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Abstract

In this paper we investigate properties of simultaneous water filling for a wireless system with two

mutually interfering transmitters and receivers with non-cooperative coding strategies. This is slightly

different from the traditional interference channel problem which assumes that transmitters cooperate in

their respective coding strategies, and that interferencecancellation can be performed at the receivers.

In this non-cooperative setup, greedy capacity optimization by individual transmitters through various

algorithms leads to simultaneous water filling fixed points where the spectrum of the transmit covariance

matrix of one user water fills over the spectrum of its corresponding interference-plus-noise covariance

matrix, and in our paper we study the properties of these fixedpoints. We show that at a simultaneous

water filling point the eigenvectors of transmit covariancematrices at each receiver are aligned, and

identify three regimes which correspond to simultaneous water filling that depend on the interference

gains: a) complete spectral overlap, b) partial spectral overlap, and c) spectral segregation. These imply

that the transmit covariance matrices will be white in regions of both overlap and segregation, but not

necessarily white overall. We also consider performance asa function of interference gain and show

that complete spectral overlap is a strongly suboptimal solution over a wide range of gains. Overall,

our results suggest that for strong mutual interference, aneffort should be made to do joint decoding

over receivers since such collaboration can provide large capacity increases. For moderate interference,

distributed and/or centralized conflict resolution algorithms would be most effective since more complex

collaborative methods do not afford much improvement and strictly greedy methods such as water filling

perform poorly, while for weak interference alaissez faireapproach seems reasonable.
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I. I NTRODUCTION

In unlicensed bands, spectrum is shared by all transmittersand receivers, and decoding

information from a given transmitter by the intended receiver must cope with interference

from “alien” transmitters. Under certain conditions (suchas co-located receivers, or receivers

connected to a common high speed backbone network) a wireless communication system can

be modeled as a multiple access channel [13, p. 388], for which a vast body of literature offers

numerous methods of decoding information in the presence ofinterference [16], [19], [27], [28],

[39], [40]. That is, if receivers are allowed to collaborate, then they can be regarded as one large

receiver with multiple inputs and multiple outputs (MIMO),and results established for MIMO

systems pertain [17], [28].

However, when no cooperation among receivers is assumed, information from a given transmit-

ter must be decoded at its intended receiver in the presence of interference from other transmitters.

This is an instance of the interference channel [13, p. 382] whose complete characterization is

still an open problem. We note that an early formulation of the interference channel problem

is due to Shannon [37], and was followed by results obtained decades later by Ahlswede [1],

Carleial [8]–[10], Sato [34]–[36], Han and Kobayashi [18], and Costa [12]. More recent results

have been obtained in the context of MIMO systems with multiple transmitters that interfere

with each other by Bengtsson [3] and Blum [5].

Nonetheless, mutual interference is a fact of life in wireless systems and especially in un-

licensed bands. Thus, research into practical systems has cast the mutual interference problem

in a competitive context where “opposing” systems seek to maximize their performance. For

instance, Yu et al. [41], [42] define a non-cooperative game in which transmitters compete for

data rates, and each transmitter’s objective is greedy performance maximization regardless of

other transmitters in the system. From this perspective it is shown that for a system with two

transmitters and receivers that do not collaborate, the individual performance of both transmitters

is optimized by asimultaneous water fillingdistribution of transmitted powers [41], [42], which

may be achieved by application of the iterative water fillingprocedure established originally in

[43]. According to Yu et al. the simultaneous water filling point is a Nash equilibrium solution

for the system [41], [42], and in general multiple Nash equilibria are possible for a given system.

We note that sometimes a socially optimal solution may not bea Nash equilibrium [15, p. 18].

In our paper we consider a similar setup as Yu et al. [41], [42]consisting of a system with
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two transmitters with non-collaborating receivers. Similar to [41], [42] we assume that the two

mutually interfering transmitters have non-cooperative coding strategies such that interference

cancellation can not be performed at the receivers. This is slightly different than the traditional

information-theoretic approach of the interference channel problem, and in this approach, greedy

capacity optimization by individual transmitters throughvarious algorithms (like iterative water

filling [41]–[43] or greedy interference avoidance [24]–[26]) converges to simultaneous water

filling fixed points. We investigate the structure of possible simultaneous water filling fixed

points, and derive a relationship between the spatial distribution of the transmitters and receivers

(roughly characterized by their corresponding gains) and the set of potential simultaneous water

filling fixed points. We also define socially optimum points for such systems, and determine

when these correspond to simultaneous water filling.

The paper is organized as follows. We define the problem formally in Section II. In Section III

we analyze simultaneous water filling solutions and derive the spectral structures of mutual water

filling points in Section IV. In Section V we assume Gaussian signaling by both transmitters and

define/illustrate the simultaneous water filling region fora symmetric system. We also introduce

the notion ofcollective capacity(in lieu of the usual information theoretic “sum capacity”)as a

global performance measure. We discuss weak/moderate and strong interference in Sections V-A

and V-B respectively, focusing on optimum system performance and when simultaneous water

filling is optimum. In section VI we explore different systemcontrol strategies for weak, moderate

and strong mutual interference and also provide bounds on relative improvement in comparison

to completely collaborative systems where receivers can pool information to decode transmitted

information. We close with a summary of results in section VII.

II. SYSTEM DESCRIPTION

Consider a wireless system with two transmitters and two receivers as depicted in FIGURE 1,

which is similar to those treated in related work by Carleial [8], [10], Costa [12], and Sato [36],

as well as in the recent work by Yu [41], [42]. The two transmitters and receivers coexist in

an arbitrary real-valued signal space of dimensionN implied by finite common bandwidth and

signaling interval constraints [21], but we do not assume the same representation for the signal

space in terms of a single set of orthonormal basis functionsfor both transmitter-receiver pairs.

