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Abstract

In this paper we investigate properties of simultaneougmfdting for a wireless system with two
mutually interfering transmitters and receivers with ramoperative coding strategies. This is slightly
different from the traditional interference channel peshlwhich assumes that transmitters cooperate in
their respective coding strategies, and that interfereaeeellation can be performed at the receivers.
In this non-cooperative setup, greedy capacity optimiraby individual transmitters through various
algorithms leads to simultaneous water filling fixed pointeve the spectrum of the transmit covariance
matrix of one user water fills over the spectrum of its coroesling interference-plus-noise covariance
matrix, and in our paper we study the properties of these fpadts. We show that at a simultaneous
water filling point the eigenvectors of transmit covariamoatrices at each receiver are aligned, and
identify three regimes which correspond to simultaneoutemlling that depend on the interference
gains: a) complete spectral overlap, b) partial spectraftlap, and c) spectral segregation. These imply
that the transmit covariance matrices will be white in regiof both overlap and segregation, but not
necessarily white overall. We also consider performanca &mction of interference gain and show
that complete spectral overlap is a strongly suboptimalteoi over a wide range of gains. Overall,
our results suggest that for strong mutual interferencegftort should be made to do joint decoding
over receivers since such collaboration can provide laggadity increases. For moderate interference,
distributed and/or centralized conflict resolution aljonis would be most effective since more complex
collaborative methods do not afford much improvement aridtist greedy methods such as water filling

perform poorly, while for weak interferencelaissez faireapproach seems reasonable.
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. INTRODUCTION

In unlicensed bands, spectrum is shared by all transmitias receivers, and decoding
information from a given transmitter by the intended reeeiwust cope with interference
from “alien” transmitters. Under certain conditions (suah co-located receivers, or receivers
connected to a common high speed backbone network) a wareamunication system can
be modeled as a multiple access channel [13, p. 388], forwdigast body of literature offers
numerous methods of decoding information in the presenast@fference [16], [19], [27], [28],
[39], [40]. That is, if receivers are allowed to collaborateen they can be regarded as one large
receiver with multiple inputs and multiple outputs (MIMQInd results established for MIMO
systems pertain [17], [28].

However, when no cooperation among receivers is assunfednation from a given transmit-
ter must be decoded at its intended receiver in the presdmuederence from other transmitters.
This is an instance of the interference channel [13, p. 38&)s& complete characterization is
still an open problem. We note that an early formulation @ thterference channel problem
is due to Shannon [37], and was followed by results obtairechdes later by Ahlswede [1],
Carleial [8]-[10], Sato [34]-[36], Han and Kobayashi [18hdaCosta [12]. More recent results
have been obtained in the context of MIMO systems with midtigpansmitters that interfere
with each other by Bengtsson [3] and Blum [5].

Nonetheless, mutual interference is a fact of life in wisslesystems and especially in un-
licensed bands. Thus, research into practical systemsdsidhe mutual interference problem
in a competitive context where “opposing” systems seek taimize their performance. For
instance, Yu et al. [41], [42] define a non-cooperative gamw/hich transmitters compete for
data rates, and each transmitter’s objective is greedyopeance maximization regardless of
other transmitters in the system. From this perspective ghown that for a system with two
transmitters and receivers that do not collaborate, thieitheal performance of both transmitters
is optimized by asimultaneous water fillinglistribution of transmitted powers [41], [42], which
may be achieved by application of the iterative water fillprgcedure established originally in
[43]. According to Yu et al. the simultaneous water fillingimtois a Nash equilibrium solution
for the system [41], [42], and in general multiple Nash aquii are possible for a given system.
We note that sometimes a socially optimal solution may noa idash equilibrium [15, p. 18].

In our paper we consider a similar setup as Yu et al. [41], e]sisting of a system with
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two transmitters with non-collaborating receivers. Sanilo [41], [42] we assume that the two
mutually interfering transmitters have non-cooperatiegliog strategies such that interference
cancellation can not be performed at the receivers. Thightly different than the traditional
information-theoretic approach of the interference clehpnoblem, and in this approach, greedy
capacity optimization by individual transmitters througdrious algorithms (like iterative water
filling [41]-[43] or greedy interference avoidance [24]6]R converges to simultaneous water
filling fixed points. We investigate the structure of possilsimultaneous water filling fixed
points, and derive a relationship between the spatialibligion of the transmitters and receivers
(roughly characterized by their corresponding gains) &edset of potential simultaneous water
filling fixed points. We also define socially optimum pointg fsuch systems, and determine
when these correspond to simultaneous water filling.

The paper is organized as follows. We define the problem fitlyrimaSection Il. In Section Il
we analyze simultaneous water filling solutions and deitneespectral structures of mutual water
filling points in Section IV. In Section V we assume Gaussigmaling by both transmitters and
define/illustrate the simultaneous water filling region &symmetric system. We also introduce
the notion ofcollective capacity(in lieu of the usual information theoretic “sum capacitgy a
global performance measure. We discuss weak/moderatetramg snterference in Sections V-A
and V-B respectively, focusing on optimum system perforceaand when simultaneous water
filling is optimum. In section VI we explore different systerontrol strategies for weak, moderate
and strong mutual interference and also provide bounds lativeeimprovement in comparison
to completely collaborative systems where receivers can ipformation to decode transmitted

information. We close with a summary of results in sectiomh. VI

[I. SYSTEM DESCRIPTION

Consider a wireless system with two transmitters and twoiversas depicted in FIGURE 1,
which is similar to those treated in related work by Carle&) [10], Costa [12], and Sato [36],
as well as in the recent work by Yu [41], [42]. The two tranderd and receivers coexist in
an arbitrary real-valued signal space of dimensiéonmplied by finite common bandwidth and
signaling interval constraints [21], but we do not assunmeegame representation for the signal
space in terms of a single set of orthonormal basis functionboth transmitter-receiver pairs.

