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Abstract— Mobility can increase throughput in ad hoc net-
works by providing channel variation. If delay constraints are
very loose, it is possible for a given packet to observe many
different network topologies as nodes move relative one another,
and these different topologies can be treated as diversity.Oppor-
tunistic strategies can exploit large scale changes in the channel
quality to achieve higher throughput. However, to attain these
higher capacities, delays on the order of the node mobility time
constants must be tolerated.

In this paper, we design cost functions based on delay and
transmit power and implement simple greedy cost-minimizing
strategies to enable the trade-off between mobility, delayand
throughput. In particular, we study the performance of networks
where all the packets are routed using simple threshold rules. We
also examine the scaling properties of throughput and delayof
our strategies.

I. I NTRODUCTION

Recently, it has been shown that for networks of geo-
graphically fixed nodes throughput capacity is ”not scalable”.
That is, in the limit of large numbers of nodes, throughput
capacity per node goes to zero. Even if transmission ranges and
transmission schedules are chosen optimally, as the number
of nodes increases, throughput capacity per node decreasesas
1/

√
N whereN is the number of nodes. [1]

One new line of thought involves node mobility – previously
seen as undesirable since it complicates routing and can cause
packet loss owing to intermittent node connectivity. However,
if packets have loose delay constraints, mobility can not only
increase throughput but also make capacity per user scalable
[2]. The key idea is limiting both the number of hops1 and
the average hop length simultaneously regardless of network
size – an impossibility in any fixed network under uniform
traffic assumptions. This new idea constitutes the theoretical
motivation behind the ”mobile infostation architecture” [3].

In mobile infostations a packet can travel between nodes
when the conditions are favorable and sojourn at a relay node
in the meantime. That is, relay nodes need not forward a
packet as soon as it is received. If the next hop is too costly
(in terms of some suitable network resource), packets can be
retained until the next good transmission opportunity. It is
possible for a given packet to observe many different network
topologies as nodes move relative one another, and these
different topologies can be treated as diversity. In generic ad
hoc networks, many applications have strict delay constraints
requiring the network to be connected most of the time. A
mobile infostation architecture, on the other hand, targets
applications with loose delay constraints and high data rate
requirements. Thus, intermittent connectivity is both tolerated
and expected.

1In the case of [2], the number of hops was limited to two.

In this paper, we study the trade-off between throughput and
delay in mobile infostations. We define cost functions based
on transmit power and delay, and implement simple greedy
optimizations at packet level. In [4], different packet-oriented
strategies have been studied and it has been concluded that
from a practical and computational perspective, thresholdrules
are the best candidates to be used in network studies in which
packets interact. Thus, we base our protocol on threshold rules.

II. RELATED WORK

In [3], the authors studied the throughput performance of
mobile infostations by accepting a potentially large delay. The
optimal transmission ranges to maximize local throughput is
calculated and it was shown that the optimal transmission
range of mobile infostations is much shorter than (5 to 10
times) that of generic ad hoc networks.

Lately, there have been attempts to improve the delays
of architectures that rely on mobility [5]–[7]. One way of
decreasing the packet delay is generating and distributingmore
than one copy of the same packet [5] and [7]. Another way
is to allow each packet to make more hops than required2.
[6] considers a multiple hop approach to alleviate delay.
However, the proposed protocol requires a two-tier hierarchical
architecture where the sources and destinations are stableand
the relays are mobile. It also assumes that all mobile nodes
know their future trajectories for random time and they share
this knowledge with each other and stable nodes.

In this work, we consider a homogenous network where all
the nodes are mobile. We assume that nodes can obtain up-
dated topology information (not necessarily global topology)
after each hop, but does not know future topologies.

The rest of this paper is organized as follows: First, we will
introduce the basic model and the cost structure. In section-IV
we will describe the threshold based packet policy. A multiple
packet simulation model will be described in section-V. In
section-VI we will examine the results.

III. M ODEL AND ASSUMPTIONS

We consider a network of packets that interact and compete
with each other for network resources. The objective is to
achieve low delay and high throughput. We define a cost func-
tion reflecting these objectives and evaluate optimal operating
points by varying the weight of cost components.