Rather, we assume that each transmitter uses a different set of orthonormal basis functions for
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the signal space, and denote the two sets of orthonormal basis functions by

F (t) =













f1(t)
...

fn(t)
...

fN(t)













and H(t) =













h1(t)
...

hn(t)
...

hN(t)













(1)

The use of two sets of basis functions by the two transmittersmay be due to the fact that each

of the transmitters may use a different wireless standard which is a reasonable assumption in

the case of mutually interfering transmitters operating inunlicensed bands. Nevertheless, since

bothF (t) andH(t) span the same signal space, they can be related by a linear transformation

represented by anN ×N unitary matrixU, such thatF (t) = UH(t) andH(t) = U
⊤F (t). We

note that knowledge of this matrix is not required, since – asit will be seen in Section III – it

is not relevant for our analysis of simultaneous water filling points.

We assume synchronization between transmitters at both receivers, and frequency flat commu-

nication channels characterized only by scalar gains. The gain between a given transmitter and

its intended receiver is normalized to 1, and we denote byg1 the interference gain corresponding

to transmitter 1’s signal at receiver 2 andg2 the interference gain corresponding to transmitter 2’s

signal at receiver 1.

Letting xℓ(t) be the signal sent by transmitterℓ = 1, 2, the signals at the two receivers are

r1(t) = x1(t) +
√
g2x2(t) + n1(t)

r2(t) =
√
g1x1(t) + x2(t) + n2(t)

(2)

wherenℓ(t) is the additive white Gaussian noise corrupting the signalsat receiverℓ = 1, 2. For

simplicity we assume that noise characteristics are the same at both receivers, with zero mean

and power spectral densityη0. We note that the signals from the two transmitters can be written

in terms of the basis functions in equation (1) as

x1(t) = F⊤(t)x1 = H⊤(t)U⊤
x1

x2(t) = H⊤(t)x2 = F⊤(t)Ux2

(3)

with x1 andx2 being the corresponding signal vectors. The transmitted power spectral density

for transmitterℓ is Sxℓ
(f) and the corresponding transmitted power is

Pℓ = E[x2

ℓ(t)] =

∫
∞

−∞

Sxℓ
(f)df ℓ = 1, 2 (4)



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 5

By projecting the received signals in equation (2) onto the basis functionsF (t) andG(t) at

receiver 1 and receiver 2 respectively, we obtain the corresponding signal vectors

r1 = x1 +
√
g2Ux2 + n1

r2 =
√
g1U

⊤
x1 + x2 + n2

(5)

with x1 andx2 the signal vectors sent by the two transmitters, andn1 andn2 white Gaussian noise

vectors with covariance matricesE[n1n
⊤

1 ] = E[n2n
⊤

2 ] = η0IN . Let Xℓ = E[xℓx
⊤

ℓ ], ℓ = 1, 2, be

the transmit covariance matrices of the two transmitters, with the transmitted powers

Pℓ = E[‖xℓ‖2] = Trace[Xℓ] ℓ = 1, 2 (6)

We assume each receiver treats interference from the other as (colored) Gaussian noise. Thus,

capacities expressed in standard units of [bits/transmission] [13] can be written as [43]

C1 =
1

2
log |R1| −

1

2
log |g2UX2U

⊤ + η0IN |

C2 =
1

2
log |R2| −

1

2
log |g1U

⊤
X1U + η0IN |

(7)

wherelog(·) denotes the base 2 logarithm, andR1 andR2 are the correlation matrices at each

receiver expressed as

R1 = E[r1r
⊤

1 ] = X1 + g2UX2U
⊤ + η0IN

R2 = E[r2r
⊤

2 ] = g1U
⊤
X1U + X2 + η0IN

(8)

In this framework, capacity can be optimized by individual transmitters through various

algorithms (like iterative water filling [41]–[43] or greedy interference avoidance [24]–[26])

which converge to simultaneous water filling fixed points where the spectrum of the transmit

covariance matrix of one user water fills over the spectrum ofits corresponding interference-plus-

noise covariance matrix. In our paper we will not focus on a specific algorithm by which such

fixed points are reached, and note that these have been discussed in [25], [26], [41], [42]. Rather,

we concentrate on thespectral structureof user transmit covariance matrices at simultaneous

water filling fixed points and their performance.

In the following section we will show that the greedy capacity optimization implied by

simultaneous water filling leads to transmit covariance matrices that imply a diagonal structure

on the correlation matrices of the received signals at the two receivers, which is similar to

classical water filling solutions. Then, we will show that unlike classical water filling spectra
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for single or multiple transmitters with a single receiver,mutually water-filled spectra are in

this case constrained to three different classes – completely overlapped, segregated, and partially

overlapped. Furthermore, the spectrum in each region must be white although the spectraXi are

not necessarily white themselves.

III. S IMULTANEOUS WATER FILLING

Simultaneous water filling is formally defined by Yu [41] as a generalization of the single-user

water filling to multiple user scenarios. For the consideredsystem with two mutually interfering

transmitters described in the previous section, a simultaneous water filling point is reached

when one transmitter maximizes its corresponding capacityby regarding the other transmitter’s

interfering signal as Gaussian noise and distributes its transmit energy over the signal space

according to a single-user water filling scheme [13, p. 253],and vice versa. As noted in the

previous section, simultaneous water filling for the considered system with two transmitters and

receivers can be achieved by using algorithms like iterative water filling [41], [42] or interference

avoidance [25], [26], which are not discussed here since they lie outside the scope of the paper.

We note that these algorithms yield the transmit covariancematricesX1 andX2 whose spectral

structure will be investigated in the subsequent sections of the paper.

The main result of this section is to show that at a simultaneous water filling point the two

transmit covariance matrices have the same eigenvectors from the perspective of each receiver,

that is, at each receiver the eigenspaces of the signals fromthe two transmitters are aligned. We

state this result formally as a theorem:

Theorem 1 (Alignment):At a simultaneous water filling point, at a given receiver, the signals

from the intended user and the interfering user arealignedalong the same eigenvectors.

