
1

Intelligent Power Allocation Strategies in an
Unlicensed Spectrum

N. Clemens & C. Rose
WINLAB at Rutgers University, Piscataway, New Jersey 08854

Email: nevillec@winlab.rutgers.edu, crose@winlab.rutgers.edu

Fig. 1. Our channel model, with two user-base pairs and symmetric
cross gains.

Abstract—
We consider power allocation strategies for radios operating in

unlicensed bands. Since each radio’s power allocation is a source of
interference for other radios sharing the same spectrum, we seek to
develop “intelligent” power allocation strategies that not only greed-
ily optimize performance, but also tend toward socially optimal so-
lutions. Radio interaction is modeled as a two-player repeated game
where players develop “reputations” based on previous actions. Bad
behavior can result in punishment meted out by other players while
socially acceptable behavior could be rewarded. The space of pos-
sible radio strategies is explored using genetic algorithms and we
find that there are identifiable strategy features shared by all good
policies. We conclude with a brief discussion of the possible applica-
bility of our strategies and algorithms, depending on the operating
environment and computational complexity at hand.

I. INTRODUCTION

Unlicensed spectrum poses interesting problems in ra-
dio etiquette design. How should radios “behave” in a
crowd of other radios when everyone is sharing a com-
mon band and no central server is available to provide ad-
vice or instruction? If radio “behavior” is defined by the
manner in which it spreads its energy over the available
signal space, then the behavior of each radio will influ-
ence the channel – and hence the channel capacity – of
every other user in that signal space. Thus, the indepen-
dent decisions taken by each radio affect the rest of the
radio “population.”

To gain insight, we consider the abstraction of a sim-
ple two-player repeated game. We assume two transmit-
ter/receiver pairs and that each receiver can “hear” both
transmitters, but is interested only in one of the transmis-
sions as shown in FIGURE 1. The signal gain to the de-
sired receiver is assumed to be unity while the interfer-
ence gain is √g as shown.

Again for simplicity, we also assume only two orthog-
onal channels are available to each user. If user 1 puts
a fraction x of his power in channel 1 then the remain-
ing 1− x fraction of power is in channel 2, and similarly
for user 2’s fractional power y. Assuming white Gaus-

sian noise, Gaussian signaling by each user and each user
treating the other as (colored) Gaussian noise, the capaci-
ties seen by each user are

C1 =
1
2 log

(

1+
x

gy+N

)

+
1
2 log

(

1+
1− x

g(1− y)+N

)

(1)
and

C2 =
1
2 log

(

1+
y

gx+N

)

+
1
2 log

(

1+
1− y

g(1− x)+N

)

(2)
We define the collective capacity [2] of the system by

Cc = C1 +C2 (3)

and emphasize that Cc is not the information theoretic sum
capacity of the implicit interference channel [1], [3], [4],
[5]. That is, we assume no collaboration between users
(as in shared codebooks, for example) so as to simplify
the problem since the capacity region of the interference
channel has eluded complete specification for over fifty
years.

We choose to model our user-base pair interaction as
a 2-player game, the model of which we explain in sec-
tion II. Briefly put, the players are the user-base pairs
and the actions available to them are their power alloca-
tion choices - namely the values they assign to x and y in
equation (1) and equation (2). If we assume that the ac-
tions taken by the players are fixed over time, then each
player’s best strategy to maximize its expected payoff will
take the game to a Nash Equilibrium, if it exists. However,
the Nash Equilibrium is not always a desirable outcome
for the game because it can lead to poor performance for
both players [2].

Fortunately, with the advent of cognitive radios that
can adapt their power allocation schemes, we can instead
model radio interaction as a series of repeated games
where each radio reacts to past outcomes. We ask the
question of whether strategies can be devised which ben-
efit both users in a distributed fashion without explicit and
pre-defined cooperation (i.e., channel assignment).

Such dynamic/repeated game theory problems are no-
toriously difficult and generally there are no closed form
expressions for strategies. We therefore represent strate-
gies as a string of suitable symbols and use genetic algo-
rithms to search the strategy space. The use of genetic al-
gorithms as a tool for finding optimal strategies in games
was inspired by previous work in this area by John Hol-
land [10] as well as Axelrod’s tournament [6] on the evo-
lution of winning strategies in games.



