Is Reality An Error Correcting Code?

Christopher Rose Rutgers University, WINLAB S. James Gates University of Maryland

February 2013

MODEST PHYSICIST

1

ITA, February 2013

Credit Where Credit Is Due

WINLAB

ITA, February 2013

(even more) MODEST STRING THEORIST

Or to Some ...

Communication Theorist

Popular Culture Doesn't Help

6

WINLAB

ITA, February 2013

Tricia Rose

ITA, February 2013

Stephanie Bell-Rose

Most Powerful Women in New York 2007

S. James Gates

DEMYSTIFY 'EM!

DEMYSTIFY 'EM!

(show physics looks just like comm theory)

DEMYSTIFY 'EM!

(show physics looks just like comm theory)

SUBSUME 'EM!!

DEMYSTIFY 'EM!

(show physics looks just like comm theory)

SUBSUME 'EM!! (show physics IS comm theory)

It's All About Energy (classical) x(t) kM

• Hamiltonian:

$$H(x,p) = E_{\text{potential}} + E_{\text{kinetic}} = \frac{1}{2} \left[k_1 x^2 + \frac{1}{M} p^2 \right]$$

It's All About Energy (classical)

• Hamiltonian:

$$H(x,p) = E_{\text{potential}} + E_{\text{kinetic}} = \frac{1}{2} \left[k_1 x^2 + \frac{1}{M} p^2 \right]$$

• Differential Equations:

$$\dot{x} = \frac{\partial H()}{\partial p} \quad \dot{p} = -\frac{\partial H()}{\partial x}$$

WINLAB

11

ITA, February 2013

• Frosh:

$$\ddot{x} + \frac{k}{M}x = 0$$

• Frosh:

$$\ddot{x} + \frac{k}{M}x = 0$$

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \mathbf{x}$$

• Frosh:

$$\ddot{x} + \frac{k}{M}x = 0$$

• Statespace:

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \mathbf{x}$$

• Add Noise, Choose Right Basis Set:

• Frosh:

$$\ddot{x} + \frac{k}{M}x = 0$$

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \mathbf{x}$$

- Add Noise, Choose Right Basis Set:
 - Colored noise channel

• Frosh:

$$\ddot{x} + \frac{k}{M}x = 0$$

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \mathbf{x}$$

- Add Noise, Choose Right Basis Set:
 - Colored noise channel
 - MAC Channel

• Frosh:

$$\ddot{x} + \frac{k}{M}x = 0$$

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \mathbf{x}$$

- Add Noise, Choose Right Basis Set:
 - Colored noise channel
 - MAC Channel
 - Odd Macro-Heisenbergishness

• Hamiltonian:

$$\mathcal{H} = E_{\text{potential}} + E_{\text{kinetic}} = \underbrace{-\frac{e^2}{4\pi\epsilon_0 r} - \frac{\hbar^2}{2m}\nabla^2}_{\text{(non-relativistic electron)}}$$

0

$$\mathcal{H} = E_{\text{potential}} + E_{\text{kinetic}} = \underbrace{-\frac{e^2}{4\pi\epsilon_0 r} - \frac{\hbar^2}{2m}\nabla^2}_{\text{(non-relativistic electron)}}$$

• ${\mathcal H}$ is now an **operator**

• Hamiltonian:

$$\mathcal{H} = E_{\text{potential}} + E_{\text{kinetic}} = \underbrace{-\frac{e^2}{4\pi\epsilon_0 r} - \frac{\hbar^2}{2m}\nabla^2}_{\text{(a)}}$$

(non-relativistic electron)

- ${\mathcal H}$ is now an operator
- Schrödinger:

$$i\hbar\frac{\partial\psi}{\partial t} = \mathcal{H}\psi$$

WINLAB

ITA, February 2013

• Solution of Schrödinger equation

- Solution of Schrödinger equation
- Complex function

- Solution of Schrödinger equation
- Complex function
- You can't actually measure ψ

- Solution of Schrödinger equation
- Complex function
- You can't actually measure ψ
- Measurement: $\langle \psi_k | \psi \rangle$ (yes, it's a **projection operation**)