Proof: Let us express the transmit covariance matrices of the two transmitters in terms

of their eigenvectors and eigenvalues using the spectral factorization theorem [20, p. 104], [38,

p. 296] as

X1 =
N∑

i=1

αiψiψ
⊤

i = ΨAΨ
⊤

X2 =
N∑

i=1

βiφiφ
⊤

i = ΦBΦ
⊤

(9)

whereΨ andΦ are the matrices of eigenvectors{ψi}N
i=1 and{φi}N

i=1 for X1 andX2, respectively.

A andB are the corresponding diagonal eigenvalue matrices, with eigenvaluesα1 ≥ . . . ≥ αN
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and β1 ≤ . . . ≤ βN , in decreasing and increasing order of their magnitudes, respectively. We

note that eigenvalues are real and non-negative since theXℓ are covariance matrices, and are

therefore positive semidefinte.

From the perspective of a given transmitter, the other transmitter is Gaussian interference,

and, in order to achieve minimum mutual interference, at a simultaneous water filling point the

eigenvectors of its transmit covariance matrix must align with the eigenvectors of the interference-

plus-noise covariance matrix [32], [33], [41], [43]. Therefore, at a simultaneous water filling

point, at receiver 1 the transmit covariance matrixX1 of transmitter 1 and interference-plus-

noise covariance matrixg2UX2U
⊤ +η0IN will have the same eigenvectors specified byΨ. This

implies thatΨ diagonalizes the interference-plus-noise covariance matrix and we can write

Ψ
⊤(g2UX2U

⊤ + η0IN)Ψ
︸ ︷︷ ︸

diagonal

= g2Ψ
⊤
UX2U

⊤
Ψ + η0IN

︸︷︷︸

diagonal

(10)

We note that since the left hand side is a diagonal matrix, andthe second term in the right

hand side is also a diagonal matrix, then the first term in the right hand side must be a diagonal

matrix as well, which implies thatUX2U
⊤ is diagonalized by the same set of eigenvectorsΨ

asX1. Thus, at a simultaneous water filling point, at a receiver 1 the signals from the intended

transmitter 1 and the interfering transmitter 2 arealignedalong the same eigenvectors specified

by Ψ. We can show similarly that at recevier 2 the eigenvectors ofU
⊤
X1U and X2 are the

same and equal toΦ.

Corollary 1 (Diagonal Structure):At a simultaneous water filling point, at a given receiver,

the received signal correlation matrix is diagonal.

Proof: Multiplying the received signal correlation matricesR1 andR2 in equation (8) with

their corresponding eigenvector matricesΨ andΦ, and using the alignment result in Theorem 1

implies

Λ1 = Ψ
⊤
R1Ψ = A + g2B + η0IN

Λ2 = Φ
⊤
R2Φ = B + g1A + η0IN

(11)

which shows that theΛi are diagonal matrices.

We conclude this section by noting that the eigenvalues of the transmit covariance matrix of a

given transmitter must also satisfy a water filling distribution [13, p. 253] over those eigenvectors
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of the corresponding interference-plus-noise covariancematrix with minimum eigenvalues.

IV. SIMULTANEOUS WATER FILLING STRUCTURES

As mentioned in the previous section, a simultaneous water filling point can be obtained by

application of various algorithms, which will yield a set oftransmit covariance matricesX1 and

X2 corresponding to the signals sent by the two transmitters. In this section, we discuss the

possible spectral structures that correspond to these covariance matrices. We note that in light

of the diagonal structure result proved in the previous section, we focus the discussion on the

diagonal eigenvalue matricesA and B corresponding to the two transmit covariance matrices

X1 and X2, which are the ones that determine the spectrum of the simultaneous water filling

structures.

The three possible spectral structures for simultaneouslywater-filled transmit covariance ma-

trices are:

1) Complete overlap of the two spectra, when all dimensions ofthe signal space are utilized

by both transmitters.

2) Incomplete overlap of the two spectra, when only a subset of signal dimensions is shared,

leaving some dimensions for exclusive use by a single transmitter.

3) No overlap of the two spectra, when transmitters place their signal energy in orthogonal

signal subspaces.

We derive the properties of such spectra in the following three sections.

A. Complete Overlap Between Transmitted Spectra

Suppose the transmit covariance matrices for both transmitters span the entire signal space,

which corresponds to complete overlap in signal space between the transmitted spectra. Water

filling requires that eigenvalue matrices in equation (11) be scaled identity matrices, that is

A + g2B + η0IN = c1IN

B + g1A + η0IN = c2IN

(12)

wherec1 and c2 are the “watermarks” corresponding to the two transmitters, and are obtained

using the trace constraints in equation (6) as

c1 =
P1 + g2P2

N
+ η0 and c2 =

P2 + g1P1

N
+ η0 (13)
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With the exception of the caseg1 = g2 = 1 when the two matrix equations implied by (12)

and (13) are identical, the solution of the system of matrix equations (12) is

A =
P1

N
IN and B =

P2

N
IN (14)

Since all eigenvalues of transmit covariance matrices for both transmitters are equal in this

case, the water filling structure is also unique and implies that the transmit covariance matrices

corresponding to the two transmitters must be scaled identity matrices.

When g1 = g2 = 1 multiple solutions are possible such that these satisfy theundetermined

matrix equation

A + B + η0IN = cIN with c =
P1 + P2

N
+ η0 (15)

We conclude this section by noting that complete spectral overlap is possible for any values

of the interference gainsg1 andg2, and is unique except for the case ofg1 = g2 = 1 when many

solutions are possible.

B. Incomplete Overlap Between Transmitted Spectra

Now suppose that transmitteri ∈ {1, 2} covariance matrix at a simultaneous water filling point

spanski dimensions of the signal space, such thatk1 + k2 > N and the two spectra overlap in

k1 + k2 − N dimensions. We note thatki coincides with the rank of transmitteri covariance

matrix, and is fixed once the simultaneous water filling pointis reached.