2

(6.9,6.9)

(1.46,1.46)(2,7.2)

(7.2,2)

(6.9,6.9)

(2.6,2.6)

(2,7.2)(1.46,1.46)

(7.2,2)

Spread Ch. 2Ch. 1

Spread

Ch. 1

Ch. 2

P
la

ye
r 

1’
s 

A
ct

io
n

Player 2’s Action

Fig. 2. This is the payoff matrix, calculated for g = 0.3 and N = 10−3.
The payoffs in the matrix are to be read as (Payoff for player 1, Payoff
for player 2).

Often, the use of genetic algorithms can result in opti-
mization without reification of structural features of good
solutions. However, in this case we have been fortunate in
being able to identify a handful of policy features which
are common to good policies. We go on to demonstrate
that these common “traits” of good policies can then be
used as a skeletal framework to construct near-optimal
policies. We elaborate on our results in sections IV, V
and VI.

II. GAME MODEL

In every game we have a set of players, a set of ac-
tions for each player and a payoff-tuple defined for every
possible action-tuple played in a game. We consider the
interaction of the user-base pairs as a two player game
with each user-base pair represented as a player. The set
of actions available to each player is the set of power dis-
tributions that we permit the transmitters to have. In our
case, this simply corresponds to the values of x and y that
we allow in equation (1) and equation (2). We define each
player’s payoff in a game as the channel capacity for a
given choice of the action tuple (x,y), i.e. if the action-
tuple is (x,y) for some permissible values of x and y, then
the corresponding payoff-tuple is simply (C1,C2) as cal-
culated in equation (1) and equation (2). We further sim-
plify the game by imposing the condition that the actions
for each player (values for x and y) can only be drawn
from the set 0,0.5,1. Thus, each player has three possible
actions to choose from to play in a game.

The action x = 0 corresponds to player 1 putting all
his power in channel 2. The action x = 0.5 corresponds
to player 1 spreading his power equally over both chan-
nels and the action x = 1 corresponds to player 1 putting
all his power in channel 1. Similarly for y and player 2.
Thus each game has 9 possible outcomes corresponding
to each ofthe 32 possible action-couplets. We represent
these outcomes by a payoff matrix as shown in TABLE 2,
for g = 0.3 and N = 10−3. In all our simulations, these
are the values of g and N that are used.

This restriction on player actions is imposed owing to
the problem structure which dictates that the optimal solu-
tion will be either complete overlap or complete segrega-
tion depending on the value of the gain, g [14], [13], [15],

[12], [2]. The threshold for g above which segregation is
optimal was calculated as

g >

(

1
√

2ρ+1−1
−

1
ρ

)

(4)

where ρ = 1/2N represents the raw SNR of each user.
For the noise floor that we have used (N = 0.001), this
threshold comes out to be 0.0306. Thus, the games and
results presented here are most appropriate for moderate
interference as opposed to weak interference where sim-
ple waterfilling is often adequate, or strong interference
where users naturally segregate in the signal space.

It should be noted, however, that an analytic proof
for the optimality of either complete segregation or com-
plete overlap has not been given for the general symmet-
ric channel. That is, [2] considered only mutually wa-
ter filling solutions and not general power distributions.
Nonetheless, for the two-channel, two player symmetric
problem considered here, complete segregation or com-
plete overlap are the optimal solutions which maximize
the collective capacity, depending upon whether weak,
moderate or strong interference is considered.

We model our radio interaction as a series of such
games. In such a case, it is reasonable to expect each
player to try and maximize its payoff over the course of
the entire series of games. Since the Nash Equilibrium
brings both players to a mutually inefficient payoff per
game, it will not be the optimal operating point over a
series of repeated games.

In our particular game, defined by the payoff patrix in
TABLE 2, the Nash Equilibrium is the operating point
where both players choose to ‘spread’ their power, result-
ing in each player scoring 2.9. Clearly, a socially bet-
ter operating point would be the players stick to differ-
ent channels so that each scores 6.9. In fact, it can be
shown that for this payoff matrix this is the socially opti-
mal operating point. However, at such an operating point
each player is tempted to spread his power in the next
game with the incentive of increasing his score (in the
next game) to 7.2. But an intelligent opponent will imme-
diately recognize this treachery and retaliate in the sub-
sequent game by spreading his own power - thus bring-
ing the game back to the inefficient Nash Equilibrium.
Thus ‘good’ policies are those that can recognize the op-
timal operating point as channel segregation and resist the
temptation to act with blind greed - knowing that it is in
their own interest in the long term (over a series of re-
peated games with the same opponent).