- Solution of Schrödinger equation
- Complex function
- You can't actually measure ψ
- Measurement: $\langle \psi_k | \psi \rangle$ (yes, it's a projection operation)
- $\langle \psi | \psi \rangle = |\psi|^2$

- Solution of Schrödinger equation
- Complex function
- You can't actually measure ψ
- Measurement: $\langle \psi_k | \psi \rangle$ (yes, it's a projection operation)
- $\langle \psi | \psi \rangle = |\psi|^2$
- $|\psi|^2 \leftrightarrow \text{probability density on } (\mathbf{r},t)$
- Solution of Schrödinger equation
- Complex function
- You can't actually measure ψ
- Measurement: $\langle \psi_k | \psi \rangle$ (yes, it's a projection operation)
- $\langle \psi | \psi \rangle = |\psi|^2$
- $|\psi|^2 \leftrightarrow \text{probability density on } (\mathbf{r},t)$
- In general (system of particles) $\int |\psi(\mathbf{r}_1 \cdots \mathbf{r}_N, t)|^2 d\mathbf{r}_1 \cdots d\mathbf{r}_N dt = 1$

Suppose ${\mathcal H}$ Is Not a Function of Time

Suppose ${\mathcal H}$ Is Not a Function of Time

$$\mathcal{E}\psi = \mathcal{H}\psi$$

(just Fourier with a dash of Heisenberg)

Suppose ${\mathcal H}$ Is Not a Function of Time

 $\mathcal{E}\psi = \mathcal{H}\psi$

(just Fourier with a dash of Heisenberg)

Hamiltonian Eigenfunctions \Leftrightarrow System Wave Functions

Suppose ${\mathcal H}$ Is Not a Function of Time

 $\mathcal{E}\psi = \mathcal{H}\psi$

(just Fourier with a dash of Heisenberg)

Hamiltonian Eigenfunctions ⇔ System Wave Functions Hamiltonian Eigenvalues ⇔ System Energy Spectrum

Suppose ${\mathcal H}$ Is Not a Function of Time

 $\mathcal{E}\psi = \mathcal{H}\psi$

(just Fourier with a dash of Heisenberg)

Hamiltonian Eigenfunctions \Leftrightarrow System Wave Functions Hamiltonian Eigenvalues \Leftrightarrow System Energy Spectrum Arbitrary Orthonormal Bases { $|i\rangle$ }: $|\psi\rangle = \sum_{i} |i\rangle\langle i|\psi\rangle$

Suppose ${\mathcal H}$ Is Not a Function of Time

 $\mathcal{E}\psi = \mathcal{H}\psi$

(just Fourier with a dash of Heisenberg)

Hamiltonian Eigenfunctions \Leftrightarrow System Wave Functions Hamiltonian Eigenvalues \Leftrightarrow System Energy Spectrum Arbitrary Orthonormal Bases $\{|i\rangle\}$: $|\psi\rangle = \sum_i |i\rangle\langle i|\psi\rangle$

NOT So Mysterious, Huh?

• Bosons:

- Force carriers
- 2 or more with same wave function? YES!
- Integer "spin"

• Bosons:

- Force carriers
- 2 or more with same wave function? YES!
- Integer "spin"

• Fermions:

- Matter particles
- 2 or more with same wave function? NO! (Pauli Exclusion)
- Half integer spin

• Bosons:

- Force carriers
- 2 or more with same wave function? YES!
- Integer "spin"

• Fermions:

- Matter particles
- 2 or more with same wave function? NO! (Pauli Exclusion)
- Half integer spin

Composites:

- Schizophrenic, but ...
- STILL either integer or half-integer spin

WEIRDNESS!

- Nature can always tell if you peeked
- Spooky action at a distance (instantaneous communication)
- Atoms flowing through atoms (Bose-Einstein condensates)
- Etc. Etc. (but not our concern here)

WEIRDNESS!

- Nature can always tell if you peeked
- Spooky action at a distance (instantaneous communication)
- Atoms flowing through atoms (Bose-Einstein condensates)
- Etc. Etc. (but not our concern here)

GRAVITY gums up the works

WEIRDNESS!