From transmitter 1’s perspective, water filling implies that the firstk1 values ofΛ1 in equa-

tion (11) must be identical and equal to the “water level”L1 in transmitter 1’s subspace. This

water level is determined from the trace constraints as

L1 =

Trace[X1] + g2

k1∑

i=1

βi

k1

+ η0

=

P1 + g2

k1∑

i=1

βi

k1

+ η0

(16)

Equation (16) along with the water filling condition [13, p. 253] implies that the eigenvalues of

the transmit covariance matrix of transmitter 1 can be expressed as

αi = (L1 − g2βi − η0)
+ i = 1, . . . , N (17)
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where the notation(x)+ denotes the positive part ofx [13, p.253] that is(x)+ = x if x ≥ 0 and

(x)+ = 0 if x < 0. This implies that

αi =







L1 − g2βi − η0 for i = 1, . . . , k1

0 for i = k1 + 1, . . . , N
(18)

andX1 is expressed only in terms of its firstk1 eigenvectors as

X1 =

k1∑

i=1

(L1 − g2βi − η0)φiφ
⊤

i (19)

Similarly, from the perspective of the transmit covariancematrix of transmitter 2, water filling

implies that the lastk2 values ofΛ2 must be identical. Proceeding as for transmitter 1 we have

L2 =

P2 + g1

N∑

i=N−k2+1

αi

k2

+ η0 (20)

with eigenvalues of the transmit covariance matrix of transmitter 2 expressed as

βj = (L2 − g1αj − η0)
+ j = 1, . . . , N (21)

or

βj =







0 for j = 1, . . . , N − k2

L2 − g1αj − η0 for j = N − k2 + 1, . . . , N
(22)

The transmit covariance matrix of transmitter 2 is written then only in terms of its lastk2

eigenvectors as

X2 =
N∑

j=N−k2+1

(L2 − g1αj − η0)φjφ
⊤

j (23)

We note that incomplete overlap between the two spectra in signal space does not imply

a unique solution since the dimensions(k1, k2) of the two subspaces spanned by the transmit

covariance matrices of the two transmitters are not unique.These various solutions may be

obtained by using different initializations in the algorithms that generate the transmit covarince

matricesX1 andX2.

At this point we distinguish two cases of incomplete overlapbetween the two transmitter

spectra:

1) Partial overlap withk1, k2 < N , where no transmit covariance matrix spans the entire

signal space.
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2) Nesting partial overlap withk1 = N and k2 < N , where the transmit covariance matrix

of transmitter 1 spans the entire signal space, and the spectrum of the transmit covariance

matrix of transmitter 2 appears “nested” with it).

1) Partial Overlap: k1, k2 < N : In this case transmitter 1’s signal occupies aloneN − k2

dimensions of the signal space, transmitter 2’s signal occupies aloneN − k1 dimensions of the

signal space, and the two signals overlap ink1 + k2 −N dimensions. The watermark from the

perspective of transmitter 1 (transmitter 2) is determinedby its largest eigenvalue,α1 (βN ), and

the water filling structure imposes the following constraints:

α1 = α2 = . . . = αN−k2
=

= αN−k2+1 + g2βN−k2+1 = . . . = αk1
+ g2βk1

(24)

βN = βN−1 = . . . = βk1+1 =

= g1αk1
+ βk1

= . . . = g1αN−k2+1 + βN−k2+1

(25)

In addition, the water filling condition requires also that the watermarkL1 (L2) be always less

than or equal to the interference plus noise levels on the dimensions that are not water filled [13,

p. 253]. This implies the following relationships for the largest eigenvalues of the two transmit

covariance matrices

α1 ≤ g2βN and βN ≤ g1α1 (26)

which further implies that the incomplete overlap case of the water filling structure is possible

only if the interference gains satisfy

g1g2 ≥ 1 (27)

By solving the system of equations (24) – (25) one can see that when g1g2 > 1, all the

eigenvalues can be written in terms of the largest eigenvaluesα1 andβN as






α1 = α2 = . . . = αN−k2

αN−k2+1 = . . . = αk1
=
g2βN − α1

g1g2 − 1

αk1+1 = . . . = αN = 0

(28)

and 





βN = βN−1 = . . . = βk1+1

βN−k2+1 = . . . = βk1
=
g1α1 − βN

g1g2 − 1

β1 = . . . = βN−k2
= 0

(29)
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Thus, wheng1g2 > 1 the eigenvalues of the transmit covariance matrix of each transmitter can

have only two nonzero values: one for the unshared dimensions of the signal space and another

for the shared dimensions of the signal space.

Wheng1g2 = 1, we can denote

g1 = g and g2 =
1

g
(30)

such that the two systems of equations (24) – (25) become identical

gαn + βn = gα1 = βN n = N − k2 + 1, . . . , k1 (31)

In this case it is no longer possible to find expressions for each eigenvalue in terms of the largest

eigenvaluesα1 andβN as before, and theoretically any values that satisfy equation (31) will also

satisfy the required water filling conditions.

2) Nested Partial Overlap:k1 = N and k2 < N : In this case we assume with no loss

of generality that transmitter 1’s signal occupies allN dimensions of the signal space while

transmitter 2’s signal occupies onlyk2 dimensions of the signal space, such that the two signals

overlap in thek2 dimensions of the signal space that are occupied by transmitter 2. Thus, in

this case the transmit covariance matrix of transmitter 1 spans the entire signal space and the

transmit covariance matrix of transmitter 2 spans only a proper subspace. That is, transmitter 2’s

signal space is completely contained (or nested) in transmitter 1’s signal space. The derivation

in previous section applies with minor changes, and the water filling conditions in equation (26)

imply in this case that

g2βN + αN = α1 and βN + g1αN ≤ g1α1 (32)

which corresponds also tog1g2 ≥ 1.