A characteristic of a repeated game is the memory asso-
ciated with a player. If a player is memoryless, then each
game is independent of all previous games and this will
reduce to a series of independent one-off games which
will converge to the Nash Equilibrium at each game.
However, when a player has a memory, he bases his next
move on the outcome of the previous games. In our
games, we fix the depth of the players’ memories at two
games, i.e. they can base their actions on the outcomes
of the previous two games. It is now our objective to de-
vise strategies for players that will attempt to reach these
optimal operating points.



3

Fig. 3. A player’s strategy can be completely represented by a
’genome’, which is a string of actions. Here each color represents an
action, and each position in the string represents one of the possible his-
tories. Thus, in order to make his move, a player locates the history of
the last two games on his genome and plays the corresponding action
(color).

III. THE GENOME AND THE GENETIC ALGORITHM

We model each player’s strategy as a genome - a string
of symbols (genetic ‘letters’) that will completely define
a player’s strategy over all time. The basic idea behind
the genome is to map every possible history in a player’s
memory (the outcomes of a finite number of games in the
past - two, in our case) to a particular action which will be
taken in response to that history. Thus, a player’s strategy
consists of choosing a response to every possible outcome
that could have occurred in his (finite) past. With 9 possi-
ble outcomes per game, the number of possible outcomes
over two games will be 9x9 = 81. Thus, a player with a
memory of 2 games (which is all that our players can re-
member) will have a strategy ‘booklet’ that will tell him
what action to take for each of these 81 possibilities. This
‘booklet’ will be our genome, represented by a string of
colors (each color representing an action). Each position
in that genome will correspond to one of the 81 possi-
ble outcomes. Thus, each possible outcome in a players
memory is indexed (from 1 to 81) and when outcome i oc-
curs in the past, the player looks up the ith position in his
genome and plays whatever action appears at that position
of his genome.

Note: There are 81 possibilities to cover when a player
has had 2 games in the past. However, at start-up, a player
needs to be told what to play in the very first game as well
as what to play in the second game. That requires another
1 + 9 positions in the genome. Hence the size of a player’s
genome is actually 1 + 9 + 81 = 91 letters long, to define
a player’s strategy from start-up.

The actions are represented by colors in the genome,
one color representing each action. We use four colors -
one for each of the three possible actions and another to
represent a random action chosen from one of the pre-
vious three. Randomness is often useful in preventing
“lockup” which can result in mutually destructive behav-
ior between similar strategies.

We see that for a genome with 91 positions and 4 pos-
sible actions (colors) at each position, the number of pos-
sible strategies is 491. With a lack of analytical tools to

arrive at an optimal genome (or strategy), we have used
genetic algorithms to search this large space for ‘good’
strategies. Our method of using genetic algorithms is
inspired by John Holland’s work on identifying robust
strategies for games [10] and Robert Axelrod’s tourna-
ment [6]. The following steps outline our genetic algo-
rithm:
1. Construct an Evaluator Set E, which is a collection of
strategies. In our case, this was comprised of a mixture of
random strategy strings (genomes) and some hand-crafted
strategies - players that blindly stick to one channel, play-
ers that always spread their power, players that follow the
opponent in signal space, or avoid the opponent, hop from
one channel to the other, etc. This is the set of strategies
against which intermediate populations will be evaluated.
2. Generate a random population S of strategies, i.e. a
random collection of genomes. This is the population that
will evolve in our genetic algorithm.
3. Each member of S is then played off against each
member of E in a series of games - a match. Each match
consists of a fixed number of games. Thus, at the end of
this ‘tournament’, every member of S has played a match
with every member of E.
4. For every game that a member of S plays it receives a
score depending on the outcome of that game, as per the
payoff matrix shown in TABLE 2. So at the end of the
tournament, every member of S has an average score over
all the games of all its matches. This average score is our
metric for the fitness of that particular strategy genome.
5. The genomes in S are then ordered according to their
fitnesses (which are their average scores as calculated in
the preceeding step). The next generation’s population
must now be constructed. The two fittest genomes are
copied into the new population as they are. Then ‘mat-
ing’ of the genomes is done between successive pairs in
the ordered set of our genomes S, for all but the weakest
two genomes (i.e. ‘reaping’ is used in our genetic algo-
rithm). No mutation is used. Once done, we have a new
population of the same size as our previous population
and this becomes our new population set S.
6. Steps 3 to 5 are repeated for a fixed number of gen-
erations (80 in our simulations). The final population
S is then an optimized set of strategies for performance
against the evaluator set E.
7. The fittest member from this final population S is
added to the evaluator set E. Thus, our evaluator set is
incremented with a new evolved strategy.
8. Steps 2 to 7 are repeated a fixed number of times. Note
that at each iteration of this process, a complete genetic
algorithm is run to produce a final population that is tuned
to perform optimally against the evaluator set E. At each
iteration we are incrementing the evaluator set with an
intelligent strategy and then running a genetic algorithm
to evolve a population against this smarter evaluator set.
9. The final population S at the end of all this is a collec-
tion of our final ‘intelligent’ strategies.