Rather, we assume that each transmitter uses a differenf sethonormal basis functions for
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the signal space, and denote the two sets of orthonormad hasitions by

[ At ] [ h(t) ]
F(t)=| f.(t) and H(t) = | h,(t) Q)
| (D) | | hn(t) ]

The use of two sets of basis functions by the two transmitteg be due to the fact that each
of the transmitters may use a different wireless standarittwis a reasonable assumption in
the case of mutually interfering transmitters operatingimicensed bands. Nevertheless, since
both F'(¢) and H(t) span the same signal space, they can be related by a linaafomaation
represented by aiv x N unitary matrixU, such that(t) = UH(t) and H(t) = UT F(t). We
note that knowledge of this matrix is not required, since -t agll be seen in Section Il — it

is not relevant for our analysis of simultaneous water fillpoints.

We assume synchronization between transmitters at botivezs, and frequency flat commu-
nication channels characterized only by scalar gains. Hie lgetween a given transmitter and
its intended receiver is normalized to 1, and we denote;lthe interference gain corresponding
to transmitter 1's signal at receiver 2 apdthe interference gain corresponding to transmitter 2's
signal at receiver 1.

Letting z,(¢) be the signal sent by transmittér= 1,2, the signals at the two receivers are

ri(t) = 21(t) + /Gaw2(t) + na(?)
ro(t) = iz (t) + xa(t) + na(t)

wheren,(t) is the additive white Gaussian noise corrupting the sigati®ceiver/ = 1, 2. For

(2)

simplicity we assume that noise characteristics are theesanoth receivers, with zero mean
and power spectral density. We note that the signals from the two transmitters can btesiri
in terms of the basis functions in equation (1) as

() =F"(t)x; = H' (1)U 'xy

1o(t) = H' (t)xy = FT(t)Uxy
with x; andx, being the corresponding signal vectors. The transmittedepspectral density

3)

for transmitter? is S,,(f) and the corresponding transmitted power is

Py = El2(t)] = / TS, (Ndf (=12 @)

(0.9]
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By projecting the received signals in equation (2) onto theib&unctionsF'(¢t) and G(t) at

receiver 1 and receiver 2 respectively, we obtain the cpomding signal vectors

ry = X1 +4/92Uxz + my 5)
ry = \/EUTxl + X9 + Ny

with x; andx, the signal vectors sent by the two transmitters, apndndn, white Gaussian noise

vectors with covariance matricésin;n| | = E[nyn, | = noly. Let X, = E[x,x/ ], { = 1,2, be

the transmit covariance matrices of the two transmittert) e transmitted powers
P, = E[||x¢||?] = Trace[X/] (=1,2 (6)

We assume each receiver treats interference from the othieokred) Gaussian noise. Thus,
capacities expressed in standard units of [bits/transomp§L3] can be written as [43]
O = %log IRy| — %log 12 UXoUT + noly]
(7)

1 1
Cy = 5 log|Ro| — 5 10g[91U "X, U + oLy |

wherelog(-) denotes the base 2 logarithm, aRd and R, are the correlation matrices at each

receiver expressed as

R, = E[rir]] = X; + . UX,UT + oy ®)
Ry = Elrory ] = iU X U + X, + noly
In this framework, capacity can be optimized by individuednismitters through various
algorithms (like iterative water filling [41]-[43] or gregdnterference avoidance [24]-[26])
which converge to simultaneous water filling fixed points whthe spectrum of the transmit
covariance matrix of one user water fills over the spectruitsaforresponding interference-plus-
noise covariance matrix. In our paper we will not focus on ec#fir algorithm by which such
fixed points are reached, and note that these have beenshsicnsg25], [26], [41], [42]. Rather,
we concentrate on thepectral structureof user transmit covariance matrices at simultaneous
water filling fixed points and their performance.
In the following section we will show that the greedy capaadiiptimization implied by
simultaneous water filling leads to transmit covariancerites that imply a diagonal structure
on the correlation matrices of the received signals at the teceivers, which is similar to

classical water filling solutions. Then, we will show thatlike classical water filling spectra
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for single or multiple transmitters with a single receiverutually water-filled spectra are in
this case constrained to three different classes — completerlapped, segregated, and partially
overlapped. Furthermore, the spectrum in each region naugithite although the spectq; are

not necessarily white themselves.

1. SIMULTANEOUS WATER FILLING

Simultaneous water filling is formally defined by Yu [41] asengralization of the single-user
water filling to multiple user scenarios. For the considesgstem with two mutually interfering
transmitters described in the previous section, a simetitas water filling point is reached
when one transmitter maximizes its corresponding capégityegarding the other transmitter’'s
interfering signal as Gaussian noise and distributes @#sstnit energy over the signal space
according to a single-user water filling scheme [13, p. 288} vice versa. As noted in the
previous section, simultaneous water filling for the coased system with two transmitters and
receivers can be achieved by using algorithms like itegatmater filling [41], [42] or interference
avoidance [25], [26], which are not discussed here sincg libeoutside the scope of the paper.
We note that these algorithms yield the transmit covariana&icesX; and X, whose spectral
structure will be investigated in the subsequent sectidrihepaper.

The main result of this section is to show that at a simultasewmater filling point the two
transmit covariance matrices have the same eigenvecturs tfie perspective of each receiver,
that is, at each receiver the eigenspaces of the signalstfrertwo transmitters are aligned. We
state this result formally as a theorem:

Theorem 1 (Alignment)At a simultaneous water filling point, at a given receiveg #ignals
from the intended user and the interfering userargnedalong the same eigenvectors.

