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degrees of freedom.



Wireless Fading Channels

• Fundamental characteristic of wireless channels: multi-path fading.

• Two important resources of a fading channel: diversity and

degrees of freedom.



Diversity

Channel Quality

t

A channel with more diversity has smaller probability in deep fades.
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Talk Outline

• point-to-point MIMO channels

• multiple access MIMO channels

• cooperative relaying systems



Point-to-point MIMO Channel
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yt = Htxt + wt, wt ∼ CN (0, 1)

• Rayleigh flat fading i.i.d. across antenna pairs (hij ∼ CN (0, 1)).

• SNR is the average signal-to-noise ratio at each receive antenna.



Coherent Block Fading Model

• Focus on codes over l symbols, where H remains constant.

• H is known to the receiver but not the transmitter.

• Assumption valid as long as

l ¿ coherence time × coherence bandwidth.



Space-Time Block Code

Y = HX + W

Y

l

H WX

m x 
space

time

Focus on coding over a single block of length l.



Diversity Gain

Motivation: Binary Detection

y = hx + w Pe ≈ P (‖h‖ is small ) ∝ SNR−1

y1 = h1x + w1

y2 = h2x + w2

9
=
;

Pe ≈ P (‖h1‖, ‖h2‖ are both small)

∝ SNR−2

Definition

A space-time coding scheme achieves diversity gain d, if

Pe(SNR) ∼ SNR−d
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Spatial Multiplexing Gain

Motivation: Channel capacity (Telatar ’95, Foschini’96)

C(SNR) ≈ min{m, n} log SNR(bps/Hz)

min{m, n} degrees of freedom to communicate.

Definition A space-time coding scheme achieves spatial multiplexing

gain r, if

R(SNR) = r log SNR(bps/Hz)
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Fundamental Tradeoff

A space-time coding scheme achieves

Spatial Multiplexing Gain r : R = r log SNR (bps/Hz)

and

Diversity Gain d : Pe ≈ SNR−d

Fundamental tradeoff: for any r, the maximum diversity gain

achievable: d∗m,n(r).

r → d∗m,n(r)

A tradeoff between data rate and error probability.



Fundamental Tradeoff

A space-time coding scheme achieves

Spatial Multiplexing Gain r : R = r log SNR (bps/Hz)

and

Diversity Gain d : Pe ≈ SNR−d

Fundamental tradeoff: for any r, the maximum diversity gain

achievable: d∗m,n(r).

r → d∗m,n(r)

A tradeoff between data rate and error probability.



Fundamental Tradeoff

A space-time coding scheme achieves

Spatial Multiplexing Gain r : R = r log SNR (bps/Hz)

and

Diversity Gain d : Pe ≈ SNR−d

Fundamental tradeoff: for any r, the maximum diversity gain

achievable: d∗m,n(r).

r → d∗m,n(r)

A tradeoff between data rate and error probability.
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What do I get by adding one more antenna at the

transmitter and the receiver?



Adding More Antennas
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• Capacity result: increasing min{m, n} by 1 adds 1 more degree of

freedom.

• Tradeoff curve: increasing both m and n by 1 yields multiplexing

gain +1 for any diversity requirement d.
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Sketch of Proof

Lemma:

For block length l ≥ m + n− 1, the error probability of the best code

satisfies at high SNR:

Pe(SNR) ≈ P (Outage) = P (I(H) < R)

where

I(H) = log det [I + SNRHH∗]

is the mutual information achieved by the i.i.d. Gaussian input.



Outage Analysis

P (Outage) = P{log det[I + SNRHH†] < R}

• In scalar 1× 1 channel, outage occurs when the channel gain ‖h‖2
is small.

• In general m× n channel, outage occurs when some or all of the

singular values of H are small. There are many ways for this to

happen.

• Let v = vector of singular values of H:

Laplace Principle:

P (Outage) ≈ min
v∈Out

SNR−f(v)
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Geometric Picture (integer r)
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Result: At rate R = r log SNR, for r integer, outage occurs typically

when H is in or close to the set {H : rank(H) ≤ r}, with ε2 = SNR−1.