IV. STRATEGY PERFORMANCE

Our iterative genetic algorithms yield a different final
population of genomes at each run. We call these as



4

Fig. 4. The performance of 20 evolved strategies when played off
against each other in a round robin tournament, with 1000 games per
match.

Fig. 5. The payoffs of two different winning strategies, when played
off against each other in a series of 500 games. The initial stage of
varying payoffs is where each ‘probes’ the other strategy and eventually
they decide to cooperate mutually and stick to different channels, giving
each a payoff of 6.9.

evolved strategies. However, although ostensibly differ-
ent in structure, they seem to share some properties that
make them perform well - as we shall see in section V. We
begin by playing 20 of these various evolved strategies
against each other in a round-robin tournament, where
each strategy plays a match of 1000 games with every
other strategy in the population. We then calculate each
player’s average score per game. The results of this sim-
ulation are shown in FIGURE 4. The important point to
note is that the average scores of the players (calculated
as channel capacities) approach 6.9, which is precisely
the limit that we hoped to achieve (refer TABLE 2). This
limit is achieved when the two players work out a ‘deal’
to stay in separate channels.

FIGURE 5 shows the variation of scores for two play-
ers in a series of games. In the initial few games players
seem to gauge the other, engaging in a negotiating process
before coming to the conclusion that segregation in signal
space is the best option which is then maintained.

Fig. 6. The results of a round robin tournament. The first 20 bars
are the average payoffs of arbitrary players - players with genomes that
are random combinations from {0,1,2,3}. The last bar is a player that
resulted from our genetic algorithm. Note that it scores the best, but not
as high as if it were playing against a fellow intelligent winner.

Thus we see that when played among themselves, our
evolved strategies do very well and approach the theoret-
ical limit to maximize the collective capacity. However,
in practice we cannot assume that our strategies will be
interacting with other “like-minded” strategies. It is then
natural to inquire about how one of our evolved players
will perform in a population of arbitrary strategies - play-
ers with genomes that are random strings of the genetic
alphabet. The results of these simulations are illustrated
in FIGURE 6. In these results, we see that our evolved
player outscores the rest of the arbitrary players but ends
up with an average score of a little below 6 (instead of
around 6.9, as in FIGURE 4. The reason for this is that
in order for two players to realize that segregation is the
optimal solution, both the players must have some de-
gree of intelligence. In this case we have one intelligent
player matched against arbitrary strategies. These arbi-
trary players do not recognize the optimality of segrega-
tion and hence do not encourage it, resulting in a lower
score throughout the population. However, the fact that
our evolved player scores the highest in an arbitrary popu-
lation is evidence to show that it is a robust strategy which
is not easily exploited and scores well against arbitrary
strategies. This robustness was seen in every simulated
round-robin tournament against arbitratily chosen strate-
gies.

V. POLICY FEATURES

Each run of the genetic algorithm ends up with a final
‘intelligent’ population, in which all players do approxi-
mately equally well when played off in a round robin tour-
nament against each other. For our analysis we group 4
sets of such winners, each set being a final intelligent pop-
ulation of 20 players from a genetic algorithm. On these
80 winners, we conduct some simple statistical investiga-
tion to identify certain defining features of all these poli-
cies. The objective in mind is to isolate dominant charac-
teristics and then check if these dominant characteristics
are sufficient to define a ‘good’ strategy.

A histogram was plotted showing the relative frequency
of the various actions (represented by colors) at each posi-



5

Fig. 7. A bar-graph showing the relative frequencies of action-choices
for each position in the genome. A distinct spike or a distinct absence
of a color indicates a characteristic that runs common to all ‘intelligent’
genomes.

tion in the genomes of our intelligent strategies. At certain
positions of the genomes, it was found that certain col-
ors were the clearly dominant choice among our ‘good’
genomes. This would mean that for that particular history
(corresponding to that position in the genome), almost all
our intelligent strategies choose to respond with the same
action.

