
332:541 Stochastic Signals and Systems Fall
Convexity

Some of you asked for a few notes on convexity. Here they are.
Definition: A vector-argument, real valued function g(x) is strictly convex iff for λ ∈

[0, 1] and x1, x2 in the domain of g() we have

g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2)

with equality iff λ = 0, 1.
Simple convexity (not strict) relaxes relaxes the strict inequality except at the endpoints.

That is, the expression can be satisfied with equality other than at λ = 0, 1.
The above definition is powerful since it allows us to apply convexity to multivariate

functions. The geometric interpretation is that for a function to be convex, it must lie below
a line drawn between ANY two points in the domain of the function.

One can also use the same basic idea to define convex sets. For example, a set is called
convex if the line connecting any two points in the set is also completely contained in the
set – that is, all points on the line are also in the set for any two chosen endpoints. This
concept is useful in optimization — something we do a lot of as EE’s.

In any case, our definition of convexity is completely general and our old baby definition
for single-variable functions is included in our super definition. Here’s why. For any function
f(x) on some simply-connected region (x1, x2) (OOOOOOOH! here’s another use for convex
regions – all convex regions MUST be simply connected since if they’re not, you can draw a
line from one of the regions to another and the line will not be completely contained in the
set!) we have

f(x) = f(a) +
df(a)

dx
(x− a) +

d2f(ξ)

dx2

1

2
(x− a)2

where ξ is between a and x. This is an often forgotten fact from Calculus 101. In any case,

we first see if for d2f(ξ)
dx2 > 0 we satisfy our expression for convexity with a ∈ (x1, x2). So we

let a = λx1 + (1− λ)x2 to obtain

f(x1) > f(λx1 + (1− λ)x2) + f ′(λx1 + (1− λ)x2) [(1− λ)(x1 − x2)]

where the strict inequality is owed to the positivity of the second derivative. Similarly.

f(x2) > f(λx1 + (1− λ)x2) + f ′(λx1 + (1− λ)x2) [λ(x2 − x1)]

From these we obtain

λf(x1) + (1− λ)f(x2) > f(λx1 + (1− λ)x2)

Now for the reverse arrow we’d like to show

{λf(x1) + (1− λ)f(x2) > f(λx1 + (1− λ)x2)} ⇒
{
d2f

dx2
> 0

}

Well, I’ll leave it to you to show that if there exists a single value χ for which d2f(χ)
dx2 < 0

then the formal “super-convexity” definition will not be satisfied. That is, you should find
it relatively easy to show that for such a χ we will have{

d2f(χ)

dx2
≤ 0

}
⇒ {λf(x1) + (1− λ)f(x2) ≤ f(λx1 + (1− λ)x2)}

for some values of x1 and x2 and λ 6= 0, 1.

1


