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Abstract— We investigate practical methods of distributed
interference avoidance where users iteratively adapt their code-
words in response to global feedback from the receiver. In
turn, the receiver adaptively tracks user codewords and offers a
reasonable alternative to feeding back codewords. We introduce
variants of standard interference avoidance procedures which
produce more easily tracked incremental codewords and study
the response of the system to abrupt changes in the interference
background as might be encountered in a practical system.
Furthermore, the methods we propose are strongly reminiscent
of adaptive equalization for which a large body of knowledge
and hardware expertise exist.

I. INTRODUCTION

Interference avoidance (IA) algorithms are motivated by
emerging programmable radio technology [1] which will en-
able transceivers to improve transmission/reception methods
on the fly to suit channel conditions. In a typical multiuser
environment, iterative and greedy application of IA for each
user results in overall improvement in performance. We en-
vision such methods as especially useful in unlicensed bands
where central control is absent or difficult to implement.

The basic idea of IA is simple. Each user waveform is
represented as a linear combination of orthonormal basis
functions which span the signal space. The set of real valued
coefficients used to represent the waveform is a codeword and
each user changes its codeword greedily to improve SINR for
whatever linear receiver method it is using (i.e., matched or
MMSE filter). We find it most useful to think in terms of the
inverse SINR, given by the Rayleigh quotient [2, pp. 253] as
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where Rk is the interference plus noise covariance seen
by codeword k at the receiver. Since it is known that the
Rayleigh quotient of a matrix is minimized by the “minimum
eigenvector” associated with the minimum eigenvalue, we can
see that SINR for user k will be maximized if codeword sk is
replaced by the minimum eigenvector of Rk. Moving toward
a state where all codewords are simultaneously minimum
eigenvectors of their respective covariances is the overall goal
of IA – and one which is achieved by iterative application of a
variety of codeword update procedures [3], [4], [5], [6], [7], [8]
or in a finite number of steps using centralized procedures [9],
[10], [11]. There has also been some recent work on easier-
to-implement binary approximations to WBE sets [12].

Strangely enough, it has proven difficult to prove optimal
codeword ensemble convergence in general of IA algorithms.

Rose has proven convergence for a variant of minimum
eigenvector IA [5]. Anigstein and Anantharam have proven
convergence for a stochastic version of the MMSE IA algo-
rithm [6]. The arguments and methods used in both papers are
not terribly simple. Nonetheless, never has IA been observed
to not converge to an optimal codeword ensemble numerically
[3], [4], [13], [14], [15].

Regardless of which distributed procedure is used, code-
words must either be calculated at the receiver and fed back to
the transmitters, or the receiver must track codeword changes
initiated in a distributed fashion by the transmitters. Since
feeding back full codewords to each user can be onerous in
terms of the bandwidth required [16], [17], here we consider
the second more practical scenario where users know their
channels – here, only gain for the time-invariant white noise
case – the receiver covariance or the received vector is
broadcast by the receiver and users employ some IA procedure
to improve their codewords. Given the empirical evidence,
we will not worry about detailed optimal codeword ensemble
convergence proofs as in [5], [6]. Rather, we will take on
faith that such distributed iterative procedures converge and
examine systems level issues such as speed of convergence
and ease of implementation.

Since the receiver must adapt to codeword changes, and
the only information the receiver has are user transmissions,
we note that IA algorithms such as the MMSE [3] or eigen
algorithm [4] can cause abrupt changes in codewords which
might be difficult for receivers to track without disruption of
associated data streams. To minimize such disruption we intro-
duce the following two schemes which allow only incremental
adjustments to codewords:

� Lagged IA: codewords are adjusted in the direction of
the optimal codeword.

� Gradient Descent IA: codewords are adjusted to most
rapidly reduce the inverse SINR.

Based on these methods, we propose a simple structure for
practical distributed IA. Overall, the method is reminiscent of
adaptive equalization and appears robust to reasonably abrupt
changes in the interference environment as well as the amount
of broadcast feedback provided by the transmitter.

II. SYSTEM MODEL

We consider a system with block diagram as shown in
FIGURE 1. The users/transmitters modulate the information
to be transmitted using their codewords. The receiver uses
a separate filter for each user which acts on the received



Fig. 1. System Model

signal and produces an estimate of the transmitted symbol for
that user. The receiver has no a priori information about the
transmitter codewords and starts with randomly selected filter
coefficients. The transmitters send a training sequence with
which the receiver iteratively refines the receiver filters based
on a typical error minimization criteria. During the training
phase, the system equations are,
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receiver filter matrix � L � M � whose columns are receiver
filters corresponding to the transmitter codewords. r
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received signal vector at the receiver � L � 1 � . b
�
n � is the vector

containing symbols sent by each user � 1 � M � . v
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zero mean and white with covariance Kv
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is the receiver filter update scheme used.
After the training phase, the receiver measures the received

signal covariance R and broadcasts it to all users periodically.
Alternately, and perhaps more parsimoniously, the receiver
could periodically broadcast the received vector r

�
n � and let

each user construct receiver covariance estimates. We assume
that each user knows its channel, so the feed back can be
used by the transmitters to steer transmitted codewords toward
higher SINR. The receiver decodes the symbols sent by the
users and continues updating C as it did during training but
now assuming that the decoded symbols are correct. This
is exactly analogous to the operation of a typical adaptive
equalizer [18].