We assume discrete intervals of durationδ during which
packets can move directly between two nodes or stay put to
await more favorable conditions. Time is measured in integer

2The minimum number of hops required to achieve a scalable throughput
depends on the system details like the traffic model. In the case of [2] at least
2 hops are required.



units of δ. The cost,cij(t) = cji(t), of transmissions between
nodesi and j is a function of time owing to node mobility.
Every packet has a unique destination. We assume that each
packet can obtain updated topology information after each hop,
but does not know future topologies.

In our mobility model,N independent nodes constrained to
the plane move in a Brownian fashion. To avoid boundary
effects, both x- and y-axes are wrapped around forming a
torus. For all experiments we chooseδ = 0.010ā2/D where
ā is the average internodal distance andD is the diffusion
coefficient. This number is chosen such that inδ seconds
significant channel variations occur owing to mobility.

A. Cost Structure

Our cost structure has two components: delay cost and
”social” cost. The delay cost is simply the time required for
the packet to traverse a given link. The social cost accountsfor
the interference among the packets. It is defined as the average
number of other nodes which are affected by the interference
associated with the transmission from nodei to nodej.

Achieving a target signal to interference/noise ratio (SINR),
γ∗, at the receiver is assumed sufficient for successful trans-
mission at some fixed rateR. The received powerP (r)

j at node
j due to a transmission from nodei with powerPi is

P
(r)
j = Pi

(

dij

d0

)α

(1)

where dij is the distance from nodei to j, d0 ≤ dij is
some minimum distance, andα is the propagation exponent.
Accordingly, in the absence of interference, the minimum
transmit power required for successful transmission is given
by:

P ∗
ij = N0Wγ∗

(

dij

d0

)α

(2)

whereW is the available bandwidth andN0 is the background
noise spectral intensity. We assume that the transmitter can-
not transmit with arbitrarily small power and the minimum
possible power level is equal toP ∗

ij of distancedij = d0.
If the target SINR isγ∗ and the ambient noise level isN0W

then we define theinterference radiusR∗ as that distance
within which the interference produced by the transmissionat
power Pi results in interference of magnitudeβN0W where
0 ≤ β ≤ 1. Thus, we have

βN0W = Pi/

(

R∗

d0

)α

(3)

which results in an interference radius

R∗ = d0

(

Pi

βN0W

)1/α

(4)

and an associated social cost of

CS = ρπd2
0

(

Pi

βN0W

)2/α

(5)

whereρ is the node density.

Fig. 1. A graph depicting all possible tours through a network of four nodes
assuming packet origination at node 1 and forced termination by timet = T
at node 4. Link costs are shown for the first hop. Since 4 is the destination
node, it is always a terminal node wherever it appears in any tour.

In a multiuser environment SINR at node-j for a transmis-
sion from node-i is given by:

γij =
Pij

∑N
k=0,k 6=i Pkj + N0W

(6)

wherePij is the power received at node-j due to a transmission
at node-i. For successful reception, nodes have to transmitwith
a power larger than the value given in equation (2). Thus,
we assume that transmitting nodes choose their power levels
by targeting a higher SNR than the actual target required for
successful transmission:

P ∗
ij = N0Wγ̃

(

dij

d0

)α

(7)

whereγ̃ > γ∗.
Using equation (7) in equation (5) we obtain:

CS = ρπ

(

γ∗

β

)2/α

d2
ij(t) (8)

Thus, the total cost for a transmission from nodei to nodej
can be defined as

cij(t) = wdδ + wsρπ

(

γ∗

β

)2/α

d2
ij(t) (9)

wherewd andws are positive weighting constants assigned to
delay and social cost respectively.

Given link costs, packet motion from a source node,σ, to a
destination node,∆, through the network can then be modeled
as a graph such as that depicted in FIGURE 1. Note thatdii

is assumed zero. The cost of a given tour is the sum of costs
for the links traversed. Formally, if we denote a tourT by a
sequence of integersIT ≡ {i1, i2, · · · , iK} then

CT =

K
∑

k=1

cik−1ik
(k − 1) (10)

Here, the individualcij(t) could be either deterministic or
represent snapshots of a random process driven by the node
mobility and other external time-varying processes.