When g1g2 > 1 the eigenvalues of the transmit covariance matrix of the first transmitter are

given in this case by






α1 = α2 = . . . = αN−k2

αN−k2+1 = . . . = αN =
g2βN − α1

g1g2 − 1

(33)

while those of the transmit covariance matrix of the second user are given by






βN = βN−1 = . . . = βN−k2+1

β1 = . . . = βN−k2
= 0

(34)
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Wheng1g2 = 1 the eigenvalue expressions for the overlapped dimensionsN − k2 + 1, . . . , N

cannot be determined uniquely, and similar to the previous case, any values that satisfy the water

filling conditions are possible.

C. No Overlap:k1 + k2 = N

Finally, suppose that the transmit covariance matrices of the two transmitters span orthogonal

subspaces of the signal space at a simultaneously water filling point, that is, assume that

transmitter 1 signals in a subspace of dimensionk and transmitter 2 signals in the remaining

N − k dimensions of the signal space. We note thatk coincides with the rank of transmitter 1

covariance matrix, and is fixed once the simultaneous water filling point is reached.

Using the trace constraints in equation (6) we obtain






α1 = α2 = . . . = αk =
P1

k
α1 ≤ g2βN

(35)

and 





βk+1 = . . . = βN−1 = βN =
P2

N − k

g1α1 ≥ βN

(36)

which implies that

g1g2 ≥ 1 (37)

and
P1

P1 + P2g2

≤ k

N
≤ g1P1

g1P1 + P2

(38)

Thus, in general the solution fork is not unique, and can be any integer in the interval

k ∈
[

P1

P1 + P2g2

N,
g1P1

g1P1 + P2

N

]

(39)

We note that as the interference gains increase the range ofk expands since the lower limit

decreases wheng2 increases and the upper limit increases wheng1 increases. We also note that

for the particular case corresponding tog1g2 = 1 there may be no solution fork in the discrete

representation considered. This is because wheng1g2 = 1 we can replace for exampleg2 = 1/g1

in the lower bound so that this becomes equal to the upper bound or vice-versa, and if the

resulting number is not an integer there will be no solution for k in this case. Nevertheless, as



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 14

N → ∞ there will always exist an integer upper/lower bound in equation (39) wheng1g2 = 1

which implies a unique solution fork.

We conclude this section by formally summarizing the relationship between number of possible

simultaneous water filling solutions and the interference gain valuesg1 andg2 in the following

theorem:

Theorem 2 (Overlap):The interference gain productg1g2 arbitrates the types of spectral

overlap possible with mutually water-filled spectra.

1) g1g2 ≥ 1: the transmitted spectra may overlap, and must be “white” inboth the overlapped

and non-overlapped regions. There can be many such sets of spectra.

2) g1g2 < 1: each transmitted spectrum must be white and span the entiresignal space – a

unique solution.

Proof: The first statement of the theorem is a rehash of the observations presented in

sections IV-B and IV-C where we have shown that incomplete overlap, as well as separation of

transmitted spectra correspond tog1g2 ≥ 1. For the second statement, we note that wheng1g2 < 1

neither incomplete spectral overlap, nor spectral separation are possible since the interference

gain product is less than 1 in this case. Thus, wheng1g2 < 1 only complete spectral overlap is

possible. This solution is unique since in this case all dimensions of the signal space are spanned

by both transmit covariance matrices.

Using distance as a proxy for interference gain values{g1, g2} the fixed point classifications

of Theorem 2 are represented pictorially in Table I.

V. THE SIMULTANEOUS WATER FILLING REGION

We define thesimultaneous water filling regionas the set of all possible capacity pairs(C1, C2)

under the assumption of Gaussian signaling by each transmitter. We note that the simultaneous

water filling region depends on the interference gain valuesg1 and g2 since these affect the

capacity values (see equation (7)) as well as the possible simultaneous water filling structures

(see Table I).

Using physical distance as a proxy for the interference gainvalue (i.e., farther away implies

lower value) and equal transmitted powers, the scenariog1g2 < 1 corresponds roughly to

“weak/moderate interference”, in which the distance from at least one transmitter to its associated

receiver is smaller than its distance to the “alien” receiver – i.e., the interfering signal at the
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alien receiver is weaker than the desired signal. The scenario g1g2 > 1 roughly corresponds to

“strong interference” where a given transmitter is close tothe “alien” receiver associated to the

other transmitter, and interferes strongly with its transmission.

To illustrate the simultaneous water filling region and its dependence on interference gain

values, we consider a particular example of a symmetric system with N = 100 signal space

dimensions, gainsg1 = g2 = g, transmitted powersP1 = P2 = 10, and background noise level

η0 = 0.01. For these numerical values the signal-to-noise ratio (SNR)at the receiver

ρ =
P

Nη0

(40)

is ρ = 10 or 10 dB. FIGURE 2 shows various simultaneous water filling regions corresponding

to different values ofg for the considered system.

Referring to FIGURE 2, our previous analysis indicates that for g < 1 the simultaneous water

filling region consists of a single point, and this is shown for several values ofg < 1 in the upper

left plot of FIGURE 2. We note that asg increases getting closer to 1 the two capacities decrease,

and the simultaneous water filling point gets closer to the origin. We also note that in the case

of g < 1 we distinguish a truly weak interference scenario (e.g. points with g < 0.18 in the

figure1) for which simultaneous water filling implies good system performance with capacities

relatively close to those in the no interference case, as well as a moderate interference scenario

for which performance of simultaneous water filling degrades with capacities in this case far

away from those in the no interference case.

The case ofg ≥ 1 corresponds to strong interference, and is illustrated in the remaining

three plots of FIGURE 2. In this case the simultaneous water filling region consists of multiple

points which can be classified in three categories accordingto the three types of spectral overlap

discussed in the previous section:

• A most interior pointcorresponding to complete overlap of the spectra of the two trans-

mit covariance matrices at which both capacities have minimum values since transmitters

interfere in all dimensions of the signal space at this point. The most interior point moves

closer to the origin asg increases showing that capacities decrease due to the increased

interference from the “alien” transmitter.