- Nature can always tell if you peeked
- Spooky action at a distance (instantaneous communication)
- Atoms flowing through atoms (Bose-Einstein condensates)
- Etc. Etc. (but not our concern here)

GRAVITY gums up the works SuperSymmetry helps

SuperSymmetry Disclaimer

18

WINLAB

ITA, February 2013

Fermions: $\{\psi_m\}$ **Bosons:** $\{\phi_n\}$ **Operators:** $\{Q_i\}$

Fermions:
$$\{\psi_m\}$$
 Bosons: $\{\phi_n\}$ Operators: $\{Q_i\}$
Boson $\phi_n \stackrel{\rightarrow}{\underset{\leftarrow}{\leftarrow}} Fermion \psi_m$
 Q_i^{\dagger}

Fermions:
$$\{\psi_m\}$$
 Bosons: $\{\phi_n\}$ Operators: $\{Q_i\}$
Boson $\phi_n \stackrel{\rightarrow}{\underset{\leftarrow}{\leftarrow}} Fermion \psi_m$
 Q_i^{\dagger}

• On-Shell (has defined Hamiltonian): $\{Q_i, Q_j\} = \delta_{ij}\mathcal{H}$

Fermions:
$$\{\psi_m\}$$
 Bosons: $\{\phi_n\}$ Operators: $\{Q_i\}$
Boson $\phi_n \stackrel{\rightarrow}{\underset{\leftarrow}{\leftarrow}} Fermion \psi_m$
 Q_i^{\dagger}

- On-Shell (has defined Hamiltonian): $\{Q_i, Q_j\} = \delta_{ij}\mathcal{H}$
- Off-Shell ("normalized" Hamiltonian-Free): $\{Q_i, Q_j\} = 2i\delta_{ij}\partial_t$

Fermions:
$$\{\psi_m\}$$
 Bosons: $\{\phi_n\}$ Operators: $\{Q_i\}$
Boson $\phi_n \stackrel{\rightarrow}{\underset{\leftarrow}{\leftarrow}} Fermion \psi_m$
 Q_i^{\dagger}

- On-Shell (has defined Hamiltonian): $\{Q_i, Q_j\} = \delta_{ij}\mathcal{H}$
- Off-Shell ("normalized" Hamiltonian-Free): $\{Q_i, Q_j\} = 2i\delta_{ij}\partial_t$

The $\{Q_i\}$ are sorta like dimensions

(but not really)

• **Nodes:** bipartite hypercube node coloring ("bosons" and "fermions")

- Nodes: bipartite hypercube node coloring ("bosons" and "fermions")
- Links: direction- $k \rightarrow \text{operator-}k$ (color-k)

- **Nodes:** bipartite hypercube node coloring ("bosons" and "fermions")
- Links: direction- $k \rightarrow \text{operator-}k$ (color-k)
- "Dashing" links: flips operator sign (Pauli exclusion)

- **Nodes:** bipartite hypercube node coloring ("bosons" and "fermions")
- Links: direction- $k \rightarrow \text{operator-}k$ (color-k)
- "Dashing" links: flips operator sign (Pauli exclusion)

NO NO NO!!! boson_k $\stackrel{\{\text{Operators}\}_A}{\rightarrow}$ {fermion subset} $\stackrel{\{\text{Operators}\}_A}{\leftarrow}$ boson_{$\ell \neq k$}

- **Nodes:** bipartite hypercube node coloring ("bosons" and "fermions")
- Links: direction- $k \rightarrow \text{operator-}k$ (color-k)
- "Dashing" links: flips operator sign (Pauli exclusion)

NO NO NO!!! boson_k $\stackrel{\{\text{Operators}\}_A}{\longrightarrow}$ {fermion subset} $\stackrel{\{\text{Operators}\}_A}{\longleftarrow}$ boson_{$\ell \neq k$} [Also from anticommutation: $\{Q_i, Q_j\} = Q_i Q_j^{\dagger} + Q_j Q_i^{\dagger} = 0 \quad i \neq j$]

- Nodes: bipartite hypercube node coloring ("bosons" and "fermions")
- Links: direction- $k \rightarrow \text{operator-}k$ (color-k)
- "Dashing" links: flips operator sign (Pauli exclusion)