On such a graph, the minimum cost of delivering a packet
to its destination within timeT is expressed as:

C = min
T

CT (11)

or for stochastic link costs

C̄ = min
T

E [CT ] (12)

and optimal schedules

T ∗ = arg min
T

CT (13)

or again for stochastic costs

T ∗ = arg min
T

E [CT ] (14)

In the deterministic case, standard dynamic programming (DP)
methods can be used to calculate optimal schedules with
O(N2K) computations whereK = T/δ is the total number of
available steps [8], [9]. When the node positions are random
snapshots of the underlying independent Brownian motion
and the packet can obtain updated topology information after
each hop, link costs constitute a Markov process. The exact
solutions to this problem are often complex [4]. Under the
same assumptions, a threshold-based policy called “eager
packet policy” has been proposed in [4]. It has been shown that
this policy performs within some factor of the best possible
performance which is achieved by the optimal policy under
maximum topology knowledge. Throughout this paper, we
use the ”eager packet policy” to analyze the delay-throughput
trade-off.

IV. PACKET ROUTING POLICY: EAGER PACKETS

We assume that a packet is allowed to modify the tour based
on new node location information obtained at each time step.
At each step, it calculates the minimum cost of reaching to its
destination by making at mostk hops. For this calculation it
assumes that the link costs will be fixed for the nextk steps.
If the calculated cost is smaller than some threshold,Vt, it
moves all the way to its destination. Otherwise, it waits until
the next step.

There are three parameters: the cost coefficients,(wd, ws),
and the threshold level,Vt. Without loss of generality, we set
Vt = 1.0 and vary the cost coefficients to obtain different
possible delay-throughput points.

Note that wd and ws cannot be chosen arbitrarily. Due
to the minimum transmit power constraint, the minimum
possible tour between two nodes is a single hop of length
d0. Coefficient pairs used should result a total cost smaller
than Vt = 1.0 for this minimum cost tour. Otherwise, tour
completion is impossible. Letc(d, wd, ws) denote the cost of
a link of lengthd when the cost coefficients arewd andws.
We recall equation (9) which states that the link cost is of the
following form:

c(d, wd, ws) = wdc1 + wsc2d
2 (15)

wherec1 andc2 are positive numbers. Then, we can calculate
the maximum values ofwd andws by solving:

c(d0, 0, wp,max) = 1.0 c(d0, wd,max, 0) = 1.0 (16)

We also see that the region of valid cost coefficients is a
triangle due to the additive cost structure.

We note that it is possible to put a limit on the maximum
number of hops the packet takes by choosing an appropriate
wd. For example, whenwd > wd,max/2, the packet can never
make more than one hop. If the number of hops is limited to
one, the strategy becomes a threshold rule on the transmission
distance where threshold distance,dt, corresponding to a
particular(wd, ws) is obtained by:

c(dt, wd, ws) = 1.0 (17)

Moreover, in one-hop region the samedt can be obtained
with different coefficient pairs. From equation (15) and equa-
tion (17), it can be easily seen that cost coefficients(wd, ws)
that correspond to the samedt form a line defined by:

c1wd + c2d
α
t ws − 1 = 0 (18)

A. Eager Packet Algorithm

The most straight forward algorithm is the following: At
everyδ nodes move and at each node a trellis as in FIGURE 1
is formed. When the number of hops is limited tok, the
trellis consists ofN nodes andk steps. On such a trellis
finding the minimum cost from a given source to all other
nodes requires0(N2k) computations. The total number of
computations depends on when the packet accepts a trellis
it observed. Thus, asVt decreases, the average of the total
number of computations increases. When the threshold level
Vt is low and the number of nodes is large, the computational
complexity of this method might be too large.

A better method involves a forward DP algorithm which
calculates costs from a common source to “some” of the
other nodes. Instead of solving the DP at each epoch and
comparing the total cost to a threshold we start with a given
threshold. The algorithm correctly finds the minimum cost tour
for destinations that can be reached with a total cost smaller
thanVt. For the rest of the destinations, in which we are not
interested due to high cost, it returns an incomplete tour and
an arbitrary total cost larger thanVt.

The idea is while progressing forward in the DP, to store
only those branches whose total cost so far are smaller than
Vt. Other branches are “pruned” since they can never lead the
packet to any of the destinations with cost smaller than the
threshold. For smallVt most of the nodes are along the way
to the last step reducing the number of computations.