1The value ofg = 0.18 was obtained using equation (51) in Section V-A.
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• An outer bordercontaining all points that correspond to spectral separation of the two

transmit covariance matrices for which the two transmitters do not interfere with each

other. Asg increases, the outer border expands from a single point in the caseg = 1 to

more points that correspond to more potential partitions ofthe signal space between the

two transmitters.

• An interior regioncontaining all points between the most interior point and the outer border

that correspond to incomplete spectral overlap for which transmitters interfere only in some

dimensions of the signal space.

We note that the points that make up the simultaneous water filling region have capacity values

which are always less than the capacities without interference, which can be obtained by setting

the interference gains equal to zero. Wheng = 0, signals sent by the two transmitters do not

interfere with each other and the corresponding capacitiesare

Cℓ =
N

2
log

(

1 +
Pℓ

Nη0

)

ℓ = 1, 2 (41)

and the point implied by(C1, C2) – (1.73, 1.73) on the plots in FIGURE 2 – is always above

the simultaneous water filling region. According to Carleial[8] this point is achievable in the

case of strong interference by subtracting interference from the desired signal and decoding it

as in the absence of interference, but it does not correspondto a simultaneous water filling point

since it lies outside of the simultaneous water filling region.

To evaluate the performance of the system overall, we introduce the sum of capacities

C = C1 + C2 (42)

which we call thecollective capacityin order to distinguish it from the information-theoretic

sum capacityused when receivers can collaborate [27], [28]. This measure is useful in the case

g1g2 ≥ 1 (where multiple simultaneous water filling points are possible) to evaluate which point

is a most desirable from a global perspective. It is also useful in the caseg1g2 < 1 (when the

simultaneous water filling point is unique) to compare it with other spectral partitions which

may be more desirable for the system.

We define thesocial optimumas the point for which the collective capacityC is maximized.

We note that, wheng1g2 = 1 the outer border of the simultaneous water filling region consists

of a single point where both transmitters maximize their capacities, and which corresponds to
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complete spectral separation in signal space. At this pointboth individual and collective interests

are satisfied since the collective capacityC is also maximized at this point, and we note that

complete spectral separation corresponds to a social optimum in this case.

What is perhaps most interesting about the montage of FIGURE 2 is that from a system design

perspective, the weak and strong interference cases are least problematic. For weak interference

(shown in upper left plot of FIGURE 2), mutual interference levels are comparable to or below

the noise floor so mutually water-filled solutions will provide good system performance with

capacities relatively close to those in the no interferencecase. For strong interference (shown

in the remaining three plots of FIGURE 2 forg = 1, 2, 100) there exists a mutual water filling

solution which is also optimum from a collective capacity standpoint. This solution corresponds

to signal space partitioning between transmitters, and is situated on the outer border of the

simultaneous water filling region as shown in the corresponding plots of FIGURE 2. In addition,

in the case of strong interference all the other points on theouter border of the simultaneous

water filling region, although suboptimal, correspond to collective capacity values close to the

optimal value [25], [30]. In contrast, for moderate interference (shown in upper left plot of

FIGURE 2 along with weak interference) simultaneous water filling leads to capacity values

that are much below those in the no interference case, and transmitters would be better served if

they agreed (or were forced) to signal in different regions of the signal space. We explore these

various levels of interference in the next sections.

A. Weak and Moderate Interference

In his doctoral dissertation [41] Yu approaches the system with two mutually interfering trans-

mitters and non-cooperating receivers from a game-theoretic perspective, and models this instant

of the interference channel problem as a non-cooperative game in which the two transmitters

compete for maximizing their capacities. Using this approach it is shown that when interference

gains g1g2 < 1, simultaneous water filling represents a Nash equilibrium point of the non-

cooperative interference channel game [41]. In game theory, a Nash equilibrium is defined by

a set of strategies such that each player’s strategy is an optimal response to the other players’

strategies [15, p. 11]. From this perspective, a Nash equilibrium is reached for the Gaussian

interference channel game if and only if a simultaneous water filling solution is produced by

both transmitters, and the optimal signaling strategy of each transmitter is to water fill the signal
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space while regarding the interfering signal of the other transmitter as noise [41]. We note that a

Nash equilibrium is said to be Pareto deficient (or non-Pareto-optimal) if at least one player would

do better and the other one would do no worse by switching to a different strategy [44, p. 52].

Such Nash equilibria are not necessarilyefficientin that there exist cooperative strategies where

both players achieve better returns. Classical examples in this sense are thePrisoner’s Dilemma

[44, p. 51] or tit for tat strategies [22]. Forg1g2 < 1 we see from FIGURE 2 that capacities

achieved by transmitters under simultaneous water filling decrease as interference gains increase,

and we will show that the Nash equilibrium implied by simultaneous water filling in this case

can be either efficient or inefficient depending upon the level of interference. Specifically, we

will explore the relative efficiencies of simultaneous water filling and signal space partitioning

(or segregation) under moderate and weak interference.

With simultaneous water filling each transmitter achieves capacity

Cwf
1 =

N

2
log

(

1 +
P1

g2P2 +Nη0

)

Cwf
2 =

N

2
log

(

1 +
P2

g1P1 +Nη0

)

(43)

and the collective capacity is

Cwf = Cwf
1 + Cwf

2

=
N

2
log

(

1 +
P1

g2P2 +Nη0

)

+
N

2
log

(

1 +
P2

g1P1 +Nη0

) (44)

For simplicity let us assume a symmetric system withP1 = P2 = P , g1 = g2 = g, and the raw

SNR ρ as defined in equation (40), for which we obtain

Cwf = N log

(

1 +
ρ

ρg + 1

)

(45)

With signal space partitioning, capacities are given by

Csp
1 =

k

2
log

(

1 +
P1

kη0

)

Csp
2 =

N − k

2
log

[

1 +
P2

(N − k)η0

]
(46)

so the collective capacity is

Csp = Csp
1 + Csp

2 =
k

2
log

(

1 +
P1

kη0

)