Proof: Let us express the transmit covariance matrices of the tewsinitters in terms
of their eigenvectors and eigenvalues using the spectttbriaation theorem [20, p. 104], [38,
p. 296] as
N
Xi =) o) = BAWT
N 9)
Xy =) Bioi0] = BT
=1

where® and® are the matrices of eigenvectdrs; } Y, and{¢;}, for X; andXs, respectively.

A andB are the corresponding diagonal eigenvalue matrices, vigtbnealueso; > ... > ay
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and 5; < ... < By, In decreasing and increasing order of their magnitudespetively. We
note that eigenvalues are real and non-negative sinc&thare covariance matrices, and are
therefore positive semidefinte.

From the perspective of a given transmitter, the other tratbsr is Gaussian interference,
and, in order to achieve minimum mutual interference, atnaukaneous water filling point the
eigenvectors of its transmit covariance matrix must aliggh whe eigenvectors of the interference-
plus-noise covariance matrix [32], [33], [41], [43]. Théree, at a simultaneous water filling
point, at receiver 1 the transmit covariance maiXix of transmitter 1 and interference-plus-
noise covariance matrigpUX,U' + oIy will have the same eigenvectors specifieddy This

implies that¥ diagonalizes the interference-plus-noise covarianceixnand we can write

U (gpUX,UT +ply)® = g, @ TUX, U+ ly (10)
diagonal diagonal

We note that since the left hand side is a diagonal matrix, taedsecond term in the right
hand side is also a diagonal matrix, then the first term in igjiet hand side must be a diagonal
matrix as well, which implies thaIX,U " is diagonalized by the same set of eigenvectrs
asX;. Thus, at a simultaneous water filling point, at a receivenel gignals from the intended
transmitter 1 and the interfering transmitter 2 atignedalong the same eigenvectors specified
by . We can show similarly that at recevier 2 the eigenvector¥Jo6iX,U and X, are the
same and equal t®.
]
Corollary 1 (Diagonal Structure):At a simultaneous water filling point, at a given receiver,
the received signal correlation matrix is diagonal.
Proof. Multiplying the received signal correlation matricRs andR,, in equation (8) with

their corresponding eigenvector matricksand ®, and using the alignment result in Theorem 1

implies
A =T RU =A+gB+nly (11)
Ay =3 "Ry, ® =B+ g1 A +1oly
which shows that thé\; are diagonal matrices.
]

We conclude this section by noting that the eigenvaluesetridnsmit covariance matrix of a

given transmitter must also satisfy a water filling disttibn [13, p. 253] over those eigenvectors
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of the corresponding interference-plus-noise covariana&ix with minimum eigenvalues.

V. SIMULTANEOUS WATER FILLING STRUCTURES

As mentioned in the previous section, a simultaneous wdtegfipoint can be obtained by
application of various algorithms, which will yield a settodnsmit covariance matricé§; and
X, corresponding to the signals sent by the two transmitterghis section, we discuss the
possible spectral structures that correspond to thesaianga matrices. We note that in light
of the diagonal structure result proved in the previousigectve focus the discussion on the
diagonal eigenvalue matrice® and B corresponding to the two transmit covariance matrices
X, and X5, which are the ones that determine the spectrum of the saamedius water filling
structures.

The three possible spectral structures for simultaneouatgr-filled transmit covariance ma-
trices are:

1) Complete overlap of the two spectra, when all dimensiorth@fsignal space are utilized

by both transmitters.

2) Incomplete overlap of the two spectra, when only a subsignal dimensions is shared,

leaving some dimensions for exclusive use by a single tratesm

3) No overlap of the two spectra, when transmitters place gignal energy in orthogonal

signal subspaces.

We derive the properties of such spectra in the followingehsections.

A. Complete Overlap Between Transmitted Spectra

Suppose the transmit covariance matrices for both tratemmispan the entire signal space,
which corresponds to complete overlap in signal space legtvilee transmitted spectra. Water

filling requires that eigenvalue matrices in equation (14)sbaled identity matrices, that is

A+ gB+noly = ci1ln
B+ g1A +noly = oIy

(12)

wherec; andc, are the “watermarks” corresponding to the two transmittarsl are obtained
using the trace constraints in equation (6) as

:P1+92P2
N

_ P+ g1 Py

13
N + 1o (13)

¢ + 1 and Co
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With the exception of the casg = g» = 1 when the two matrix equations implied by (12)

and (13) are identical, the solution of the system of matguagions (12) is

A==y and B=ly (14)

Since all eigenvalues of transmit covariance matrices fath dransmitters are equal in this
case, the water filling structure is also unique and impleg the transmit covariance matrices
corresponding to the two transmitters must be scaled igyemtatrices.

When g; = go = 1 multiple solutions are possible such that these satisfyutigetermined

matrix equation
. P+ P

N
We conclude this section by noting that complete spectratlap is possible for any values

A+ B+ nly =cly with

+ 1o (15)

of the interference gaing andg., and is unique except for the caseg@f= g, = 1 when many

solutions are possible.

B. Incomplete Overlap Between Transmitted Spectra

Now suppose that transmittee {1,2} covariance matrix at a simultaneous water filling point
spansk; dimensions of the signal space, such that k, > N and the two spectra overlap in
k1 + ks — N dimensions. We note that; coincides with the rank of transmittércovariance
matrix, and is fixed once the simultaneous water filling panteached.