B. Implementation of Threshold Policy

All the packets are assumed to use common cost coefficient
pairs (wd, ws) and unit threshold,Vt = 1. The optimal
(wd, ws) of a network is defined as the value at which average
packet delay is minimized while achieving a throughput equal
to the network load. When a collision occurs, the packet



restarts the algorithm as if it has been generated by its current
relay node. For simulation purposes, we assume that all the
nodes have a global view of the network. However, the policy
can be implemented as a distributed and scalable protocol.

C. Scalability of Distributed Threshold Policy

Routing information in a threshold policy is inherently scal-
able for any finite value of threshold,Vt. In our architecture,
a node does not need to know about the paths to all other
nodes but only a fraction of them. Each node is interested
in only the nodes that are reachable with a cost smaller than
Vt. For example, in a Distance Vector approach [10], routing
messages can be modified to include the total cost. A node
only sends the information that might be useful to its neighbor.
The node considers an entry as useless to a neighbor if the
total cost calculated by that neighbor would be larger than
the thresholdVt, thus this information would actually never
been used. In this way, the size of the routing messages are
limited by the threshold. Although we do not analyze exactly
how the number of nodes effects the message size, it is clear
that this approach has much better scaling properties than the
approaches for fixed ad hoc networks.

V. SIMULATION MODEL DESCRIPTION

A. Performance Metrics

Our performance metrics are average packet delay and
throughput. Due to the ergodicity of all processes involved,
we can measure the average delay and throughput by taking
time averages. We define the throughput, which can also be
called long-term throughput, in a way similar to [2]:

Tp =
1

NK

K
∑

t=0

N
∑

j=1

Mj(t) (19)

whereMj(t) is the number of packets successfully delivered
to node-j at stept, N is the number of nodes andK is the total
time in steps. Total simulation time must be long enough for
the network to observe a variety of topologies. We characterize
this time byτD = A/D whereD is the diffusion coefficient
of the Brownian motion andA is the area and chooseT =
Kδ ≥ 10τD.

B. Traffic Model:

A uniform traffic matrix is assumed. That is, every node tries
to communicate with every other node with equal rates. The
packet generation at a node is modeled as a Poisson process
with rateλ. To have a uniform traffic, each packet is assigned
to a destination that is chosen at random.λ is measured in
packets/step/node.

C. Packet and Node Contention

As the number of packets in the network increases, conflicts
arise among the intended tours of different packets. These
conflicts are classified into two groups:node-level contentions
and packet level contentions. Nearby nodes transmitting si-
multaneously interfere with each other causing some of the
transmissions to fail. We define these conflicts asnode-level
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Fig. 2. Policy for node-level contentions

contention. Packet level contentionsare caused by packets
buffered at the same node and scheduled to hop at the same
step.

Coupling these two problems might improve the overall
performance. For example, a packet at the end of its queue
can be transmitted by bypassing the other packets in the queue
if the node-level interaction assures that this transmission is
more likely to be successful. However, this kind of coupling
complicates the problem and will not be considered here. In
our system, the packets to be sent are chosen independent of
the current interference structure and then the nodes having
packets to send compete with each other.

1) Node-level Contentions:To resolve conflicts among the
nodes, we employ a slotted ALOHA based protocol. We
assume that there exist an error-free side channel for acknowl-
edgements and use a back-off algorithm to control the channel
access in a more adaptive way. We use the algorithm shown
in FIGURE 2. We chooseθ0 = 1.0 and updateθ using

θ(n) = θ(n − 1)/r (20)

whereθ(n) denotes the transmission probability at time step
n andr is called the back-off factor. In our simulation studies,
as soon as its receiver changes, the node declares a topology
change and set itsθ = θ0. In our simulation studies, we used
r = 2 and observed that the algorithm is delay-stable almost
all the time for stable loads.

2) Packet-level Contentions:At a given slot, each node
decides which packets to transmit among all eligible packets,
i.e, packets whose minimum cost to their destination is smaller
than the threshold. Each node maintains a single queue of
all the packets it carries and picks the first eligible packetin
this queue. An alternative to the above strategy could be to
give priority to the packets with smaller costs. However, this



Fig. 3. Simulation set up: Input variables are the cost coefficients(wd, ws).
Other basic parameter is the network packet generation rate, λ.

strategy requires more computation by the nodes and it is not
considered here.

