Hi Folks,
Manasi asked me a question and though I made noises in the right direction, I pretty much screwed up in what I wrote down in an email. This will serve to fix my errors and be an indirect apology to Manasi.

Suppose you have a set of identically distributed random variables \(K_i \) where each is geometric with parameter \(p \). That is

\[
p_{K_i}(k) = p(1-p)^{k-1}
\]

for \(k = 1, 2, \ldots \). We can think of \(K_i \) as the number of trials up to and including a first “success.”

Now, suppose we run the same “success” experiment independently \(r \) times. That is, we’re looking for the number of trials up to and including the \(r \)th success. Then we have a new random variable \(K = K_1 + K_2 + \cdots + K_r \). Since the \(K_i \) are independent, the distribution of the sum is the convolution of the distributions (A VERY IMPORTANT FACT! HINT HINT!!!).

However, unless you’re a masochist and like doing convolution as opposed to multiplication, the speediest way to figure out the distribution on \(K \) is to go to “frequency domain” and use moment generating functions. So, the moment generating function for \(K_i \) is

\[
\varphi_{K_i}(s) = E[e^{sk}] = \sum_{k=1}^{\infty} p(1-p)^{k-1} e^{sk} = \frac{pe^s}{1 - (1-p)e^s}
\]

which immediately means that

\[
\varphi_K(s) = \left(\frac{pe^s}{1 - (1-p)e^s} \right)^r = p^r e^{rs} \left(\frac{1}{1 - (1-p)e^s} \right)^r
\]
And I dare you to try to take the inverse transform directly to get back to \(p_K(k) \).
(I have a personal dislike of doing contour integrations, so inverse \(Z \) transforms and inverse Laplace transforms often bedevil me. Luckily, I have lots of company in my laziness.)

When I’m confronted with something I don’t know (or don’t want to do using brute force), I nose around for an easy way out. Looking at the fraction raised to a power makes me immediately think of

\[
\frac{d}{d\theta} \frac{1}{1-\theta} = \left(\frac{1}{1-\theta} \right)^2
\]

Therefore

\[
\frac{d^\ell}{d\theta^\ell} \frac{1}{1-\theta} = \ell! \left(\frac{1}{1-\theta} \right)^{\ell+1}
\]

Using this lovely fact we have (setting \(\theta = (1 - p)e^s \))

\[
\phi_K(s) = p^r e^{sr} \frac{1}{(r-1)!} \frac{d^{r-1}}{d\theta^{r-1}} \frac{1}{1-\theta}
\]

Suddenly, I’m much happier because I immediately remember that

\[
\sum_{m=0}^{\infty} q^m = \frac{1}{1-q}
\]

which leads to

\[
\phi_K(s) = p^r e^{sr} \frac{1}{(r-1)!} \frac{d^{r-1}}{d\theta^{r-1}} \sum_{k=1}^{\infty} \theta^{k-1} = p^r e^{sr} \frac{1}{(r-1)!} \sum_{k=r}^{\infty} \frac{(k-1)!}{(k-1-(r-1))!} \theta^{k-1-(r-1)}
\]

which we simplify as

\[
\phi_K(s) = p^r e^{sr} \frac{1}{(r-1)!} \sum_{k=r}^{\infty} \frac{(k-1)!}{(k-r)!} \theta^{k-r}
\]

We then substitute for \(\theta \) to obtain

\[
\phi_K(s) = \sum_{k=r}^{\infty} p^r e^{sr} \frac{1}{(r-1)! (k-r)!} (1-p)^{k-r} e^{s(k-r)}
\]
and rearrange a little to get

\[\phi_K(s) = \sum_{k=r}^{\infty} e^{sk} \binom{k - 1}{r - 1} p^r (1 - p)^{k-r} \]

Hmmmmm! This looks just like \(E[e^{sk}] \) if

\[p_K(k) = \binom{k - 1}{r - 1} p^r (1 - p)^{k-r} \]

\(k = r, r + 1, \ldots \). AND WE’RE DONE since that’s the Pascal distribution!

Laziness has its rewards!