The system equations are,
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and the covariance seen by a particular user k as
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We use a standard covariance estimate

R̂
�
n � � R̂

�
n � 1 ��� �

1 � ξ � � r � n � r � n � � � R̂
�
n � 1 ��� (9)

where ξ is a ”forgetting factor” [19]. Likewise the individual
user k covariance estimate is defined as
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Finally, the codeword update equation is
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where g � � is the codeword steering scheme used at the trans-
mitters.

III. CODEWORD STEERING SCHEMES

A. Lagged IA

As seen previously, the optimal codeword for user k is given
by the eigenvector corresponding to the minimum eigenvalue
of the channel interference matrix Rk. Let us denote this
eigenvector by s �k . Assuming codewords of other users remain
fixed, user k can increase its SINR by steering its codeword
toward s �k using the iteration
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Equation (12) has a simple and intuitive geometric meaning:
sk
�
n � 1 � represents a step toward the closest optimal codeword

ms �k along the arc joining ms �k and sk
�
n � . That is, sk
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ms �k share the same half plane. Formally, we have
Theorem 1: User k’s SINR will increase under the iteration

of equation (12) where s �k is a minimum eigenvector of Rk.

Proof: Theorem 1
Rk is a covariance matrix and therefore positive-semidefinite

with orthonormal eigenvectors which span the signal space.
Let � � λ1 � x1 ��� � λ2 � x2 ��������� � λL � xL �� be the eigenvalues and eigen-
vectors of Rk such that λ1 � λ2 ������� � λL (s �k � x1). Thus
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We then note that
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which for α � β � 0 is always less than or equal to zero by
equation (15) and equation (13) �

To ensure that codewords change incrementally we require�α ��� � β � . However, convergence of iterative IA requires a
stronger condition than just SINR increase. Specifically, we
must also have a decrease in the total squared correlation
(TSC), defined as
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to guarantee convergence [4], [20]. Thus, we require
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Theorem 2: If the replacement of the kth user codeword
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B. Gradient Descent

¿From above, the inverse SINR for the kth user is
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and its gradient with respect to the codeword components	
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Therefore, the iteration sk
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suitably small constant, increases SINR.
Now, even if we impose the unit power constraint on
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n � 1 � by normalization, SINR still increases because nor-

malization doesn’t change the value of χk. So, our iteration
becomes,
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Decreasing inverse SINR implies TSC decrease via Theo-
rem 2, so convergence is guaranteed. We note that the gradient
descent iteration does not explicitly require calculation of the
minimum eigenvector – a computational advantage.

IV. THE RECEIVER FILTER

A. Matched Filter

For optimal codeword ensembles, the matched filter (ci
� si)

is the optimal linear receiver [9]. The filter update equation can
be obtained by using gradient descent to minimize E � e � n � 2 � ,
where
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for some suitable constant µ. Note that after training, we use
b
�
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n � and continue updating C in the same manner.

B. MMSE Filter

The MMSE filter for the kth user is defined as the vector ck
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After training, we use b
�
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n � � sgn � b̃ � n ��� and continue

updating C in the same manner.

V. SIMULATIONS

A. Experiment 1

We first consider users with static codewords (no code-
word adaptation) and examine filter acquisition (training) and
subsequent tracking. FIGURE 2 shows the BER vs SNR
curves for underloaded system 4 users in 12 dimensions and
also draws a comparison between MMSE and matched filter
codeword update schemes at the receiver. FIGURE 3 repeats
the same experiment with an overloaded system (14 users
in 12 dimensions). Note that the same transmitter codeword
sets are used in both MMSE and matched filter schemes. As
might be expected for unadapted codewords, MMSE filtering
is superior since it mitigates the effects of any randomly
high correlation between user codewords. Since codeword
tracking and adaptation critically depend on low error rates,
we abandoned use of the matched filter in favor of the MMSE
filter for subsequent experiments. Of course, it is also worth
mentioning that any linear filtering technique will eventually
succumb to high error rates if enough users are present. For
discrete user symbol alphabets (binary) this is easily seen
since WBE signal sets can produce fewer signal constellation
points than possible user symbol combinations. This issue is
carefully treated in [21] where a case for nonlinear decoding
(over multiple symbols) is made.
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Fig. 2. BER vs SNR plot for 4 static users in 12 dimensions. µ � 0 � 001.
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Fig. 3. BER vs SNR plot for 14 static users in 12 dimensions. µ � 0 � 001.