VI. RESULTS

A. Minimizing Delay Through Cost Coefficients

Here, we find the regimes where the packet delay is
minimized at different packet generation rates. First, we do
not restrict the maximum number of hops,k, i.e. we set
k = ∞, and exercise control only through the cost coefficients.
FIGURE 3 illustrates the simulation set up. The variables
are the cost coefficients,(wd, ws) and the network load,λ.
We study a few representative load levels. The rest of the
parameters are kept fixed. We have15 nodes,N = 15, and
the propagation constant is4.0 (α = 4.0). For a givenλ, the
problem is a 2-dimensional optimization where the objective
function is not an analytical expression: it is a “black box”
that consists of a simulation engine in which all the packets
use a threshold rule with the given cost coefficients(wd, ws)
and threshold value,Vt = 1. That makes the use of standard
optimization algorithms impractical since all of them require
the calculation of gradient function at every iteration [11]. So,
we do an exhaustive search with discrete steps. We evaluate
the delay and throughput at a wide range of(wd, ws) pairs.
Instead of showing point(s) where the delay takes its minimum
value, we mark the “small delay regions”. Small delay region
is defined as the area where the measured delay is within some
percentage,µ, of its minimum value.

FIGURE 4 shows the small delay regions for four different
λ values. Under light load,λ = 0.01, which is less than10%
of the maximum throughput, delay is minimized whenws = 0.
If ws = 0, all hops have equal cost and thus, the minimum
cost tour is a direct hop from the source to the destination.
In this case, the exact value ofwd is irrelevant. For the other
three load levels, we see that the small delay region moves to
the left on thews axis as the load increases making the policy
more interference-aware.

As in the isolated packet analysis [4],wd upper bounds
the number of hops and in the region wherews/ws,max ≥
0.5 the packets cannot make more than one hop. In the
one-hop region, the policy can be characterized by a single
parameter: threshold distance,dt. In section-IV we argued that
for each point,P , in one-hop region, there are other points
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Fig. 4. Small delay regions for 4 differentλ (in packets/node/step) Delay
tolerance,µ is chosen as20%. The minimum delay points are circled.

that correspond to the same threshold distance asP and these
points constitute a line in thewd −ws plane. Accordingly, in
FIGURE 4, at all load levels, the small delay region takes the
shape of a line in the one-hop region.

An interesting observation is that in all four cases, the small
delay region intersects with the one-hop region. That is, if
a one-hop threshold policy is imposed instead of allowing
unlimited number of hops, the delay can increase at most
µ = 20 percent. Under light load, direct hops are preferable
because of their short delays. From [4] we know that when
the cost coefficients are large, the paths taken are usually one-
hop paths. Thus, under high loads (corresponding to larger
(wd, ws)), no benefit is expected from multiple-hops. At load
levels between the two, queuing delay at relay nodes is so
large that the our fixed link costs assumption breaks. Then,
once again, a one-hop policy emerges. We will look at one-
hop threshold rules more closely in section-VI-B.

B. One-Hop Threshold Rule: Delay and Throughput

Now, we will look at the effect of node density on the
performance of one-hop threshold policies. To control node
density, we fix the area and vary the number of nodes,N .
We note that fork = 1, choosing optimal(wd, ws) while
fixing Vt = 1 is equivalent to choosing an optimal maximum
transmission distance (d∗t ).

1) Scaling of the Delay:Now, we study the behavior of
delay as a function of load and node density. First, we find the
minimum delay (obtained under optimal transmission range)
versus load for different number of nodes in the network. In
FIGURE 5 we plot the results. FIGURE 6 shows average
minimum delay versusN for different loads. As expected,
average delay gets larger as the number of nodes increases.
But, how fast does it increase? Can we predict or at least
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bound the average delay for larger densities? We examine the
high load case since the finite area effects are more severe
under light load. FIGURE 7 shows average delay vs.N for
packet generation rateλ = 0.135 in logarithmic scale.

