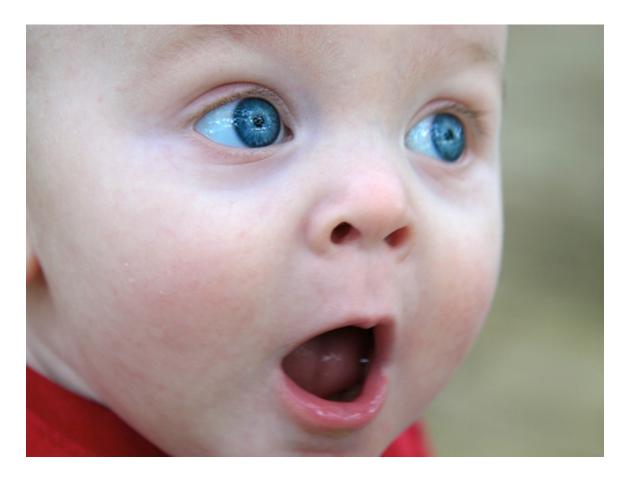
27

Tantalizing

Suppose token construction energy cost \ll fan energy cost

1mg RNA per second $\Rightarrow 3.6 \times 10^{18}$ bits/sec

Appropriately Awed Response



Rutgers WINLAB

Timing + Payload Framework

Summary

Timing + Payload Framework Lower Bounds

Timing + Payload Framework Lower Bounds Need Bit Efficiency?

Timing + Payload Framework

Lower Bounds

Need Bit Efficiency?

Slow release with timing &/or small payload

Timing + Payload Framework

Lower Bounds

Need Bit Efficiency?

Slow release with timing &/or small payload

Need Rate Efficiency?

Timing + Payload Framework

Lower Bounds

Need Bit Efficiency?

Slow release with timing &/or small payload

Need Rate Efficiency?

Fast release with payload + timing or large payload

Timing + Payload Framework

Lower Bounds

Need Bit Efficiency?

Slow release with timing &/or small payload

Need Rate Efficiency?

Fast release with payload + timing or large payload

Scary Efficiencies and Rates

Timing + Payload Framework

Lower Bounds

Need Bit Efficiency?

Slow release with timing &/or small payload

Need Rate Efficiency?

Fast release with payload + timing or large payload

Scary Efficiencies and Rates

(beware transport latency)