The dimension of the normal space to the sub-manifold of rank r

matrices within the set of all M ×N matrices is (M − r)(N − r).

P (Outage) ≈ SNR−(M−r)(N−r)



Geometric Picture (integer r)

Scalar Channel

ε

Good HBad H

Result: At rate R = r log SNR, for r integer, outage occurs typically

when H is close to the set {H : rank(H) ≤ r}, with ε2 = SNR−1.

The dimension of the normal space to the sub-manifold of rank r

matrices within the set of all M ×N matrices is (M − r)(N − r).

P (Outage) ≈ SNR−(M−r)(N−r)



Geometric Picture (integer r)

ε

All n x m Matrices

Good HBad H

Scalar Channel Vector Channel

Rank(H)=r

Result: At rate R = r log SNR, for r integer, outage occurs typically

when H is close to the set {H : rank(H) ≤ r}, with ε2 = SNR−1.

The co-dimension of the manifold of rank r matrices within the set of

all m× n matrices is (m− r)(n− r).

P (Outage) ≈ SNR−(M−r)(N−r)



Geometric Picture (integer r)

ε

ε

Good HBad H

Good H
Full Rank

Typical Bad H
Scalar Channel Vector Channel

Rank(H)=r

Result: At rate R = r log SNR, for r integer, outage occurs typically

when H is close to the set {H : rank(H) ≤ r}, with ε2 = SNR−1.

The co-dimension of the manifold of rank r matrices within the set of

all m× n matrices is (m− r)(n− r).

P (Outage) ≈ SNR−(M−r)(N−r)



Geometric Picture (integer r)

ε

ε

Good HBad H

Good H
Full Rank

Typical Bad H
Scalar Channel Vector Channel

Rank(H)=r

Result: At rate R = r log SNR, for r integer, outage occurs typically

when H is close to the set {H : rank(H) ≤ r}, with ε2 = SNR−1.

The co-dimension of the manifold of rank r matrices within the set of

all M ×N matrices is (M − r)(N − r).

P (Outage) ≈ SNR−(M−r)(N−r)



Geometric Picture (integer r)

ε

ε

Good HBad H

Good H
Full Rank

Typical Bad H
Scalar Channel Vector Channel

Rank(H)=r

Result: At rate R = r log SNR, for r integer, outage occurs typically

when H is close to the set {H : rank(H) ≤ r} , with ε2 = SNR−1.

The co-dimension of the manifold of rank r matrices within the set of

all m× n matrices is (m− r)(n− r).

P (Outage) ≈ SNR−(m−r)(n−r)



Piecewise Linearity of Tradeoff Curve

Spatial Multiplexing Gain:   r=R/log SNR

D
iv

er
si

ty
 G

ai
n:

   
 d

* (r
)

(min{m,n},0) 

(0,mn) 

(r, (m−r)(n−r)) 

1

Multiple Antenna
  m x n channel

Single Antenna
     channel

1

For non-integer r, qualitatively same outage behavior as brc but with

larger ε.

Scalar channel: qualitatively same outage behavior for all r.

Vector channel: qualitatively different outage behavior in different

segments of the tradeoff curve.



Tradeoff Analysis of Specific Designs

Focus on two transmit antennas.

Y = HX + W

Repetition Scheme:

X = 
x      0

0      x

time

space

1

1

y1 = ‖H‖x1 + w1

Alamouti Scheme:

X = 

time

space

x     -x *

x       x2

1 2

1
*

[y1y2] = ‖H‖[x1x2] + [w1w2]



Comparison: 2× 1 System
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Talk Outline

• point-to-point MIMO channels

• multiple access MIMO channels

• cooperative relaying systems



Multiple Access

User K
Tx

User 2
Tx

User 1
Tx

M Tx Antenna

M Tx Antenna

N Rx Antenna

Rx

In a point-to-point link, multiple antennas provide diversity and

multiplexing gain.

In a system with K users, multiple antennas can be used to discriminate

signals from different users too.

Continue assuming i.i.d. Rayleigh fading, n receive antennas, m

transmit antennas per user.