From transmitter 1's perspective, water filling impliestthiae firstk; values ofA; in equa-
tion (11) must be identical and equal to the “water levél” in transmitter 1's subspace. This

water level is determined from the trace constraints as

k1
Trace[X,] + go Z Bi
=1

L, = =
1 o + Mo

(16)

= —— = 1
Equation (16) along with the water filling condition [13, 53 implies that the eigenvalues of

the transmit covariance matrix of transmitter 1 can be esgmeé as

@i:(£1—925i—770)+ 1=1,...,N (17)
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where the notatioriz) ™ denotes the positive part af[13, p.253] that ix)* =z if x > 0 and
()" =0 if x < 0. This implies that

L1 — g8 — for i=1,...,k
a = 1= 9206 — Mo 1 (18)
0 for i=k+1,...,N
and X is expressed only in terms of its firgt{ eigenvectors as

k1

Xy =Y (L1~ g2 — o) i) (19)

i=1
Similarly, from the perspective of the transmit covariancatrix of transmitter 2, water filling
implies that the lask, values ofA; must be identical. Proceeding as for transmitter 1 we have

N

Py + ¢ Z Q;

£2 _ i;N*szrl + 770 (20)
2

with eigenvalues of the transmit covariance matrix of tram®r 2 expressed as

ﬂj:(ﬁg—glozj—ng)+ jzl,,N (21)

or
0 for j=1,...,N —k
B = , (22)
Eg—glOéj—T]O for j=N—Fky+1,...,N
The transmit covariance matrix of transmitter 2 is writtdrert only in terms of its lask,

eigenvectors as
N

Xy = Z (Lo — qroyy — 770)¢j¢jT (23)

j=N—ko+1
We note that incomplete overlap between the two spectragnakispace does not imply
a uniqgue solution since the dimensiofis, k,) of the two subspaces spanned by the transmit
covariance matrices of the two transmitters are not unidueese various solutions may be
obtained by using different initializations in the algbrits that generate the transmit covarince
matricesX; andX,.
At this point we distinguish two cases of incomplete overtaiween the two transmitter

spectra:

1) Partial overlap withk,, k2 < N, where no transmit covariance matrix spans the entire

signal space.
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2) Nesting partial overlap witlk; = N and ky, < N, where the transmit covariance matrix
of transmitter 1 spans the entire signal space, and therspecif the transmit covariance
matrix of transmitter 2 appears “nested” with it).

1) Partial Overlap: k1, ko < N: In this case transmitter 1's signal occupies alovie- k5
dimensions of the signal space, transmitter 2’s signal piesualoneN — k; dimensions of the
signal space, and the two signals overlagint k; — N dimensions. The watermark from the
perspective of transmitter 1 (transmitter 2) is determibgdts largest eigenvaluey; (Gy), and

the water filling structure imposes the following consttsin

a1 =0y = ... = ON—ky, =

(24)

= QN_kyt1 + G2BN—kot1 = - - . = iy + G20k,
By =0Ono1 = = Byl = (25)

= 10k, + Bl = - = GION—kot1 T BN—kot1

In addition, the water filling condition requires also thlaé twatermarkC, (£;) be always less
than or equal to the interference plus noise levels on thewkmons that are not water filled [13,
p. 253]. This implies the following relationships for thedast eigenvalues of the two transmit
covariance matrices

a1 < g2fin and By < gion (26)

which further implies that the incomplete overlap case ef water filling structure is possible

only if the interference gains satisfy
9192 > 1 (27)

By solving the system of equations (24) — (25) one can see thanw, g, > 1, all the

eigenvalues can be written in terms of the largest eigeegaly and 5y as

(

a1 =0y = ... = ON—k,
On — «
ON_—fotl = - .. = Oy = M (28)
9192 — 1
L ak1+1:...:aN:O
and )
On =0Bn-1="..= P
o —f
ﬁN—kz-{-l ::ﬁkl = gll—N (29)
9192 — 1
| fi=... =Bk =0
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Thus, wheng,g, > 1 the eigenvalues of the transmit covariance matrix of eaahsmitter can
have only two nonzero values: one for the unshared dimesgibthe signal space and another
for the shared dimensions of the signal space.
Wheng,¢9, = 1, we can denote
1

g1=g and g2 = ; (30)

such that the two systems of equations (24) — (25) becoméigdén
gozn+ﬂn:goz1:ﬁ]\; n:N—k2+1,...,k1 (31)

In this case it is no longer possible to find expressions foheagenvalue in terms of the largest
eigenvaluesy; andgy as before, and theoretically any values that satisfy egug81) will also
satisfy the required water filling conditions.

2) Nested Partial Overlapk; = N and &k, < N: In this case we assume with no loss
of generality that transmitter 1's signal occupies &lldimensions of the signal space while
transmitter 2’s signal occupies onky dimensions of the signal space, such that the two signals
overlap in thek, dimensions of the signal space that are occupied by tratesn@t Thus, in
this case the transmit covariance matrix of transmitter dnspthe entire signal space and the
transmit covariance matrix of transmitter 2 spans only gersubspace. That is, transmitter 2's
signal space is completely contained (or nested) in tratesni’s signal space. The derivation
in previous section applies with minor changes, and thefdliag conditions in equation (26)

imply in this case that

Gfn+any=a; and By + gay < giog (32)

which corresponds also g g, > 1.
When g;g> > 1 the eigenvalues of the transmit covariance matrix of the fiismitter are

given in this case by

Qp =g = ... = ON_k,
G2Bn — a1 (33)
ON—fy4+1 = ... = QAN = ————
g192 — 1
while those of the transmit covariance matrix of the secoser @re given by
ﬁN:ﬁN—l = .. :ﬁN—kg—&-l (34)

51:---:51\7%2:0
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When g,¢9o = 1 the eigenvalue expressions for the overlapped dimensiorsky; +1,..., N
cannot be determined uniquely, and similar to the previ@se cany values that satisfy the water

filling conditions are possible.