NO NO NO!!! boson_k $\stackrel{\{\text{Operators}\}_A}{\longrightarrow}$ {fermion subset} $\stackrel{\{\text{Operators}\}_A}{\longleftarrow}$ boson_{$\ell \neq k$} [Also from anticommutation: $\{Q_i, Q_j\} = Q_i Q_j^{\dagger} + Q_j Q_i^{\dagger} = 0 \quad i \neq j$]

• Raising/Lowering nodes

- **Nodes:** bipartite hypercube node coloring ("bosons" and "fermions")
- Links: direction- $k \rightarrow \text{operator-}k$ (color-k)
- "Dashing" links: flips operator sign (Pauli exclusion)

NO NO NO!!! boson_k $\stackrel{\{\text{Operators}\}_A}{\longrightarrow}$ {fermion subset} $\stackrel{\{\text{Operators}\}_A}{\longleftarrow}$ boson_{$\ell \neq k$} [Also from anticommutation: $\{Q_i, Q_j\} = Q_i Q_j^{\dagger} + Q_j Q_i^{\dagger} = 0 \quad i \neq j$]

• Raising/Lowering nodes

Many Different Possible Graphs (systems)

Construction Illustration

Adinkras and Fields of Particles

• Nodes can be rearranged according to "engineering dimension" (bosons on the bottom for our-world SUSY)

Adinkras and Fields of Particles

• Nodes can be rearranged according to "engineering dimension" (bosons on the bottom for our-world SUSY)

• Each is a Feynman-like self-consistent particle-operator system

Adinkras and Fields of Particles

• Nodes can be rearranged according to "engineering dimension" (bosons on the bottom for our-world SUSY)

• Each is a Feynman-like self-consistent particle-operator system

EXACT Representations of Potential Realities

• Un-dash

- Un-dash
- Find appropriate boson-boson, fermion-fermion pairings

- Un-dash
- Find appropriate boson-boson, fermion-fermion pairings
- Collapse
Some Adinkras Can Be Folded

- Un-dash
- Find appropriate boson-boson, fermion-fermion pairings
- Collapse

(link to video)

• Derive node addresses (codewords) $\{a_n\} = A$, n = 1, ...N

- Derive node addresses (codewords) $\{a_n\} = A$, n = 1, ...N
- LBC (yeah, that's a linear block code!): $\mathbf{G} = \begin{bmatrix} \mathbf{g}_1 & \cdots & \mathbf{g}_K \end{bmatrix}$

- Derive node addresses (codewords) $\{a_n\} = A$, n = 1, ...N
- LBC (yeah, that's a linear block code!): $\mathbf{G} = \begin{bmatrix} \mathbf{g}_1 & \cdots & \mathbf{g}_K \end{bmatrix}$

• Code set
$$\mathcal{C} = \{\mathbf{c}_i\} = \bigcup_{n,k} \mathbf{g}_n \oplus \mathbf{g}_k$$

- Derive node addresses (codewords) $\{a_n\} = A$, n = 1, ...N
- LBC (yeah, that's a linear block code!): $\mathbf{G} = \begin{bmatrix} \mathbf{g}_1 & \cdots & \mathbf{g}_K \end{bmatrix}$

• Code set
$$\mathcal{C} = \{\mathbf{c}_i\} = \bigcup_{n,k} \mathbf{g}_n \oplus \mathbf{g}_k$$

• \mathcal{A} folds iff \exists a doubly-even self-dual generator \mathbf{G} s.t. $\bigcup_{n,i} \mathbf{a}_n \oplus \mathbf{c}_i = \mathcal{A}$

- Derive node addresses (codewords) $\{a_n\} = A$, n = 1, ...N
- LBC (yeah, that's a linear block code!): $\mathbf{G} = \begin{bmatrix} \mathbf{g}_1 & \cdots & \mathbf{g}_K \end{bmatrix}$

• Code set
$$\mathcal{C} = \{\mathbf{c}_i\} = \bigcup_{n,k} \mathbf{g}_n \oplus \mathbf{g}_k$$