FIGURE 7 shows a section of the histogram in which
we can see the dominance of the color Cyan at the 81st

position in the genome. Recall that each position in the
genome corresponds to a particular possible outcome in
the (finite) past of a player, and each color in the genome
corresponds to the action that a player would take in re-
sponse to that outcome in the past. According to the
indexing scheme that we used to index all possible out-
comes over the past two games, the 81st position in the
genome corresponds to the following:
• One game back: Our player spreads, Opponent plays
in channel 2
• Two games back: Our player spreads, Opponent plays
in channel 2

The histogram shows us that the action taken by almost
all our intelligent strategies in response to such a history
is to spread their energy over both channels - an action
that we represent by the color Cyan. Thus, if an oppo-
nent does not retaliate then our intelligent strategies will
continue to exploit that passivity. This observation iden-
tifies a dominant characteristic of an intelligent strategy.
Similarly other such spikes in the histogram are identified,
corresponding to other dominant response characteristics
of intelligent strategies. We call these dominant charac-
teristics ‘schema’.

In the same way, at certain positions of the genomes of
our intelligent strategies, certain actions are conspicuous
by their absence, indicating that these actions are to be
avoided as a response to that particular history. In FIG-
URE 7 we see that the color yellow is completely absent
as a choice in the 91st position of our intelligent genomes.
The 91st position corresponds to the following outcomes
in the past:
• One game back: Our player plays in channel 2, Oppo-
nent plays in channel 2

• Two games back: Our player plays in channel 2, Op-
ponent plays in channel 2

The histogram shows us that our intelligent strategies
completely avoid playing in channel 2 (Yellow) as a re-
sponse to this history. This shows that they try to avoid
staying cramped in the same channel as the opponent.
Similarly, other such schema are identified by their ‘con-
spicuous absence’. For instance, position 11 which is the
mirror image of 91 with channel 1 substituted for channel
2 shows similar characteristics.

Our sets of schema comprise the basic traits that make
up an intelligent genome. Each of them contributes a cer-
tain aspect to the character of an intelligent player - un-
derstood by looking at what the position in the genome
corresponds to (in terms of past outcomes) and the ac-
tions taken in response. Some of these characteristics,
when abstracted in colloquial terms, are
• Segregation - Stay on your side of the fence.
• Robustness to exploitation - Push me, I push you back
• Exploit passive opponents - No mercy for the meek
• Occasionally forgive to foster a spirit of cooperation
• Randomize - occasionally, to avoid repeated collisions
in signal space

VI. THE SCHEMA SKELETON

We now turn to the driving question behind the analy-
sis of the preceeding section - can we use these handful
of schema to construct strategies that perform like the in-
telligent strategies from our genetic algorithms? To find
out, we construct a schema ‘skeleton’ for our genome - a
genome in which the schema positions were fixed accord-
ing to the observations of section V. The remaining posi-
tions in the genome were randomly filled up with colors
from the genetic alphabet. Thus we constructed a genome
that had all the schema we had observed, with the re-
maining parts of the genome being chosen randomly. We
then proceed to test the performance of this constructed
strategy by playing it in a round-robin tournament against
other strategies that evolved out of our genetic algorithms.
In this round robin tournament, each player plays a match
of 1000 games with every other player. The average
scores of the players are shown in the bar chart of FIG-
URE 8, with the last bar (shown in red) indicating the
average score of our constructed strategy.

We see that the performance of the constructed strategy
is about the same as that of the evolved strategies, reach-
ing the socially optimal score of 6.9. The implication of
this result is that a handful of schema suffices to make a
strategy intelligent - leaving the other parts of the genome
to be chosen freely.