C. No Overlap:k; + ky = N

Finally, suppose that the transmit covariance matriceb@ftwo transmitters span orthogonal
subspaces of the signal space at a simultaneously waterg fibint, that is, assume that
transmitter 1 signals in a subspace of dimensioand transmitter 2 signals in the remaining
N — k dimensions of the signal space. We note thatoincides with the rank of transmitter 1
covariance matrix, and is fixed once the simultaneous wdtegfipoint is reached.

Using the trace constraints in equation (6) we obtain

Py
o = Qg = = = —
1 2 k k (35)
ar < gafn
d
an , o P
k+1 — — MN—-1 — N_N—k (36)
gia1 > By
which implies that
9192 > 1 (37)
and
h_F__ah (38)

P+ Pg — N~ gP+ P
Thus, in general the solution fdris not unique, and can be any integer in the interval

P g1 P
P+ Pygy 1P+ P

We note that as the interference gains increase the rangeegpands since the lower limit

ke

(39)

decreases whef, increases and the upper limit increases wheimcreases. We also note that
for the particular case correspondingdg@., = 1 there may be no solution fdr in the discrete
representation considered. This is because when= 1 we can replace for examplg = 1/¢;

in the lower bound so that this becomes equal to the upperdourvice-versa, and if the

resulting number is not an integer there will be no solution/ in this case. Nevertheless, as
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N — oo there will always exist an integer upper/lower bound in diqua(39) wheng,g, = 1
which implies a unique solution fok.

We conclude this section by formally summarizing the relaghip between number of possible
simultaneous water filling solutions and the interferenam yaluesg; and g, in the following
theorem:

Theorem 2 (Overlap)The interference gain produgt g, arbitrates the types of spectral

overlap possible with mutually water-filled spectra.

1) g192 > 1: the transmitted spectra may overlap, and must be “whitdjoith the overlapped
and non-overlapped regions. There can be many such setecfap

2) g1g2 < 1. each transmitted spectrum must be white and span the angimal space — a
unique solution.

Proof: The first statement of the theorem is a rehash of the obsemgapresented in
sections IV-B and IV-C where we have shown that incompleterlap, as well as separation of
transmitted spectra correspondjig, > 1. For the second statement, we note that when < 1
neither incomplete spectral overlap, nor spectral sejparatre possible since the interference
gain product is less than 1 in this case. Thus, whgn < 1 only complete spectral overlap is
possible. This solution is unique since in this case all disiens of the signal space are spanned
by both transmit covariance matrices. [ ]

Using distance as a proxy for interference gain valig@sg.} the fixed point classifications

of Theorem 2 are represented pictorially in Table 1.

V. THE SIMULTANEOUS WATER FILLING REGION

We define thesimultaneous water filling regioas the set of all possible capacity p&ifs, C5)
under the assumption of Gaussian signaling by each tralesmi¥e note that the simultaneous
water filling region depends on the interference gain valgeand g, since these affect the
capacity values (see equation (7)) as well as the possibvaltsineous water filling structures
(see Table I).

Using physical distance as a proxy for the interference galoe (i.e., farther away implies
lower value) and equal transmitted powers, the scengfig < 1 corresponds roughly to
“weak/moderate interference”, in which the distance frarieast one transmitter to its associated

receiver is smaller than its distance to the “alien” receivd.e., the interfering signal at the
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alien receiver is weaker than the desired signal. The stepay, > 1 roughly corresponds to
“strong interference” where a given transmitter is closéhi® “alien” receiver associated to the
other transmitter, and interferes strongly with its trarssion.

To illustrate the simultaneous water filling region and iependence on interference gain
values, we consider a particular example of a symmetriceaystith N = 100 signal space
dimensions, gaing; = ¢, = g, transmitted power$; = P, = 10, and background noise level
no = 0.01. For these numerical values the signal-to-noise ratio (SatRhe receiver

B P
Nnq

is p =10 or 10 dB. FIGURE 2 shows various simultaneous water fillingaegicorresponding

p (40)

to different values ofy for the considered system.

Referring to FIGURE 2, our previous analysis indicates thayfe: 1 the simultaneous water
filling region consists of a single point, and this is showndeveral values of < 1 in the upper
left plot of FIGURE 2. We note that asincreases getting closer to 1 the two capacities decrease,
and the simultaneous water filling point gets closer to thgirorWe also note that in the case
of g < 1 we distinguish a truly weak interference scenario (e.gngsowith ¢ < 0.18 in the
figure') for which simultaneous water filling implies good systemfpemance with capacities
relatively close to those in the no interference case, abageh moderate interference scenario
for which performance of simultaneous water filling degsadéth capacities in this case far
away from those in the no interference case.

The case ofg > 1 corresponds to strong interference, and is illustratednha remaining
three plots of FIGURE 2. In this case the simultaneous waterditegion consists of multiple
points which can be classified in three categories accondinige three types of spectral overlap

discussed in the previous section:

« A most interior pointcorresponding to complete overlap of the spectra of the taost
mit covariance matrices at which both capacities have minmnvalues since transmitters
interfere in all dimensions of the signal space at this pdiie most interior point moves
closer to the origin ag increases showing that capacities decrease due to theasecte

interference from the “alien” transmitter.

1The value ofg = 0.18 was obtained using equation (51) in Section V-A.
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« An outer bordercontaining all points that correspond to spectral sepavatif the two
transmit covariance matrices for which the two transnsttdo not interfere with each
other. Asg increases, the outer border expands from a single pointarcéiseg = 1 to
more points that correspond to more potential partitionshef signal space between the
two transmitters.