Multiuser Diversity-Multiplexing Tradeoff

Suppose we want every user to achieve an error probability:

Pe ∼ SNR−d

and a data rate

R = r log SNR bits/s/Hz.

What is the optimal tradeoff between the diversity gain d and the

multiplexing gain r?

Assume a coding block length l ≥ Km + n− 1.



Optimal Multiuser D-M Tradeoff: m ≤ n/(K + 1)

(Tse, Viswanath and Zheng 02)
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In this regime, diversity-multiplexing tradeoff of each user is as though

it is the only user in the system, i.e. d∗m,n(r)



Multiuser Tradeoff: m > n/(K + 1)

K+1
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Single-user diversity-multiplexing tradeoff up to r∗ = n/(K + 1).

For r from N/(K + 1) to min{N/K, M}, tradeoff is as though the K users

are pooled together into a single user with KM antennas and rate Kr,

i.e. d∗KM,N (Kr) .
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Single-user diversity-multiplexing tradeoff up to r∗ = m/(K + 1).

For r from n/(K + 1) to min{n/K, m}, tradeoff is as though the K users

are pooled together into a single user with Km antennas and rate Kr,

i.e. d∗Km,n(Kr) .



Benefit of Dual Transmit Antennas
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Question: what does adding one more antenna at each mobile buy me?

Assume there are more users than receive antennas.
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Answer

K+1
n

Spatial Multiplexing Gain : r = R/log SNR
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n

Adding one more transmit antenna does not increase the number of

degrees of freedom for each user.

However, it increases the maximum diversity gain from N to 2N .

More generally, it improves the diversity gain d(r) for every r.
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K+1
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Spatial Multiplexing Gain : r = R/log SNR
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Optimal tradeoff

n

1 Tx antenna

Adding one more transmit antenna does not increase the number of

degrees of freedom for each user.

However, it increases the maximum diversity gain from n to 2n.

More generally, it improves the diversity gain d(r) for every r.



Suboptimal Receiver: the Decorrelator/Nuller

User K
Tx

User 2
Tx

User 1
Tx Decorrelator

User 1

Decorrelator
User 2

Decorrelator
User K

1 Tx Antenna

1 Tx Antenna

N Rx Antenna

Rx

Data for user 1

Data for user 2

Data for user K

Consider only the case of m = 1 transmit antenna for each user and

number of users K < n.



Tradeoff for the Decorrelator

Spatial Multiplexing Gain : r = R/log SNR
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Maximum diversity gain is n−K + 1: “costs K − 1 diversity gain to null

out K − 1 interferers.” (Winters, Salz and Gitlin 93)

Adding one receive antenna provides either more reliability per user or

accommodate 1 more user at the same reliability. Optimal tradeoff

curve is also a straight line but with a maximum diversity gain of N .

Adding one receive antenna provides more reliability per user and

accommodate 1 more user.
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Spatial Multiplexing Gain : r = R/log SNR
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Decorrelator

Maximum diversity gain is n−K + 1: “costs K − 1 diversity gain to null

out K − 1 interferers.” (Winters, Salz and Gitlin 93)

Adding one receive antenna provides either more reliability per user or

accommodate 1 more user at the same reliability.

Optimal tradeoff curve is also a straight line but with a maximum

diversity gain of n.

Adding one receive antenna provides more reliability per user and

accommodate 1 more user.



Talk Outline

• point-to-point MIMO channels

• multiple access MIMO channels

• cooperative relaying systems



Cooperative Relaying
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Cooperative relaying protocols can be designed via a

diversity-multiplexing tradeoff analysis.

(Laneman, Tse, Wornell 01)
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Cooperative relaying protocols can be designed via a

diversity-multiplexing tradeoff analysis.

(Laneman, Tse and Wornell 01)



Tradeoff Curves of Relaying Strategies
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Conclusion

Diversity-multiplexing tradeoff is a unified way to look at performance

over wireless channels.

Future work:

• Code design.

• Application to other wireless scenarios.

• Extension to channel-uncertainty-limited rather than noise-limited

regime.