VII. CONCLUSION

Our experiments and observations show that in our sim-
ple two-player symmetric game model, it is possible to
identify salient features of strategies that are robust and
perform well. Moreover, these salient features are a suf-
ficient set of features to ensure a high performance level
in the repeated game. Looking forward to possible imple-
mentation ideas, there could be two broad ways to use the
ideas in this paper: the first would be to hardcode radios



6

Fig. 8. The average scores of players in a round-robin tournament of
1000 games per match. All the players in this simulation evolved from
our genetic algorithm except the last bar (in red), which was constructed
based on the observed schema of our intelligent strategies.

with strategies that were evolved beforehand with all the
salient features of robustness and intelligence. This would
not require the radio to deal with any of the genetic algo-
rithms computation, since it is fitted with a ready-to-go
strategy. The other option, however, is to let the radio run
its own genetic algorithm using the radios around it (its
competitors, so to speak) as an evaluator set. The point
is that our genetic algorithm evolves strategies that per-
form optimally against the evaluator set. What we did in
our simulations was to make our own evaluator set with a
fairly eclectic selection of strategies, so that the evolved
strategies would be robust in any operating environment.
But if the evaluator set were to be finely tuned to reflect
the actual operating environment, then the strategies so
evolved would be best suited to perform in that operating
environment. For instance, in trials where the evaluator
was a policy that behaved randomly, independent of his-
tory, optimal strategies always spread their energy equally
over the channels.

The overhead with such a scheme, of course, is the
computational complexity and the time involved in gen-
erating strategies - not to mention the need of re-running
the evolution process everytime the operating environ-
ment changes. This begs the question of whether strategy
evolution is a good operating principle for mutually inter-
fering radios “in the wild” or whether an “offline teach-
ing” strategy is best. In addition, as deeper history and
more players are added, strategy complexity – and hence
the size of the genetic description of the strategy – grows
rapidly. We are currently studying efficient representation
of strategies with deeper history and more than two play-
ers.

REFERENCES

[1] T.M. Cover and J.A. Thomas. Elements of Information Theory.
Wiley-Interscience, 1991.

[2] O. Popescu. Interference Avoidance for Wireless Systems with
Multiple Receivers. PhD thesis, Rutgers University, Department
of Electrical and Computer Engineering, 2004. Thesis Director:
Prof. C. Rose. In progress.

[3] A.B. Carleial. Interference Channels. IEEE Transaction on Infor-
mation Theory, 24(1):60–70, January 1978.

[4] A.B. Carleial. Outer Bounds on the Capacity of Interference Chan-
nels. IEEE Transaction on Information Theory, 29(4):602–60,
July 1983.

[5] A.B. Carleial. A Case Where Interference Does Not Reduce Ca-
pacity. IEEE Transaction on Information Theory, 21:569–570,
September 1975.

[6] R. Axelrod. The Evolution of Cooperation. Basic Books, 1985.
[7] M. A. Nowak and K. Sigmund. Tit for tat in heterogeneous

populations. ”Nature”, (355):250–253, 1992. (also available at
http://www.ped.fas.harvard.edu/pdf files/Nature92b.pdf).

[8] M. A. Nowak and K. Sigmund. A strategy of win-stay, lose-shift
that outperforms tit-for-tat in the prisoners dilemma game. ”Na-
ture”, 364(6432):56–58, 1993.

[9] M.A. Nowak, R.M. May, and K. Sigmund. The arithmetics of
mutual help. ”Scientific American”, pages 76–81, June 1995.

[10] Holland J.H. Genetic algorithms. ”Scientific Amer-
ican”, pages 66–72, July 1992. (also available at
http://www.econ.iastate.edu/tesfatsi/holland.GAIntro.htm).

[11] D.E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Kluwer Academic Publishers, Boston, MA,
1989.

[12] O. Popescu and C. Rose. Waterfilling May Not Good Neighbors
Make. In Proceedings of IEEE Globecom ’03, pages 1766–1770,
San Francisco, CA, December 2003.

[13] O. Popescu, C. Rose, and D.C. Popescu. Signal Space Partitioning
vs. Simultaneous Water Filling for Mutually Interfering Systems.
In Proceedings of IEEE Globecom ’04, pages 1766–1770, Dallas,
TX, November 2004.

[14] O. Popescu, D.C. Popescu, and C. Rose. Greed Interference
Avoidance in Non-Collaborative Multi-Base Wireless Systems. In
39th Conference on Information Sciences and Systems – CISS’05,
Baltimore, MD, March 2005.

[15] O. Popescu, C. Rose, and D.C. Popescu. Strong Interference and
Spectrum Warfare. In 38th Conference on Information Sciences
and Systems – CISS’04, Baltimore, MD, March 2005.

[16] I. J. Mitola. Software radios: Survey, critical evaluation and future
directions. ”IEEE Aerosp. Electron. Syst. Mag”, 8:25–36, April
1993.

[17] Federal Communications Commission. Et docket no. 03-322,
2003.