« An interior region containing all points between the most interior point areldhter border
that correspond to incomplete spectral overlap for whiahgmitters interfere only in some
dimensions of the signal space.

We note that the points that make up the simultaneous wdtegfiegion have capacity values

which are always less than the capacities without intenfeewhich can be obtained by setting
the interference gains equal to zero. When- 0, signals sent by the two transmitters do not

interfere with each other and the corresponding capaaties
P
c&:-4%(1+—i) (=1,2 (41)

and the point implied byC,, Cy) — (1.73,1.73) on the plots in FIGURE 2 — is always above
the simultaneous water filling region. According to CarldBl this point is achievable in the

case of strong interference by subtracting interferenom fthe desired signal and decoding it
as in the absence of interference, but it does not corresfmoadimultaneous water filling point

since it lies outside of the simultaneous water filling regio

To evaluate the performance of the system overall, we inttedhe sum of capacities
C=0C1+ 0y (42)

which we call thecollective capacityin order to distinguish it from the information-theoretic
sum capacityused when receivers can collaborate [27], [28]. This measuuseful in the case
g192 > 1 (where multiple simultaneous water filling points are pbkito evaluate which point
is a most desirable from a global perspective. It is alsoulsefthe casey; g, < 1 (when the
simultaneous water filling point is unique) to compare ithmdther spectral partitions which
may be more desirable for the system.

We define thesocial optimumas the point for which the collective capacityis maximized.
We note that, whem, g, = 1 the outer border of the simultaneous water filling regionsists

of a single point where both transmitters maximize theiracétpes, and which corresponds to
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complete spectral separation in signal space. At this fgmmttt individual and collective interests
are satisfied since the collective capadityis also maximized at this point, and we note that
complete spectral separation corresponds to a social ogtim this case.

What is perhaps most interesting about the montage of FIGUREHat from a system design
perspective, the weak and strong interference cases atepiedlematic. For weak interference
(shown in upper left plot of FIGURE 2), mutual interferenceels are comparable to or below
the noise floor so mutually water-filled solutions will prdei good system performance with
capacities relatively close to those in the no interferecase. For strong interference (shown
in the remaining three plots of FIGURE 2 fgr= 1,2,100) there exists a mutual water filling
solution which is also optimum from a collective capacitgratpoint. This solution corresponds
to signal space partitioning between transmitters, andtisted on the outer border of the
simultaneous water filling region as shown in the correspanglots of FIGURE 2. In addition,
in the case of strong interference all the other points onatlter border of the simultaneous
water filling region, although suboptimal, correspond tdemtive capacity values close to the
optimal value [25], [30]. In contrast, for moderate inteeiece (shown in upper left plot of
FIGURE 2 along with weak interference) simultaneous watdéindilleads to capacity values
that are much below those in the no interference case, anshtitters would be better served if
they agreed (or were forced) to signal in different regiohthe signal space. We explore these

various levels of interference in the next sections.

A. Weak and Moderate Interference

In his doctoral dissertation [41] Yu approaches the systattm two mutually interfering trans-
mitters and non-cooperating receivers from a game-thieqretspective, and models this instant
of the interference channel problem as a non-cooperativeega which the two transmitters
compete for maximizing their capacities. Using this apphoi is shown that when interference
gains g;go < 1, simultaneous water filling represents a Nash equilibriummipof the non-
cooperative interference channel game [41]. In game theoiyash equilibrium is defined by
a set of strategies such that each player’s strategy is amalptesponse to the other players’
strategies [15, p. 11]. From this perspective, a Nash dxuimn is reached for the Gaussian
interference channel game if and only if a simultaneous mfltang solution is produced by

both transmitters, and the optimal signaling strategy ehdeansmitter is to water fill the signal
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space while regarding the interfering signal of the othangmitter as noise [41]. We note that a
Nash equilibrium is said to be Pareto deficient (or non-Papgtimal) if at least one player would
do better and the other one would do no worse by switching tdferent strategy [44, p. 52].
Such Nash equilibria are not necessasfficientin that there exist cooperative strategies where
both players achieve better returns. Classical exampldssrsénse are therisoner’s Dilemma
[44, p. 51] ortit for tat strategies [22]. For,g9. < 1 we see from FIGURE 2 that capacities
achieved by transmitters under simultaneous water fillegrelase as interference gains increase,
and we will show that the Nash equilibrium implied by simakaus water filling in this case
can be either efficient or inefficient depending upon thellevanterference. Specifically, we
will explore the relative efficiencies of simultaneous wdilting and signal space partitioning
(or segregation) under moderate and weak interference.

With simultaneous water filling each transmitter achievagacity

N P1 N P2
cvf = o (1 + —) cvl = o (1 + —) 43
! 2 & g2 PP + Ny 2 2 s g1 P14+ N (43)

and the collective capacity is

Cor = CYT+Cy7

Ny (1+ B ) + Ny (1+ I ) 44
2 & g2 P + N 2 s g1 P+ Nnj

For simplicity let us assume a symmetric system with= P, = P, ¢g; = go = g, and the raw

SNR p as defined in equation (40), for which we obtain

p
Cur=N1 1+ 45
! % ( Py + 1) (49)
With signal space partitioning, capacities are given by
k Py
=1 14+ —
=y Og( i k”?o)
(46)
N —k P,
P = lo [1 + —]
S T
so the collective capacity is
k Py
= 7 =1 14+ —
Csp '+ G5 5 og( + kﬁo)
(47)