+
N − k

2
log

[

1 +
P2

(N − k)η0

]
(47)
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with k the number of dimensions occupied by transmitter 1. Once again for simplicity we assume

a symmetric system to obtain

Csp =
k

2
log

(

1 + ρ
k/N

)

(

1 + ρ
1−k/N

) +
N

2
log

[

1 +
ρ

(1 − k/N)

]

(48)

which is maximized byk = N/2 which implies

C∗

sp =
N

2
log [1 + 2ρ] (49)

We plot valuesCsp
1 , Csp

2 , andCwf
1 = Cwf

2 = Cwf for a symmetric system withN = 100

signal space dimensions, transmitted powerP = 10, moderate interference gaing = 0.5 and

noise powerη0 = 0.01 for k ranging from 1 to 99 dimensions2 in FIGURE 3 and see that as

the number of signal space dimensionsk occupied by transmitter 1 increases,Csp
1 increases and

Csp
2 decreases – an obvious result. Less obvious, we see that for awide range of values fork,

both transmitters achieve higher capacitiesCsp
1 andCsp

2 if they partition the signal space than

the capacityCwf corresponding to the simultaneous water filling solution. We also see that the

collective capacity when transmitters partition the signal spaceCsp does not vary widely with

k. We thus form the impression that for moderate interference, both transmitters can often do

much better under segregation than they would under simultaneous water filling, thus suggesting

that the Nash equilibrium point implied by simultaneous water filling is an inefficient one.

Of course, the illustration begs the question of what constitutes moderate vs. weak interference.

To this end we note that simultaneous water filling collective capacityC∗

wf depends on both the

interference gaing and the (raw) transmitter SNRρ, whereas signal space partitioning collective

capacityCsp depends only onρ. We can plot these two capacity surfaces as a function ofg and

ρ as in FIGURE 4: the left hand side plot has a linear scale forg, while the right hand side

plot has a logarithmic scale forg and “magnifies” the intervalg < 0.5. Qualitatively, we note

that only for small values of the interference gaing does simultaneous water filling outperform

segregation. Otherwise, the collective capacity under signal space partitioning is larger than for

simultaneous water filling. This observation can be quantified by comparing the two capacity

2The valuesk = 1, respectivelyk = 99, correspond to the extreme cases in which transmitter 1, respectively transmitter 2,

signal in only one signal dimension.
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expression in equation (45) and equation (49)

N

2
log [1 + 2ρ]

segregate
>
<

share

N log

(

1 +
ρ

ρg + 1

)

(50)

which simplifies to

ρ

segregate
>
<

share

1 − 2g

2g2
(51)

Since the raw SNRρ is positive, equation (51) is always satisfied for0.5 ≤ g < 1, and one can

define moderate interference as corresponding to interference gain values in the interval[0.5, 1),

for which segregation outperforms simultaneous water filling, and isalways preferable when

g > 0.5. In general the critical value ofg for a given SNRρ is

g∗ =

√
1 + 2ρ− 1

2ρ
(52)

and for anyg > g∗, segregation is preferable. For instance, for the numerical example considered

in FIGURE 2, withρ = 10, we haveg∗ = 0.18.

We close this section by noting that, assuming moderate interference and segregation, the

necessary condition for maximizing the collective capacity in equation (47) is [25], [29]

P1

k
=

P2

N − k
(53)

and is similar to the result obtained in [4] using a differentperformance criterion than the

collective capacity used in this work.

B. Strong Interference

As can be seen from FIGURE 2, “strong interference”(g1g2 ≥ 1) implies multiple solutions for

which capacities of both transmitters can vary widely. The most interior point of the simultaneous

water filling region corresponds to complete spectral overlap in signal space, the points inside the

region correspond to incomplete spectral overlap, and points on the outer border correspond to

spectral separation in signal space. Forg = 1 the outer border of the water filling region becomes

a single point, and asg increases, the outer border expands and more points corresponding to

spectral separation in signal space are possible. Furthermore, the point corresponding to complete



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 21

spectral overlap moves closer to the origin asg increases. The points inside the water filling

region are suboptimal with respect to achievable capacity since the largest capacity is achieved

by points on the outer border. The worst case scenario is complete spectral overlap.

However, the fact remains that under strong interference, points on the boundary of the

simultaneous water filling region are stable under greedy assumptions. Furthermore, from a

system perspective, the collective capacity varies only moderately as a function of the amount of

signal space alloted to one transmitter over another as seenin FIGURE 3. So the main objective

from a system control standpoint is to find algorithms or methods which nudge transmitters

toward the simultaneous water filling boundary [25], [30].

VI. D ISCUSSION

Our results have interesting system control implications.For instance, under weak interfer-

ence (g1g2 ≪ 1 and moderate signal to noise ratio in a symmetric system), wehave found

that essentially ignoring interference and water filling over the entire signal space provides

good performance for each transmitter and maximum collective capacity as well. Under strong

interference (g1g2 ≥ 1), socially optimal segregatory Nash equilibria exist alongside strongly

suboptimal but equally stable water-filling Nash equilibria. While the suboptimal equilibria are

undesirable, the stability of the optimal equilibria hold out hope that algorithms could be devised

which reward transmitters who limit their spectral use and punish those who spread too widely.

Under moderate interference,(g1g2 < 1), the water filling Nash equilibria can be strongly

suboptimal from a collective capacity standpoint and more socially optimal segregatory solutions

are inherently unstable.

Since all these interference regimes seem probable in unlicensed wireless environments pop-

ulated by current and emerging technologies, it seems prudent to ask what types of control

mechanisms should be developed for efficient system operation.

In environments where interferers must repeatedly interact (as opposed to one-time interac-

tions) there are a variety of distributed control ideas which can be brought to bear – strategies

such as “tit for tat” or “generous tit for tat” [2], [23]. These ideas are currently being explored

in the context of mutually interfering systems for both moderate and strong interference [29],

[30].