Let us denote the data points of FIGURE 7 as(Ni, Ti) i ∈
{1, . . . , 6} and define the curveyi = ci

√
N passing through

(Ni, Ti). In FIGURE 7, we also plot allyi curves and observe
that for∀i ∈ {1, . . . , 6}:

Tj < yi(Ni) if Nj > Ni, (21)

Tj ≥ yi(Ni) if Nj ≤ Ni (22)
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Fig. 7. Average packet delay as a function ofN for λ = 0.135 (log scale).

Thus, we conclude that for all the data points obtained,
average delay increases at a rate slower than

√
N . This result

is in contrast with the delay of fixed networks. In fixed
networks, under optimal routing, the number of hops between
the nodes grows as

√
N [1]. Since all the delay is due to

transmission time, packet delay also increases as
√

N . In
mobile infostations, although the delay is much larger than
the generic ad hoc networks, its growth rate is smaller.

2) Scaling of the Throughput Capacity:It is difficult to de-
termine the exact value of maximum throughput by simulation
since it might require us to simulate the network for a very
long time. However, we can invoke the arguments used in [2]
and [3] to show that asN increases, the maximum throughput
of the one-hop threshold strategy goes to a nonzero constant.

In a one-hop strategy, the throughput can be characterized
by the probability of success of a node’s transmission whichis
a function of the receiver SINR. We will show that the receiver
SINR is not effected by rescaling of the network topology.
Since rescaling is equivalent to changing node density, we can
argue that the long-term network throughput of the system is
independent of node density. The development below follows
[3] except that [3] assumes constant transmit power while we
choose different powers for different transmitter-receiver pairs.

Let us consider a network with node density,ρ1, with
area A1 and shrink it in 2-dimensional space to obtain
another network of areaA2 and densityρ2. Both from [3]
and simulation studies in [12], we know that the optimal
transmission range also shrinks in the same ratio. Let us
assume that a transmission takes place between the two nodes
with probability 1 when their distance is smaller than the
transmission range. When we make a connectivity graph of
the two networks showing the transmitters and receivers, the
two graphs will be scaled versions of each other [3], [13]. We
denote the set of transmitters, same in both cases, asT . If



node-i is a transmitter, its receiver is denoted by node-i′.
Let us pick a random transmitter node and call it node-0.

For both cases, we calculate the SINR at its receiver, node-
0′, due to the transmission of node-0. Since the connectivity
graphs are scaled version of each other, the SINR expressions
are identical for the two networks:

γ =
P0/dα

oo′

∑

i∈T ,i6=0

Pi/dα
i0′

(23)

However, the distances and power levels are different in two
cases. From equation (2), we recall that in our protocol a
transmitter chooses its power level according to the distance
to its receiver :

Pi = Kdα
ii′ (24)

whereK = N0Wγ∗/dα
0 . Substituting equation (24) in equa-

tion (23) we obtain:

γ =





∑

i∈T ,i6=0

(dii′/di0′)α





−1

(25)

In equation (25), it is seen that the SINR does not depend
on the exact distances but their ratios. As the two graphs
are scaled versions of each other, ratio of these distances
are the same in both networks. Thus, the SINR of the node
does not change with scaling. This is due to the fact that the
transmit power is also scaled with the distance and both signal
and interference power are effected from scaling in the same
way. So, we conclude that in one-hop threshold strategy the
throughput capacity per node can be kept constant as the node
density goes to infinity.

VII. SUMMARY AND CONCLUSION

This work was an initial attempt to understand the possible
tradeoffs between mobility, throughput and delay. For com-
putational and implementation purposes we avoided network-
centric solutions and concentrated on a packet-oriented ap-
proach where the routing decisions are made for each packet
independent of the other packets. We analyzed the average
delay and throughput performance of our threshold-based
policy. We resorted to network simulations to evaluate delay
and throughput.

We have found the optimal cost parameters coefficients that
minimize delay for a given network load. Results showed that
most of the time our policy can be replaced with a one-hop
threshold rule, which is equivalent to a threshold rule on the
transmission range, without significant change in the average
delay. Thus, allowing multiple hops has negligible benefit
when the node moves in a somewhat unpredictable way.

Then we examined the one-hop threshold strategy and its
scaling properties. We showed that the throughput per node
can be kept scalable while the average delay increases at a
rate smaller than

√
N , whereN is the number of nodes.
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