+ N=Fky, {1+—P2 ]
2 s (N_k)ﬁo
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with k£ the number of dimensions occupied by transmitter 1. Oncedgasimplicity we assume

a symmetric system to obtain

k (1 + k/LN> N p
Cop = zlog —< + —log [1 + —} (48)
2 <1+ 175/1\[) 2 (1—-Ek/N)
which is maximized byt = N/2 which implies
. N

We plot valuesCi?, €57, and ¢/ = C¥/ = ¢/ for a symmetric system withtV = 100
signal space dimensions, transmitted povr= 10, moderate interference gain= 0.5 and
noise poweny, = 0.01 for k ranging from 1 to 99 dimensiofsn FIGURE 3 and see that as
the number of signal space dimensidneccupied by transmitter 1 increasé€s? increases and
C5" decreases — an obvious result. Less obvious, we see thatwiatearange of values fok,
both transmitters achieve higher capaciti¢® and C5” if they partition the signal space than
the capacityC™/ corresponding to the simultaneous water filling solutiore ¥s0 see that the
collective capacity when transmitters partition the slgsaceC,, does not vary widely with
k. We thus form the impression that for moderate interferebogh transmitters can often do
much better under segregation than they would under simedias water filling, thus suggesting
that the Nash equilibrium point implied by simultaneousewvdilling is an inefficient one.

Of course, the illustration begs the question of what ctutss moderate vs. weak interference.
To this end we note that simultaneous water filling collextrapacityC; , depends on both the
interference gaiy and the (raw) transmitter SNR whereas signal space partitioning collective
capacityC,,, depends only omp. We can plot these two capacity surfaces as a functiopn arfid
p as in FIGURE 4: the left hand side plot has a linear scalegfowhile the right hand side
plot has a logarithmic scale far and “magnifies” the intervay < 0.5. Qualitatively, we note
that only for small values of the interference gaimloes simultaneous water filling outperform
segregation. Otherwise, the collective capacity underadigpace partitioning is larger than for

simultaneous water filling. This observation can be quaaithy comparing the two capacity

2The valuesk = 1, respectivelyk = 99, correspond to the extreme cases in which transmitter 1, respectiveimitter 2,

signal in only one signal dimension.
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expression in equation (45) and equation (49)

segregate

N > P
“log 142 Nlog 1 50
2%[+M < %(+W+J (50)

share

which simplifies to

segregate
> 1 —2g
P < 247

(51)
share

Since the raw SNR is positive, equation (51) is always satisfied o5 < ¢ < 1, and one can
define moderate interference as corresponding to intexdergain values in the intervél.5, 1),
for which segregation outperforms simultaneous watemnglliand isalways preferable when
g > 0.5. In general the critical value of for a given SNRp is

R (52)
and for anyg > ¢*, segregation is preferable. For instance, for the numesiample considered
in FIGURE 2, withp = 10, we haveg* = 0.18.

We close this section by noting that, assuming moderatefémésce and segregation, the

necessary condition for maximizing the collective capatitequation (47) is [25], [29]

P B
'k  N—k (53)

and is similar to the result obtained in [4] using a differgq@rformance criterion than the

collective capacity used in this work.

B. Strong Interference

As can be seen from FIGURE 2, “strong interferen@g’g. > 1) implies multiple solutions for
which capacities of both transmitters can vary widely. Trastinterior point of the simultaneous
water filling region corresponds to complete spectral @agenh signal space, the points inside the
region correspond to incomplete spectral overlap, andtpan the outer border correspond to
spectral separation in signal space. kot 1 the outer border of the water filling region becomes
a single point, and ag increases, the outer border expands and more points congisg to

spectral separation in signal space are possible. Furtirerrtine point corresponding to complete
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spectral overlap moves closer to the origin agcreases. The points inside the water filling
region are suboptimal with respect to achievable capadaityesthe largest capacity is achieved
by points on the outer border. The worst case scenario is ledenppectral overlap.

However, the fact remains that under strong interferencéntg on the boundary of the
simultaneous water filling region are stable under greedyuraptions. Furthermore, from a
system perspective, the collective capacity varies onlgenately as a function of the amount of
signal space alloted to one transmitter over another asisdelGURE 3. So the main objective
from a system control standpoint is to find algorithms or radthwhich nudge transmitters

toward the simultaneous water filling boundary [25], [30].

VI. DISCUSSION
Our results have interesting system control implicatidfa. instance, under weak interfer-

ence (19> < 1 and moderate signal to noise ratio in a symmetric system)hae found
that essentially ignoring interference and water fillingeothe entire signal space provides
good performance for each transmitter and maximum colleatapacity as well. Under strong
interference 4,92 > 1), socially optimal segregatory Nash equilibria exist akidg strongly
suboptimal but equally stable water-filling Nash equibriWhile the suboptimal equilibria are
undesirable, the stability of the optimal equilibria holgt dilope that algorithms could be devised
which reward transmitters who limit their spectral use andigh those who spread too widely.
Under moderate interferencég;g. < 1), the water filling Nash equilibria can be strongly
suboptimal from a collective capacity standpoint and mo@adly optimal segregatory solutions
are inherently unstable.

Since all these interference regimes seem probable inamdex wireless environments pop-
ulated by current and emerging technologies, it seems ptugeask what types of control
mechanisms should be developed for efficient system oparati

In environments where interferers must repeatedly intef@s opposed to one-time interac-
tions) there are a variety of distributed control ideas Wwhian be brought to bear — strategies
such as “tit for tat” or “generous tit for tat” [2], [23]. Thesdeas are currently being explored
in the context of mutually interfering systems for both m@de and strong interference [29],
[30].

