

College of Engineering Department of Electrical and Computer Engineering

332:559 Spectrum Management and Wireless Systems Fall 2003 Problem Set 1

1. **Basic Grazing:** Let the amount of grazing done by herd *i* be g_i and the benefit reaped by shepherd *i* be $B_i = B(Q(\sum_i g_i), g_i)$ where Q() is a pasture quality function. As always we assume that Q() is strictly monotone decreasing in its (non-negative) argument and that

$$\frac{\partial B}{\partial g} = B_g > 0$$

and

$$\frac{\partial B}{\partial Q} = B_Q > 0$$

Then define the aggregate (social) benefit

$$\bar{B} = \sum_{j} B_{j} = \sum_{j} B(Q(\sum_{i} g_{i}), g_{j})$$

In what follows, assume two herds but generalize to multiple herds if you'd like.

- (a) Please show that greedy optimization of grazing levels g_j by each user always results in suboptimal grazing from the perspective of an optimum sharing solution where \bar{B} is maximized by considering the $\{g_j\}$ jointly.
- (b) This result is called the "tragedy of the commons." Solve for both the greedy optima and the aggregate (social) otima when we have $Q(g) = e^{-g}$ and B(Q,g) = Qg. Exactly how tragic is this tragedy (how much more poorly does greedy optimization perform than joint optimization)?
- (c) In general, do we still have a tragedy if the performance measures from the perspective of each user are different: i.e., different $Q^{(j)}$ and $B^{(j)}$ for each user *j*?
- (d) The tragedy is often billed as a collapse of the grazing infrastructure. See if you can find general properties of Q() and B() which lead to collapse, within the constraints provided in the problem description.
- 2. **Dangerous Grazing Games:** Now suppose that each shepherd can adjust the size of the other herd through some means (high power rifle, cow/sheep/goatnapping). Model this adjustment as $\tilde{g}_2 = \alpha_{12}g_2$ and $\tilde{g}_1 = \alpha_{21}g_1$ where α_{ij} is the scaling factor imposed on herd j by shepherd i, $i \neq j$, $\alpha_{ij} \in [0, \infty)$. You may again assume only two herds, but generalize to multiple herds as you see fit.
 - (a) Show that if each shepherd *i* has control over both α_{ij} and g_i that greedy optimization without regard for the actions of others must lead to total collapse.

- (b) Now suppose symmetric action so that each shepherd knows that whatever $\alpha_{ij} = \alpha$ they use, the same α will we used by other shepherds. Assume identical quality and benefit functions for each herd. Assume each grazing constant g_i fixed and show that greedy and fair optimization leads to a social optimum. What about greedy but unfair optimization?
- (c) Now suppose symmetric action but asymmetric control over grazing g_i . Compare greedy and social optima.
- (d) Now think about dynamic control of the individual α_{ij} . Suppose there are limits to how rapidly the α_{ij} can be changed. Might symmetric action arise in practice or no?
- (e) Suppose guns and kidnapping are outlawed. Might symmetric action arise naturally to control grazing. Assume identical cost functions for each herd.

3. Stupid Math Tricks:

A function f() is convex if $\forall x_0, x_1 \in \mathcal{D}_f$ and $\lambda \in [0, 1]$ we have

$$f(\lambda x_0 + (1 - \lambda)x_1) \le \lambda f(x_0) + (1 - \lambda)f(x_1)$$

with equality iff $\lambda = 0, 1$ or $x_0 = x_1$. Prove that this definition is equivalent to the usual $\frac{d^2 f(x)}{dx^2} \ge 0$ for a single variable function.

HINT: For any twice differentiable function f(x) in an interval (x_0, x_1) we have

$$f(x) = f(x_0) + \left(\frac{df}{dx}|_{x_0}\right)(x - x_0) + \frac{1}{2}\left(\frac{d^2f}{dx^2}|_{x_0}\right)(\xi - x_0)^2$$