B. Experiment 2

We then consider an overloaded system (14 users in 12
dimensions) and look at the codeword steering performance
for both gradient descent as well as lagged IA. The value
of ξ in equation (9) is chosen as 0 � 98. We seek minimum
codeword convergence time without incurring high BER at
the receiver and chose a nominal value for SNR as 20 dB
since we expect such systems to be interference rather than
noise limited. The initial codewords are chosen randomly
as before. We vary the steering step size control parameters
(ν for gradient descent, α for lagged IA with β fixed) and
measure the BER while the codewords are being adapted. If
the steering step size is too large, receiver cannot track the
codewords and experiences a high BER. On the other hand,
if steering step size is too small, codewords converge very
slowly to their optimal values and high correlation leads to
high BER during the finite measurement window. By plotting
BER versus step size, a suitable range for steering step sizes
was found empirically: 10

� 3 � ν � 10
� 2 and 40 � α � 300.

C. Experiment 3

We also considered the effect of adding static interference
(in the form of a new user codeword) to the system after
the user codewords have settled down to a WBE set through
application of IA. First, we consider an underloaded system
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Fig. 4. Average inverse SIR variation for 4 users in 12 dimensions. New user
added at 10000th bit. TOP: gradient descent (ν � 0 � 005). BOTTOM: lagged
IA (α � 100 � β � 1).

with 4 users in 12 dimensions. As before, the SNR for each
user is chosen to be 20 dB. We used the following values for
steering step control parameters: (ν � 0 � 005 � α � 100 � β � 1).
FIGURE 4 shows the average inverse SIR variation with time.
The first 10000 bit intervals comprise the post training interval
where transmitters are adapting their codewords using IA.
Since this is an underloaded system, we expect the inverse SIR
value to become small (nearly orthogonal user codewords).
At t � 10001, a user with a random but subsequently fixed
codeword is introduced. ¿From t � 10001 onward we see that
IA reduces the average SIR to near zero within 500 symbol
intervals for gradient descent and 1000 symbol intervals for
lagged IA. FIGURE 4 also compares the performance for exact
covariance feedback and for estimates of different qualities
(ξ � 0 � 98 � 0). Note that ξ � 0 corresponds to an instantaneous
– and therefore highly volatile – estimate ie. R

�
n � � r

�
n � r � n � �

.

FIGURE 5 shows the same plots for an overloaded system
(14 users in 12 dimensions). For exactly known and average
covariance before the introduction of static interference, the
average inverse SIR value is approximately 0 � 1667 � 14 � 12

12 � ,
the theoretically optimal value associated with a welch bound
equality codeword set (see [4]). The performance of the
instantaneous covariance feedback is slightly poorer, but not
unreasonable.

Adding sudden interference does not greatly increase the
average SIR and more importantly, does not greatly disrupt
the data streams of other users – at least in as much as
no retraining was required, even with the imprecise instanta-
neous covariance. Following the interference insult, the system
quickly settles down to the theoretically minimum inverse SIR
of 15 � 12

12
� 0 � 25 in the case of exact and averaged covariance

feedback, and once again, performs a bit more poorly for
instantaneous covariance feedback. We also plot the variance
of inverse SIR among users vs time in FIGURE 6 which sug-
gests that codeword adaptation rapidly equalizes user SIRs and
indirectly corroborates convergence to approximately optimal
codeword ensembles.
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Fig. 5. Average inverse SIR variation for 14 users in 12 dimensions. New
user added after 10000 bit intervals. Top plot shows the case when gradient
descent (ν � 0 � 005) was used while the bottom plot corresponds to lagged IA
(α � 100 � β � 1).
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Fig. 6. Variance of inverse SIR for 4 users in 12 dimensions. New user
added after 10000 bit intervals. Top plot shows the case when gradient descent
(ν � 0 � 005) was used while the bottom plot corresponds to lagged IA (α �
100 � β � 1).

VI. CONCLUSION

We have analyzed and simulated distributed interference
avoidance (IA) based on covariance feedback broadcast from
the receiver and incremental codeword changes by each user.
The feedback could be a covariance matrix estimate from
the receiver, or a sequence of received vectors r

�
n � to allow

estimates to be constructed by each transmitter. The receiver
tracks codeword changes by adapting the associated MMSE
filters under a symbol error criterion. With perfect covari-
ance feedback, from the perspective of codeword ensemble
performance the distributed method is equivalent to central-
ized methods where codewords are computed by the receiver
and distributed to transmitters. Lagged IA, however, shows
a greater sensitivity than gradient descent IA to covariance
uncertainty. Of course, no attempt was made here to optimize
covariance estimates and in addition nonlinear joint decoding
[21] was also not considered since we opted for simplicity. So
perhaps impressive performance improvements are possible.

Since codeword feedback is onerous from a beacon channel
bandwidth perspective [16], covariance feedback confers some

advantage in a practical setting. Furthermore, the codeword
tracking and codeword update machinery employed are both
strongly reminiscent of adaptive equalization for which a
large body of work and hardware methods exist. Thus, co-
variance feedback IA could allow practical and inexpensive
implementations with associated increases in wireless network
capacities.
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