Alternatively, one could envision a “spectrum server/advisor” [6], [31] to which systems

might turn to help mediate spectrum use. The effective spectrum server would monitor local
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environments, determine the type and strength of interference, and advise systems on the most

efficient use of spectral resources or at least on iterative strategies which led to improved

performance.

This more global view of a spectrum advisor begs a comparisonof collaborative versus non-

collaborative approaches since one could imagine that in certain circumstances (such as strong

interference) collaborative decoding could produce impressive capacity gains. That is, in a world

increasingly populated by smart wideband radios, the best advice might be to cooperate [16], [19],

[27], [28], [39] as opposed to finding ways to independently share the signal space. Likewise,

there are also scenarios where the increased complexity of collaboration or explicitly coordinating

spectrum use might not be worth meager best-case capacity gains.

To this end, consider the example in FIGURE 5 which corresponds to a symmetric system

with two transmitters for weak, moderate, and strong interference. In both plots of FIGURE 5

we have shown the maximum sum capacity line of the Gaussian MIMO multiple access channel

that corresponds to a collaborative scenario computed as in[17] for transmit covariance matrices

that maximize sum capacity in the collaborative scenario [28].

For moderate and strong interference (g > 0.5), we note that there is a significant difference

between collaborative capacities corresponding to maximum sum capacity in the collaborative

scenario and the non-collaborative capacities in achievedon the outer border of the simultaneous

water filling region. The reason for this disparity is obvious since increasedg implies more power

capture by the “alien” receiver. In contrast, for weak interference the difference in performance

is much less pronounced so that from a systems perspective, there is little to be gained by

employing more sophisticated multi-system collaborationor interference channel coding methods

– we would be better served by finding ways to help transmitterto avoid one another.

VII. SUMMARY AND CONCLUSIONS

We have considered a simple non-collaborative wireless system with two transmitters and two

receivers with flat communication channels, in which greedyperformance optimization by indi-

vidual transmitters leads to simultaneous water filling solutions. We have investigated properties

of different solutions in relation to the interference gains between transmitters and receivers, and

have identified their spectral structure:completely overlappedwhere each transmitter’s spectrum

is white,partially overlappedwhere each transmitter’s spectrum is white in the overlap region and
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also white in regions where there is no overlap but not white overall, andcompletely separated

where each transmitter spectrum is white in its respective subspace. In addition, we have defined

the simultaneous water filling regionas the set of pairs of achievable capacities for all possible

simultaneous water filling points, for given transmitted powers, interference gains, and signal

space dimensions, and thecollective capacityas a global performance measure which allowed a

global perspective on system performance. We have also provided a more detailed investigation

of “weak”, “moderate”, and “strong” interference, focusing on when simultaneous water filling

achieves optimal system performance and when it does not.

For weak interference, simultaneous water filling is indeedoptimal since mutual interference

levels are comparable to or below the noise floor. For moderate interference, water filling can

be strongly suboptimal, and signal space partitioning offers much better performance. For strong

interference, simultaneous water filling can result in socially optimal resource sharing. However,

without external guidance toward the outer border of the simultaneous water filling region,

there are many stable suboptimal “traps” in which the competing systems could be caught.

These considerations led to the notion of a spectrum server/advisor which could help mutually

interfering systems to better utilize shared spectrum.

To better understand design tradeoffs, non-collaborationwas compared by means of numerical

examples to complete collaboration where receivers pool information for joint decoding. For

strong interference, both systems would be best served by finding ways to pool information and

collaborate as opposed to pursuing various signal space separation strategies [25], [29], [30], or

even sophisticated joint coding/decoding methods [16], [19] which would only increase capacity

incrementally. In contrast, for moderate to weak interference, signal space partitioning affords

good performance and the incremental gains to be had by collaboration are relatively small.

So some means of keeping transmissions out of each others’ way seems to be indicated. Such

methods might be centralized as in a spectrum “advisor/server” [6], [31] or could be distributed

as in tit for tat or other repeated game strategies [2], [7], [11], [14], [23], [29], [30].
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Fig. 1. A system with two transmitters and two receivers.g1 is the interference gain corresponding to transmitter 1’s signal at

“alien” receiver 2 andg2 is comparably defined. Gains to “home” receivers are normalized to 1.

TABLE I

Equilibrium Points

Overlap g1g2 > 1 g1g2 = 1 g1g2 < 1

B
U

B
1

2

2
1U U2B

1
B2

U1

B
1 U1

U 2

B2

Complete unique unique3 unique

Incomplete many many -

None many unique -

3Except for the caseg1 = g2 = 1 when many equilibrium points are also possible as discussed in Section IV-A.
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Fig. 2. Simultaneous Water Filling Region as a Function of Interference Gain. N = 100 signal space dimensions, interference

gainsg1 = g2 = g, transmitted powersP1 = P2 = 10, and noise floorη0 = 0.01.
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Fig. 3. Capacity variations as a function of signaling subspace width for moderate interference.N = 100 signal space

dimensions, transmitted powersP1 = P2 = 10, interference gainsg1 = g2 = 0.5 and noise floorη0 = 0.01.
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Fig. 4. Water filling and separation collective capacity as a function of interference gain and noise level for a symmetric system

with M = 2 transmitters.N = 100 dimensions, user powerP = 10, interference gain ranges fromg = 0.001 to g = 1, and

background noise levelη0 ranges from10
−6 to 10 (so thatρ ranges from−20dB to 50dB).
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Fig. 5. A Comparison of Capacity Performance Between Collaborative Scenario and Non-Collaborative Simultaneous Water

Filling (SWF) Scenario for Mutually Interfering Systems. Transmitted powers P1 = P2 = P = 10, noise levelη0 = 0.01,

and interference gainsg1 = g2 = 0.1 (weak interference),g1 = g2 = 0.5 (moderate interference), andg1 = g2 = 20 (strong

interference).