- \mathcal{A} folds iff \exists a doubly-even self-dual generator \mathbf{G} s.t. $\bigcup_{n,i} \mathbf{a}_n \oplus \mathbf{c}_i = \mathcal{A}$
- Previous picture:

$$\mathbf{G}^{\top} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$

- Derive node addresses (codewords) $\{a_n\} = A$, n = 1, ...N
- LBC (yeah, that's a linear block code!): $\mathbf{G} = \begin{bmatrix} \mathbf{g}_1 & \cdots & \mathbf{g}_K \end{bmatrix}$

• Code set
$$\mathcal{C} = \{\mathbf{c}_i\} = \bigcup_{n,k} \mathbf{g}_n \oplus \mathbf{g}_k$$

- \mathcal{A} folds iff \exists a doubly-even self-dual generator \mathbf{G} s.t. $\bigcup_{n,i} \mathbf{a}_n \oplus \mathbf{c}_i = \mathcal{A}$
- Previous picture:

$$\mathbf{G}^{\top} = \left[\begin{array}{cccc} 1 & 1 & 1 & 1 \end{array} \right]$$

LBC Controls Adinkras Folding!

• A few Jim-Facts:

– Irreducible Adinkras \Leftrightarrow No embedded LBC

- Irreducible Adinkras \Leftrightarrow No embedded LBC
- Smallest (irreducible) SUSY representations consistent with Feynman's "sum over histories formulation of quantum theory," are controlled by block-linear self-dual error correcting codes.

- Irreducible Adinkras \Leftrightarrow No embedded LBC
- Smallest (irreducible) SUSY representations consistent with Feynman's "sum over histories formulation of quantum theory," are controlled by block-linear self-dual error correcting codes.
- This is STRANGE!

- Irreducible Adinkras \Leftrightarrow No embedded LBC
- Smallest (irreducible) SUSY representations consistent with Feynman's "sum over histories formulation of quantum theory," are controlled by block-linear self-dual error correcting codes.
- This is STRANGE!
- Speculation:

- Irreducible Adinkras \Leftrightarrow No embedded LBC
- Smallest (irreducible) SUSY representations consistent with Feynman's "sum over histories formulation of quantum theory," are controlled by block-linear self-dual error correcting codes.
- This is STRANGE!
- Speculation:
 - Fluke?

- Irreducible Adinkras \Leftrightarrow No embedded LBC
- Smallest (irreducible) SUSY representations consistent with Feynman's "sum over histories formulation of quantum theory," are controlled by block-linear self-dual error correcting codes.
- This is STRANGE!
- Speculation:
 - Fluke?
 - Nature "protects" telescoping (folding) "realities"?

- Irreducible Adinkras \Leftrightarrow No embedded LBC
- Smallest (irreducible) SUSY representations consistent with Feynman's "sum over histories formulation of quantum theory," are controlled by block-linear self-dual error correcting codes.
- This is STRANGE!
- Speculation:
 - Fluke?
 - Nature "protects" telescoping (folding) "realities"?
 - What are perturbations?

- Irreducible Adinkras \Leftrightarrow No embedded LBC
- Smallest (irreducible) SUSY representations consistent with Feynman's "sum over histories formulation of quantum theory," are controlled by block-linear self-dual error correcting codes.
- This is STRANGE!
- Speculation:
 - Fluke?
 - Nature "protects" telescoping (folding) "realities"?
 - What are perturbations?
 - Natural Selection during the Big Bang?

• A few Jim-Facts:

- Irreducible Adinkras \Leftrightarrow No embedded LBC
- Smallest (irreducible) SUSY representations consistent with Feynman's "sum over histories formulation of quantum theory," are controlled by block-linear self-dual error correcting codes.
- This is STRANGE!
- Speculation:
 - Fluke?
 - Nature "protects" telescoping (folding) "realities"?
 - What are perturbations?
 - Natural Selection during the Big Bang?

What Do Hope It Means?

Is Reality an Error Correcting Code

SuperSymmetry

Structure of Reality \Leftrightarrow BEC Codes

Is Reality an Error Correcting Code

SuperSymmetry

Structure of Reality \Leftrightarrow BEC Codes

Communication Theory PWNS EVERYTHING!

WINLAB

ITA, February 2013

Chris Rose & Jim Gates