Alternatively, one could envision a “spectrum server/advi [6], [31] to which systems

might turn to help mediate spectrum use. The effective specserver would monitor local
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environments, determine the type and strength of intemtereand advise systems on the most
efficient use of spectral resources or at least on iterative@tegies which led to improved
performance.

This more global view of a spectrum advisor begs a comparmdaollaborative versus non-
collaborative approaches since one could imagine that riaicecircumstances (such as strong
interference) collaborative decoding could produce iregike capacity gains. That is, in a world
increasingly populated by smart wideband radios, the lzhst@ might be to cooperate [16], [19],
[27], [28], [39] as opposed to finding ways to independentigre the signal space. Likewise,
there are also scenarios where the increased complexitjlaboration or explicitly coordinating
spectrum use might not be worth meager best-case capadaity. ga

To this end, consider the example in FIGURE 5 which correspdnda symmetric system
with two transmitters for weak, moderate, and strong ieterfice. In both plots of FIGURE 5
we have shown the maximum sum capacity line of the GaussidnOvilnultiple access channel
that corresponds to a collaborative scenario computed d¥]rfor transmit covariance matrices
that maximize sum capacity in the collaborative scenarg]j.[2

For moderate and strong interferenge>{ 0.5), we note that there is a significant difference
between collaborative capacities corresponding to maxirsum capacity in the collaborative
scenario and the non-collaborative capacities in achievetthe outer border of the simultaneous
water filling region. The reason for this disparity is ob\saince increaseglimplies more power
capture by the “alien” receiver. In contrast, for weak ifeegnce the difference in performance
is much less pronounced so that from a systems perspedtiess ts little to be gained by
employing more sophisticated multi-system collaboratomterference channel coding methods

— we would be better served by finding ways to help transmititeavoid one another.

VIl. SUMMARY AND CONCLUSIONS
We have considered a simple non-collaborative wirelesesysvith two transmitters and two
receivers with flat communication channels, in which grepdsformance optimization by indi-
vidual transmitters leads to simultaneous water fillingisohs. We have investigated properties
of different solutions in relation to the interference gabetween transmitters and receivers, and
have identified their spectral structumpletely overlapped@here each transmitter’s spectrum

is white,partially overlappedvhere each transmitter’s spectrum is white in the overlgmreand
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also white in regions where there is no overlap but not whiterall, andcompletely separated
where each transmitter spectrum is white in its respectiosgace. In addition, we have defined
the simultaneous water filling regioas the set of pairs of achievable capacities for all possible
simultaneous water filling points, for given transmittedveos, interference gains, and signal
space dimensions, and thellective capacityas a global performance measure which allowed a
global perspective on system performance. We have alsodaa\a more detailed investigation
of “weak”, “moderate”, and “strong” interference, focugion when simultaneous water filling
achieves optimal system performance and when it does not.

For weak interference, simultaneous water filling is indeptimal since mutual interference
levels are comparable to or below the noise floor. For modarderference, water filling can
be strongly suboptimal, and signal space partitioningrseffeuch better performance. For strong
interference, simultaneous water filling can result in albgioptimal resource sharing. However,
without external guidance toward the outer border of theuBmeous water filling region,
there are many stable suboptimal “traps” in which the compesystems could be caught.
These considerations led to the notion of a spectrum sadsgsor which could help mutually
interfering systems to better utilize shared spectrum.

To better understand design tradeoffs, non-collaboratias compared by means of numerical
examples to complete collaboration where receivers pdornmation for joint decoding. For
strong interference, both systems would be best served Bndirways to pool information and
collaborate as opposed to pursuing various signal spaceatem strategies [25], [29], [30], or
even sophisticated joint coding/decoding methods [16]] ythich would only increase capacity
incrementally. In contrast, for moderate to weak interfiess signal space partitioning affords
good performance and the incremental gains to be had bybco#iion are relatively small.
So some means of keeping transmissions out of each otheyss@eams to be indicated. Such
methods might be centralized as in a spectrum “advisoes&f@], [31] or could be distributed
as in tit for tat or other repeated game strategies [2], [1],[[14], [23], [29], [30].
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Fig. 1. A system with two transmitters and two receivessis the interference gain corresponding to transmitter 1's signal at

“alien” receiver 2 andys is comparably defined. Gains to “home” receivers are normalized to 1.

TABLE |
Equilibrium Points
Overlap g1g2 > 1 g1g2 =1 9192 <1
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3Except for the casg: = g = 1 when many equilibrium points are also possible as discussed in Section IV-A
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Fig. 2. Simultaneous Water Filling Region as a Function of Interference. @aiz 100 signal space dimensions, interference

gainsg: = g2 = g, transmitted power$ = P> = 10, and noise floot), = 0.01.
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Fig. 3. Capacity variations as a function of signaling subspace width faterate interferenceN = 100 signal space

dimensions, transmitted powef§ = P> = 10, interference gaing: = g» = 0.5 and noise floom, = 0.01.
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Fig. 4. Water filling and separation collective capacity as a function of ertente gain and noise level for a symmetric system
with M = 2 transmitters.N = 100 dimensions, user powd? = 10, interference gain ranges frojm= 0.001 to g = 1, and

background noise levej, ranges fromi0~° to 10 (so thatp ranges from—20dB to 50dB).
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Fig. 5. A Comparison of Capacity Performance Between Collaborattem&io and Non-Collaborative Simultaneous Water
Filling (SWF) Scenario for Mutually Interfering Systems. Transmitted pewe = P> = P = 10, noise levelnp, = 0.01,
and interference gaing; = g2 = 0.1 (weak interference)g: = g» = 0.5 (moderate interference), and = g= = 20 (strong

interference).



